Daniel Vila commited on
Commit
7167911
1 Parent(s): 2d63739

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +864 -0
README.md ADDED
@@ -0,0 +1,864 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Comparing model predictions and ground truth labels with Rubrix and Hugging Face
2
+
3
+ ## Build dataset
4
+
5
+ You skip this step if you run:
6
+
7
+
8
+
9
+ ```python
10
+ from datasets import load_dataset
11
+ import rubrix as rb
12
+
13
+ ds = rb.DatasetForTextClassification.from_datasets(load_dataset("rubrix/sst2_with_predictions", split="train"))
14
+ ```
15
+
16
+ Otherwise, the following cell will run the pipeline over the training set and store labels and predictions.
17
+
18
+
19
+ ```python
20
+ from datasets import load_dataset
21
+ from transformers import pipeline, AutoModelForSequenceClassification
22
+
23
+ import rubrix as rb
24
+
25
+ name = "distilbert-base-uncased-finetuned-sst-2-english"
26
+
27
+ # Need to define id2label because surprisingly the pipeline has uppercase label names
28
+ model = AutoModelForSequenceClassification.from_pretrained(name, id2label={0: 'negative', 1: 'positive'})
29
+ nlp = pipeline("sentiment-analysis", model=model, tokenizer=name, return_all_scores=True)
30
+
31
+ dataset = load_dataset("glue", "sst2", split="train")
32
+
33
+ # batch predict
34
+ def predict(example):
35
+ return {"prediction": nlp(example["sentence"])}
36
+
37
+ # add predictions to the dataset
38
+ dataset = dataset.map(predict, batched=True).rename_column("sentence", "text")
39
+
40
+ # build rubrix dataset from hf dataset
41
+ ds = rb.DatasetForTextClassification.from_datasets(dataset, annotation="label")
42
+ ```
43
+
44
+
45
+ ```python
46
+ # Install Rubrix and start exploring and sharing URLs with interesting subsets, etc.
47
+ rb.log(ds, "sst2")
48
+ ```
49
+
50
+
51
+ ```python
52
+ ds.to_datasets().push_to_hub("rubrix/sst2_with_predictions")
53
+ ```
54
+
55
+
56
+ Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]
57
+
58
+
59
+ ## Analize misspredictions and ambiguous labels
60
+
61
+ ### With the UI
62
+
63
+ With Rubrix UI you can:
64
+
65
+ - Combine filters and full-text/DSL queries to quickly find important samples
66
+ - All URLs contain the state so you can share with collaborator and annotator specific dataset regions to work on.
67
+ - Sort examples by score, as well as custom metadata fields.
68
+
69
+
70
+
71
+ ![example.png](example.png)
72
+
73
+
74
+ ### Programmatically
75
+
76
+ Let's find all wrong predictions from Python. This useful for bulk operations (relabelling, discarding, etc.)
77
+
78
+
79
+ ```python
80
+ import pandas as pd
81
+
82
+ # Get dataset slice with wrong predictions
83
+ df = rb.load("sst2", query="predicted:ko").to_pandas()
84
+
85
+ # display first 20 examples
86
+ with pd.option_context('display.max_colwidth', None):
87
+ display(df[["text", "prediction", "annotation"]].head(20))
88
+ ```
89
+
90
+
91
+ <div>
92
+ <style scoped>
93
+ .dataframe tbody tr th:only-of-type {
94
+ vertical-align: middle;
95
+ }
96
+
97
+ .dataframe tbody tr th {
98
+ vertical-align: top;
99
+ }
100
+
101
+ .dataframe thead th {
102
+ text-align: right;
103
+ }
104
+ </style>
105
+ <table border="1" class="dataframe">
106
+ <thead>
107
+ <tr style="text-align: right;">
108
+ <th></th>
109
+ <th>text</th>
110
+ <th>prediction</th>
111
+ <th>annotation</th>
112
+ </tr>
113
+ </thead>
114
+ <tbody>
115
+ <tr>
116
+ <th>0</th>
117
+ <td>this particular , anciently demanding métier</td>
118
+ <td>[(negative, 0.9386059045791626), (positive, 0.06139408051967621)]</td>
119
+ <td>positive</td>
120
+ </tr>
121
+ <tr>
122
+ <th>1</th>
123
+ <td>under our skin</td>
124
+ <td>[(positive, 0.7508484721183777), (negative, 0.24915160238742828)]</td>
125
+ <td>negative</td>
126
+ </tr>
127
+ <tr>
128
+ <th>2</th>
129
+ <td>evokes a palpable sense of disconnection , made all the more poignant by the incessant use of cell phones .</td>
130
+ <td>[(negative, 0.6634528636932373), (positive, 0.3365470767021179)]</td>
131
+ <td>positive</td>
132
+ </tr>
133
+ <tr>
134
+ <th>3</th>
135
+ <td>plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown .</td>
136
+ <td>[(positive, 0.9968075752258301), (negative, 0.003192420583218336)]</td>
137
+ <td>negative</td>
138
+ </tr>
139
+ <tr>
140
+ <th>4</th>
141
+ <td>into a pulpy concept that , in many other hands would be completely forgettable</td>
142
+ <td>[(positive, 0.6178210377693176), (negative, 0.3821789622306824)]</td>
143
+ <td>negative</td>
144
+ </tr>
145
+ <tr>
146
+ <th>5</th>
147
+ <td>transcends ethnic lines .</td>
148
+ <td>[(positive, 0.9758220314979553), (negative, 0.024177948012948036)]</td>
149
+ <td>negative</td>
150
+ </tr>
151
+ <tr>
152
+ <th>6</th>
153
+ <td>is barely</td>
154
+ <td>[(negative, 0.9922297596931458), (positive, 0.00777028314769268)]</td>
155
+ <td>positive</td>
156
+ </tr>
157
+ <tr>
158
+ <th>7</th>
159
+ <td>a pulpy concept that , in many other hands would be completely forgettable</td>
160
+ <td>[(negative, 0.9738760590553284), (positive, 0.026123959571123123)]</td>
161
+ <td>positive</td>
162
+ </tr>
163
+ <tr>
164
+ <th>8</th>
165
+ <td>of hollywood heart-string plucking</td>
166
+ <td>[(positive, 0.9889695644378662), (negative, 0.011030420660972595)]</td>
167
+ <td>negative</td>
168
+ </tr>
169
+ <tr>
170
+ <th>9</th>
171
+ <td>a minimalist beauty and the beast</td>
172
+ <td>[(positive, 0.9100378751754761), (negative, 0.08996208757162094)]</td>
173
+ <td>negative</td>
174
+ </tr>
175
+ <tr>
176
+ <th>10</th>
177
+ <td>the intimate , unguarded moments of folks who live in unusual homes --</td>
178
+ <td>[(positive, 0.9967381358146667), (negative, 0.0032618637196719646)]</td>
179
+ <td>negative</td>
180
+ </tr>
181
+ <tr>
182
+ <th>11</th>
183
+ <td>steals the show</td>
184
+ <td>[(negative, 0.8031412363052368), (positive, 0.1968587338924408)]</td>
185
+ <td>positive</td>
186
+ </tr>
187
+ <tr>
188
+ <th>12</th>
189
+ <td>enough</td>
190
+ <td>[(positive, 0.7941301465034485), (negative, 0.2058698982000351)]</td>
191
+ <td>negative</td>
192
+ </tr>
193
+ <tr>
194
+ <th>13</th>
195
+ <td>accept it as life and</td>
196
+ <td>[(positive, 0.9987508058547974), (negative, 0.0012492131209000945)]</td>
197
+ <td>negative</td>
198
+ </tr>
199
+ <tr>
200
+ <th>14</th>
201
+ <td>this is the kind of movie that you only need to watch for about thirty seconds before you say to yourself , ` ah , yes ,</td>
202
+ <td>[(negative, 0.7889454960823059), (positive, 0.21105451881885529)]</td>
203
+ <td>positive</td>
204
+ </tr>
205
+ <tr>
206
+ <th>15</th>
207
+ <td>plunges you into a reality that is , more often then not , difficult and sad ,</td>
208
+ <td>[(positive, 0.967541515827179), (negative, 0.03245845437049866)]</td>
209
+ <td>negative</td>
210
+ </tr>
211
+ <tr>
212
+ <th>16</th>
213
+ <td>overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration .</td>
214
+ <td>[(positive, 0.9953157901763916), (negative, 0.004684178624302149)]</td>
215
+ <td>negative</td>
216
+ </tr>
217
+ <tr>
218
+ <th>17</th>
219
+ <td>troubled and determined homicide cop</td>
220
+ <td>[(negative, 0.6632784008979797), (positive, 0.33672159910202026)]</td>
221
+ <td>positive</td>
222
+ </tr>
223
+ <tr>
224
+ <th>18</th>
225
+ <td>human nature is a goofball movie , in the way that malkovich was , but it tries too hard</td>
226
+ <td>[(positive, 0.5959018468856812), (negative, 0.40409812331199646)]</td>
227
+ <td>negative</td>
228
+ </tr>
229
+ <tr>
230
+ <th>19</th>
231
+ <td>to watch too many barney videos</td>
232
+ <td>[(negative, 0.9909896850585938), (positive, 0.00901023019105196)]</td>
233
+ <td>positive</td>
234
+ </tr>
235
+ </tbody>
236
+ </table>
237
+ </div>
238
+
239
+
240
+
241
+ ```python
242
+ df.annotation.hist()
243
+ ```
244
+
245
+
246
+
247
+
248
+ <AxesSubplot:>
249
+
250
+
251
+
252
+
253
+
254
+ ![png](output_9_1.png)
255
+
256
+
257
+
258
+
259
+ ```python
260
+ # Get dataset slice with wrong predictions
261
+ df = rb.load("sst2", query="predicted:ko and annotated_as:negative").to_pandas()
262
+
263
+ # display first 20 examples
264
+ with pd.option_context('display.max_colwidth', None):
265
+ display(df[["text", "prediction", "annotation"]].head(20))
266
+ ```
267
+
268
+
269
+ <div>
270
+ <style scoped>
271
+ .dataframe tbody tr th:only-of-type {
272
+ vertical-align: middle;
273
+ }
274
+
275
+ .dataframe tbody tr th {
276
+ vertical-align: top;
277
+ }
278
+
279
+ .dataframe thead th {
280
+ text-align: right;
281
+ }
282
+ </style>
283
+ <table border="1" class="dataframe">
284
+ <thead>
285
+ <tr style="text-align: right;">
286
+ <th></th>
287
+ <th>text</th>
288
+ <th>prediction</th>
289
+ <th>annotation</th>
290
+ </tr>
291
+ </thead>
292
+ <tbody>
293
+ <tr>
294
+ <th>0</th>
295
+ <td>plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown .</td>
296
+ <td>[(positive, 0.9968075752258301), (negative, 0.003192420583218336)]</td>
297
+ <td>negative</td>
298
+ </tr>
299
+ <tr>
300
+ <th>1</th>
301
+ <td>a minimalist beauty and the beast</td>
302
+ <td>[(positive, 0.9100378751754761), (negative, 0.08996208757162094)]</td>
303
+ <td>negative</td>
304
+ </tr>
305
+ <tr>
306
+ <th>2</th>
307
+ <td>accept it as life and</td>
308
+ <td>[(positive, 0.9987508058547974), (negative, 0.0012492131209000945)]</td>
309
+ <td>negative</td>
310
+ </tr>
311
+ <tr>
312
+ <th>3</th>
313
+ <td>plunges you into a reality that is , more often then not , difficult and sad ,</td>
314
+ <td>[(positive, 0.967541515827179), (negative, 0.03245845437049866)]</td>
315
+ <td>negative</td>
316
+ </tr>
317
+ <tr>
318
+ <th>4</th>
319
+ <td>overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration .</td>
320
+ <td>[(positive, 0.9953157901763916), (negative, 0.004684178624302149)]</td>
321
+ <td>negative</td>
322
+ </tr>
323
+ <tr>
324
+ <th>5</th>
325
+ <td>and social commentary</td>
326
+ <td>[(positive, 0.7863275408744812), (negative, 0.2136724889278412)]</td>
327
+ <td>negative</td>
328
+ </tr>
329
+ <tr>
330
+ <th>6</th>
331
+ <td>we do n't get williams ' usual tear and a smile , just sneers and bile , and the spectacle is nothing short of refreshing .</td>
332
+ <td>[(positive, 0.9982783794403076), (negative, 0.0017216014675796032)]</td>
333
+ <td>negative</td>
334
+ </tr>
335
+ <tr>
336
+ <th>7</th>
337
+ <td>before pulling the plug on the conspirators and averting an american-russian armageddon</td>
338
+ <td>[(positive, 0.6992855072021484), (negative, 0.30071452260017395)]</td>
339
+ <td>negative</td>
340
+ </tr>
341
+ <tr>
342
+ <th>8</th>
343
+ <td>in tight pants and big tits</td>
344
+ <td>[(positive, 0.7850217819213867), (negative, 0.2149781733751297)]</td>
345
+ <td>negative</td>
346
+ </tr>
347
+ <tr>
348
+ <th>9</th>
349
+ <td>that it certainly does n't feel like a film that strays past the two and a half mark</td>
350
+ <td>[(positive, 0.6591460108757019), (negative, 0.3408539891242981)]</td>
351
+ <td>negative</td>
352
+ </tr>
353
+ <tr>
354
+ <th>10</th>
355
+ <td>actress-producer and writer</td>
356
+ <td>[(positive, 0.8167378306388855), (negative, 0.1832621842622757)]</td>
357
+ <td>negative</td>
358
+ </tr>
359
+ <tr>
360
+ <th>11</th>
361
+ <td>gives devastating testimony to both people 's capacity for evil and their heroic capacity for good .</td>
362
+ <td>[(positive, 0.8960123062133789), (negative, 0.10398765653371811)]</td>
363
+ <td>negative</td>
364
+ </tr>
365
+ <tr>
366
+ <th>12</th>
367
+ <td>deep into the girls ' confusion and pain as they struggle tragically to comprehend the chasm of knowledge that 's opened between them</td>
368
+ <td>[(positive, 0.9729612469673157), (negative, 0.027038726955652237)]</td>
369
+ <td>negative</td>
370
+ </tr>
371
+ <tr>
372
+ <th>13</th>
373
+ <td>a younger lad in zen and the art of getting laid in this prickly indie comedy of manners and misanthropy</td>
374
+ <td>[(positive, 0.9875985980033875), (negative, 0.012401451356709003)]</td>
375
+ <td>negative</td>
376
+ </tr>
377
+ <tr>
378
+ <th>14</th>
379
+ <td>get on a board and , uh , shred ,</td>
380
+ <td>[(positive, 0.5352609753608704), (negative, 0.46473899483680725)]</td>
381
+ <td>negative</td>
382
+ </tr>
383
+ <tr>
384
+ <th>15</th>
385
+ <td>so preachy-keen and</td>
386
+ <td>[(positive, 0.9644021391868591), (negative, 0.035597823560237885)]</td>
387
+ <td>negative</td>
388
+ </tr>
389
+ <tr>
390
+ <th>16</th>
391
+ <td>there 's an admirable rigor to jimmy 's relentless anger , and to the script 's refusal of a happy ending ,</td>
392
+ <td>[(positive, 0.9928517937660217), (negative, 0.007148175034672022)]</td>
393
+ <td>negative</td>
394
+ </tr>
395
+ <tr>
396
+ <th>17</th>
397
+ <td>` christian bale 's quinn ( is ) a leather clad grunge-pirate with a hairdo like gandalf in a wind-tunnel and a simply astounding cor-blimey-luv-a-duck cockney accent . '</td>
398
+ <td>[(positive, 0.9713286757469177), (negative, 0.028671346604824066)]</td>
399
+ <td>negative</td>
400
+ </tr>
401
+ <tr>
402
+ <th>18</th>
403
+ <td>passion , grief and fear</td>
404
+ <td>[(positive, 0.9849751591682434), (negative, 0.015024829655885696)]</td>
405
+ <td>negative</td>
406
+ </tr>
407
+ <tr>
408
+ <th>19</th>
409
+ <td>to keep the extremes of screwball farce and blood-curdling family intensity on one continuum</td>
410
+ <td>[(positive, 0.8838250637054443), (negative, 0.11617499589920044)]</td>
411
+ <td>negative</td>
412
+ </tr>
413
+ </tbody>
414
+ </table>
415
+ </div>
416
+
417
+
418
+
419
+ ```python
420
+ # Get dataset slice with wrong predictions
421
+ df = rb.load("sst2", query="predicted:ko and score:{0.99 TO *}").to_pandas()
422
+
423
+ # display first 20 examples
424
+ with pd.option_context('display.max_colwidth', None):
425
+ display(df[["text", "prediction", "annotation"]].head(20))
426
+ ```
427
+
428
+
429
+ <div>
430
+ <style scoped>
431
+ .dataframe tbody tr th:only-of-type {
432
+ vertical-align: middle;
433
+ }
434
+
435
+ .dataframe tbody tr th {
436
+ vertical-align: top;
437
+ }
438
+
439
+ .dataframe thead th {
440
+ text-align: right;
441
+ }
442
+ </style>
443
+ <table border="1" class="dataframe">
444
+ <thead>
445
+ <tr style="text-align: right;">
446
+ <th></th>
447
+ <th>text</th>
448
+ <th>prediction</th>
449
+ <th>annotation</th>
450
+ </tr>
451
+ </thead>
452
+ <tbody>
453
+ <tr>
454
+ <th>0</th>
455
+ <td>plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown .</td>
456
+ <td>[(positive, 0.9968075752258301), (negative, 0.003192420583218336)]</td>
457
+ <td>negative</td>
458
+ </tr>
459
+ <tr>
460
+ <th>1</th>
461
+ <td>accept it as life and</td>
462
+ <td>[(positive, 0.9987508058547974), (negative, 0.0012492131209000945)]</td>
463
+ <td>negative</td>
464
+ </tr>
465
+ <tr>
466
+ <th>2</th>
467
+ <td>overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration .</td>
468
+ <td>[(positive, 0.9953157901763916), (negative, 0.004684178624302149)]</td>
469
+ <td>negative</td>
470
+ </tr>
471
+ <tr>
472
+ <th>3</th>
473
+ <td>will no doubt rally to its cause , trotting out threadbare standbys like ` masterpiece ' and ` triumph ' and all that malarkey ,</td>
474
+ <td>[(negative, 0.9936562180519104), (positive, 0.006343740504235029)]</td>
475
+ <td>positive</td>
476
+ </tr>
477
+ <tr>
478
+ <th>4</th>
479
+ <td>we do n't get williams ' usual tear and a smile , just sneers and bile , and the spectacle is nothing short of refreshing .</td>
480
+ <td>[(positive, 0.9982783794403076), (negative, 0.0017216014675796032)]</td>
481
+ <td>negative</td>
482
+ </tr>
483
+ <tr>
484
+ <th>5</th>
485
+ <td>somehow manages to bring together kevin pollak , former wrestler chyna and dolly parton</td>
486
+ <td>[(negative, 0.9979034662246704), (positive, 0.002096540294587612)]</td>
487
+ <td>positive</td>
488
+ </tr>
489
+ <tr>
490
+ <th>6</th>
491
+ <td>there 's an admirable rigor to jimmy 's relentless anger , and to the script 's refusal of a happy ending ,</td>
492
+ <td>[(positive, 0.9928517937660217), (negative, 0.007148175034672022)]</td>
493
+ <td>negative</td>
494
+ </tr>
495
+ <tr>
496
+ <th>7</th>
497
+ <td>the bottom line with nemesis is the same as it has been with all the films in the series : fans will undoubtedly enjoy it , and the uncommitted need n't waste their time on it</td>
498
+ <td>[(positive, 0.995850682258606), (negative, 0.004149340093135834)]</td>
499
+ <td>negative</td>
500
+ </tr>
501
+ <tr>
502
+ <th>8</th>
503
+ <td>is genial but never inspired , and little</td>
504
+ <td>[(negative, 0.9921030402183533), (positive, 0.007896988652646542)]</td>
505
+ <td>positive</td>
506
+ </tr>
507
+ <tr>
508
+ <th>9</th>
509
+ <td>heaped upon a project of such vast proportions need to reap more rewards than spiffy bluescreen technique and stylish weaponry .</td>
510
+ <td>[(negative, 0.9958089590072632), (positive, 0.004191054962575436)]</td>
511
+ <td>positive</td>
512
+ </tr>
513
+ <tr>
514
+ <th>10</th>
515
+ <td>than recommended -- as visually bland as a dentist 's waiting room , complete with soothing muzak and a cushion of predictable narrative rhythms</td>
516
+ <td>[(negative, 0.9988711476325989), (positive, 0.0011287889210507274)]</td>
517
+ <td>positive</td>
518
+ </tr>
519
+ <tr>
520
+ <th>11</th>
521
+ <td>spectacle and</td>
522
+ <td>[(positive, 0.9941601753234863), (negative, 0.005839805118739605)]</td>
523
+ <td>negative</td>
524
+ </tr>
525
+ <tr>
526
+ <th>12</th>
527
+ <td>groan and</td>
528
+ <td>[(negative, 0.9987359642982483), (positive, 0.0012639997294172645)]</td>
529
+ <td>positive</td>
530
+ </tr>
531
+ <tr>
532
+ <th>13</th>
533
+ <td>'re not likely to have seen before , but beneath the exotic surface ( and exotic dancing ) it 's surprisingly old-fashioned .</td>
534
+ <td>[(positive, 0.9908103942871094), (negative, 0.009189637377858162)]</td>
535
+ <td>negative</td>
536
+ </tr>
537
+ <tr>
538
+ <th>14</th>
539
+ <td>its metaphors are opaque enough to avoid didacticism , and</td>
540
+ <td>[(negative, 0.990602970123291), (positive, 0.00939704105257988)]</td>
541
+ <td>positive</td>
542
+ </tr>
543
+ <tr>
544
+ <th>15</th>
545
+ <td>by kevin bray , whose crisp framing , edgy camera work , and wholesale ineptitude with acting , tone and pace very obviously mark him as a video helmer making his feature debut</td>
546
+ <td>[(positive, 0.9973387122154236), (negative, 0.0026612314395606518)]</td>
547
+ <td>negative</td>
548
+ </tr>
549
+ <tr>
550
+ <th>16</th>
551
+ <td>evokes the frustration , the awkwardness and the euphoria of growing up , without relying on the usual tropes .</td>
552
+ <td>[(positive, 0.9989104270935059), (negative, 0.0010896018939092755)]</td>
553
+ <td>negative</td>
554
+ </tr>
555
+ <tr>
556
+ <th>17</th>
557
+ <td>, incoherence and sub-sophomoric</td>
558
+ <td>[(negative, 0.9962475895881653), (positive, 0.003752368036657572)]</td>
559
+ <td>positive</td>
560
+ </tr>
561
+ <tr>
562
+ <th>18</th>
563
+ <td>seems intimidated by both her subject matter and the period trappings of this debut venture into the heritage business .</td>
564
+ <td>[(negative, 0.9923072457313538), (positive, 0.007692818529903889)]</td>
565
+ <td>positive</td>
566
+ </tr>
567
+ <tr>
568
+ <th>19</th>
569
+ <td>despite downplaying her good looks , carries a little too much ai n't - she-cute baggage into her lead role as a troubled and determined homicide cop to quite pull off the heavy stuff .</td>
570
+ <td>[(negative, 0.9948075413703918), (positive, 0.005192441400140524)]</td>
571
+ <td>positive</td>
572
+ </tr>
573
+ </tbody>
574
+ </table>
575
+ </div>
576
+
577
+
578
+
579
+ ```python
580
+ # Get dataset slice with wrong predictions
581
+ df = rb.load("sst2", query="predicted:ko and score:{* TO 0.6}").to_pandas()
582
+
583
+ # display first 20 examples
584
+ with pd.option_context('display.max_colwidth', None):
585
+ display(df[["text", "prediction", "annotation"]].head(20))
586
+ ```
587
+
588
+
589
+ <div>
590
+ <style scoped>
591
+ .dataframe tbody tr th:only-of-type {
592
+ vertical-align: middle;
593
+ }
594
+
595
+ .dataframe tbody tr th {
596
+ vertical-align: top;
597
+ }
598
+
599
+ .dataframe thead th {
600
+ text-align: right;
601
+ }
602
+ </style>
603
+ <table border="1" class="dataframe">
604
+ <thead>
605
+ <tr style="text-align: right;">
606
+ <th></th>
607
+ <th>text</th>
608
+ <th>prediction</th>
609
+ <th>annotation</th>
610
+ </tr>
611
+ </thead>
612
+ <tbody>
613
+ <tr>
614
+ <th>0</th>
615
+ <td>get on a board and , uh , shred ,</td>
616
+ <td>[(positive, 0.5352609753608704), (negative, 0.46473899483680725)]</td>
617
+ <td>negative</td>
618
+ </tr>
619
+ <tr>
620
+ <th>1</th>
621
+ <td>is , truly and thankfully , a one-of-a-kind work</td>
622
+ <td>[(positive, 0.5819814801216125), (negative, 0.41801854968070984)]</td>
623
+ <td>negative</td>
624
+ </tr>
625
+ <tr>
626
+ <th>2</th>
627
+ <td>starts as a tart little lemon drop of a movie and</td>
628
+ <td>[(negative, 0.5641832947731018), (positive, 0.4358167052268982)]</td>
629
+ <td>positive</td>
630
+ </tr>
631
+ <tr>
632
+ <th>3</th>
633
+ <td>between flaccid satire and what</td>
634
+ <td>[(negative, 0.5532692074775696), (positive, 0.44673076272010803)]</td>
635
+ <td>positive</td>
636
+ </tr>
637
+ <tr>
638
+ <th>4</th>
639
+ <td>it certainly does n't feel like a film that strays past the two and a half mark</td>
640
+ <td>[(negative, 0.5386656522750854), (positive, 0.46133431792259216)]</td>
641
+ <td>positive</td>
642
+ </tr>
643
+ <tr>
644
+ <th>5</th>
645
+ <td>who liked there 's something about mary and both american pie movies</td>
646
+ <td>[(negative, 0.5086333751678467), (positive, 0.4913666248321533)]</td>
647
+ <td>positive</td>
648
+ </tr>
649
+ <tr>
650
+ <th>6</th>
651
+ <td>many good ideas as bad is the cold comfort that chin 's film serves up with style and empathy</td>
652
+ <td>[(positive, 0.557632327079773), (negative, 0.44236767292022705)]</td>
653
+ <td>negative</td>
654
+ </tr>
655
+ <tr>
656
+ <th>7</th>
657
+ <td>about its ideas and</td>
658
+ <td>[(positive, 0.518638551235199), (negative, 0.48136141896247864)]</td>
659
+ <td>negative</td>
660
+ </tr>
661
+ <tr>
662
+ <th>8</th>
663
+ <td>of a sick and evil woman</td>
664
+ <td>[(negative, 0.5554516315460205), (positive, 0.4445483684539795)]</td>
665
+ <td>positive</td>
666
+ </tr>
667
+ <tr>
668
+ <th>9</th>
669
+ <td>though this rude and crude film does deliver a few gut-busting laughs</td>
670
+ <td>[(positive, 0.5045541524887085), (negative, 0.4954459071159363)]</td>
671
+ <td>negative</td>
672
+ </tr>
673
+ <tr>
674
+ <th>10</th>
675
+ <td>to squeeze the action and our emotions into the all-too-familiar dramatic arc of the holocaust escape story</td>
676
+ <td>[(negative, 0.5050069093704224), (positive, 0.49499306082725525)]</td>
677
+ <td>positive</td>
678
+ </tr>
679
+ <tr>
680
+ <th>11</th>
681
+ <td>that throws a bunch of hot-button items in the viewer 's face and asks to be seen as hip , winking social commentary</td>
682
+ <td>[(negative, 0.5873904228210449), (positive, 0.41260960698127747)]</td>
683
+ <td>positive</td>
684
+ </tr>
685
+ <tr>
686
+ <th>12</th>
687
+ <td>'s soulful and unslick</td>
688
+ <td>[(positive, 0.5931627750396729), (negative, 0.40683719515800476)]</td>
689
+ <td>negative</td>
690
+ </tr>
691
+ </tbody>
692
+ </table>
693
+ </div>
694
+
695
+
696
+
697
+ ```python
698
+ from rubrix.metrics.commons import *
699
+ ```
700
+
701
+
702
+ ```python
703
+ text_length("sst2", query="predicted:ko").visualize()
704
+ ```
705
+
706
+
707
+ <div> <div id="69fd8db0-ad05-4a8f-b29a-74d01faccda8" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> require(["plotly"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("69fd8db0-ad05-4a8f-b29a-74d01faccda8")) { Plotly.newPlot( "69fd8db0-ad05-4a8f-b29a-74d01faccda8", [{"type":"bar","x":[5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0],"y":[9,3,5,9,11,17,20,15,17,10,14,14,10,15,16,13,13,17,15,11,14,8,11,9,9,17,11,16,11,11,7,15,6,12,5,5,5,10,5,7,7,4,8,5,5,6,5,5,6,7,5,5,7,6,8,5,5,5,7,2,2,1,4,1,4,4,4,2,4,2,4,6,4,4,5,9,4,1,2,2,1,0,1,5,2,3,4,4,3,3,1,0,1,2,3,2,4,1,3,1,2,3,3,4,1,2,1,3,2,0,1,2,1,1,3,1,3,1,2,2,3,1,2,0,4,1,1,1,0,1,1,1,0,1,1,0,3,1,0,1,2,0,1,0,2,0,0,1,0,2,1,0,1,0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,0,0,0,1,2,0,0,2,0,0,1,0,0,1,1,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]}], {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}}, {"responsive": true} ).then(function(){
708
+
709
+ var gd = document.getElementById('69fd8db0-ad05-4a8f-b29a-74d01faccda8');
710
+ var x = new MutationObserver(function (mutations, observer) {{
711
+ var display = window.getComputedStyle(gd).display;
712
+ if (!display || display === 'none') {{
713
+ console.log([gd, 'removed!']);
714
+ Plotly.purge(gd);
715
+ observer.disconnect();
716
+ }}
717
+ }});
718
+
719
+ // Listen for the removal of the full notebook cells
720
+ var notebookContainer = gd.closest('#notebook-container');
721
+ if (notebookContainer) {{
722
+ x.observe(notebookContainer, {childList: true});
723
+ }}
724
+
725
+ // Listen for the clearing of the current output cell
726
+ var outputEl = gd.closest('.output');
727
+ if (outputEl) {{
728
+ x.observe(outputEl, {childList: true});
729
+ }}
730
+
731
+ }) }; }); </script> </div>
732
+
733
+
734
+
735
+ ```python
736
+ text_length("sst2", query="predicted:ok").visualize()
737
+ ```
738
+
739
+
740
+ <div> <div id="74d4b898-a8ff-4acd-baac-4ba913de0ec8" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> require(["plotly"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("74d4b898-a8ff-4acd-baac-4ba913de0ec8")) { Plotly.newPlot( "74d4b898-a8ff-4acd-baac-4ba913de0ec8", [{"type":"bar","x":[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0],"y":[3,10,80,247,413,590,722,917,1053,1054,1092,1106,1188,1173,1243,1202,1255,1274,1239,1303,1208,1188,1137,1052,1031,984,965,921,904,875,834,808,857,736,811,721,723,714,652,650,612,652,606,612,603,546,550,554,472,536,506,490,473,480,526,471,434,423,389,434,417,403,401,380,381,371,391,353,341,328,340,339,334,291,310,325,296,292,313,290,308,297,257,279,295,265,258,270,239,250,243,247,246,215,220,237,203,199,219,204,209,212,201,197,189,184,185,181,178,183,178,182,157,159,143,153,143,155,146,147,138,142,139,136,143,144,116,137,107,126,105,108,115,101,122,97,87,97,91,101,90,83,82,89,95,87,100,70,81,74,81,68,78,73,72,75,68,60,61,55,66,76,53,55,58,58,54,46,48,51,56,61,51,40,47,32,35,46,35,34,45,37,27,30,36,25,34,30,30,26,32,24,27,17,16,18,21,17,9,18,15,20,21,20,18,16,15,18,14,21,14,17,18,16,15,10,13,9,14,6,14,4,10,9,6,6,7,11,7,7,4,8,8,6,6,5,4,4,6,4,5,1,1,6,4,5,5,7,4,6,8,3,1,6,2,3,2,5,4,4,1,0,0,0,0,0,1]}], {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}}, {"responsive": true} ).then(function(){
741
+
742
+ var gd = document.getElementById('74d4b898-a8ff-4acd-baac-4ba913de0ec8');
743
+ var x = new MutationObserver(function (mutations, observer) {{
744
+ var display = window.getComputedStyle(gd).display;
745
+ if (!display || display === 'none') {{
746
+ console.log([gd, 'removed!']);
747
+ Plotly.purge(gd);
748
+ observer.disconnect();
749
+ }}
750
+ }});
751
+
752
+ // Listen for the removal of the full notebook cells
753
+ var notebookContainer = gd.closest('#notebook-container');
754
+ if (notebookContainer) {{
755
+ x.observe(notebookContainer, {childList: true});
756
+ }}
757
+
758
+ // Listen for the clearing of the current output cell
759
+ var outputEl = gd.closest('.output');
760
+ if (outputEl) {{
761
+ x.observe(outputEl, {childList: true});
762
+ }}
763
+
764
+ }) }; }); </script> </div>
765
+
766
+
767
+
768
+ ```python
769
+ text_length("sst2").visualize()
770
+ ```
771
+
772
+
773
+ <div> <div id="6c039f9e-bc30-4e48-92d6-99d7b24347f9" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> require(["plotly"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("6c039f9e-bc30-4e48-92d6-99d7b24347f9")) { Plotly.newPlot( "6c039f9e-bc30-4e48-92d6-99d7b24347f9", [{"type":"bar","x":[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0],"y":[3,10,80,256,416,595,731,928,1070,1074,1107,1123,1198,1187,1257,1212,1270,1290,1252,1316,1225,1203,1148,1066,1039,995,974,930,921,886,850,819,868,743,826,727,735,719,657,655,622,657,613,619,607,554,555,559,478,541,511,496,480,485,531,478,440,431,394,439,422,410,403,382,382,375,392,357,345,332,342,343,336,295,316,329,300,297,322,294,309,299,259,280,295,266,263,272,242,254,247,250,249,216,220,238,205,202,221,208,210,215,202,199,192,187,189,182,180,184,181,184,157,160,145,154,144,158,147,150,139,144,141,139,144,146,116,141,108,127,106,108,116,102,123,97,88,98,91,104,91,83,83,91,95,88,100,72,81,74,82,68,80,74,72,76,68,61,62,55,66,77,53,55,59,59,54,47,49,52,56,61,51,40,48,34,35,46,37,34,45,38,27,30,37,26,34,31,30,26,33,24,27,17,17,18,21,18,9,18,15,20,21,20,18,17,15,18,14,21,15,17,18,16,15,11,13,9,14,6,14,4,10,9,6,6,8,11,7,8,4,8,8,6,6,5,4,4,6,4,5,1,1,6,5,5,5,7,4,6,8,3,1,6,2,3,2,5,4,4,1,0,0,0,0,0,1]}], {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}}, {"responsive": true} ).then(function(){
774
+
775
+ var gd = document.getElementById('6c039f9e-bc30-4e48-92d6-99d7b24347f9');
776
+ var x = new MutationObserver(function (mutations, observer) {{
777
+ var display = window.getComputedStyle(gd).display;
778
+ if (!display || display === 'none') {{
779
+ console.log([gd, 'removed!']);
780
+ Plotly.purge(gd);
781
+ observer.disconnect();
782
+ }}
783
+ }});
784
+
785
+ // Listen for the removal of the full notebook cells
786
+ var notebookContainer = gd.closest('#notebook-container');
787
+ if (notebookContainer) {{
788
+ x.observe(notebookContainer, {childList: true});
789
+ }}
790
+
791
+ // Listen for the clearing of the current output cell
792
+ var outputEl = gd.closest('.output');
793
+ if (outputEl) {{
794
+ x.observe(outputEl, {childList: true});
795
+ }}
796
+
797
+ }) }; }); </script> </div>
798
+
799
+
800
+
801
+ ```python
802
+ text_length("sst2", query="predicted_as:negative").visualize()
803
+ ```
804
+
805
+
806
+ <div> <div id="d6bffdcd-d607-4241-9a03-2d1ff9b19461" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> require(["plotly"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("d6bffdcd-d607-4241-9a03-2d1ff9b19461")) { Plotly.newPlot( "d6bffdcd-d607-4241-9a03-2d1ff9b19461", [{"type":"bar","x":[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0],"y":[2,3,36,134,213,304,335,416,483,448,490,428,485,487,522,478,497,498,490,513,457,469,474,419,431,407,381,409,385,376,337,339,371,316,366,319,307,325,299,275,279,301,298,277,290,251,239,280,220,261,239,233,236,223,271,251,197,226,180,207,198,190,197,192,174,172,184,175,171,155,175,157,174,145,152,152,147,129,155,151,148,145,119,149,150,124,123,138,104,127,123,111,135,111,90,126,107,93,98,94,89,112,95,94,90,88,89,79,94,91,91,84,67,75,65,75,74,75,74,64,60,78,59,62,63,72,52,63,52,60,49,52,57,50,54,44,36,54,41,49,50,40,43,51,57,45,45,35,41,38,37,35,38,39,31,40,30,24,34,18,26,36,26,30,34,29,25,21,23,20,24,30,28,14,29,14,20,19,16,12,22,14,15,7,20,8,20,15,12,12,8,11,12,8,9,11,9,10,3,8,7,7,10,9,4,9,5,7,4,7,9,8,8,8,8,7,1,1,4,2,6,2,5,2,2,3,4,2,3,3,0,3,3,3,3,2,1,1,1,2,2,0,0,1,3,1,5,3,2,4,4,1,0,2,0,0,1,3,0,1]}], {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}}, {"responsive": true} ).then(function(){
807
+
808
+ var gd = document.getElementById('d6bffdcd-d607-4241-9a03-2d1ff9b19461');
809
+ var x = new MutationObserver(function (mutations, observer) {{
810
+ var display = window.getComputedStyle(gd).display;
811
+ if (!display || display === 'none') {{
812
+ console.log([gd, 'removed!']);
813
+ Plotly.purge(gd);
814
+ observer.disconnect();
815
+ }}
816
+ }});
817
+
818
+ // Listen for the removal of the full notebook cells
819
+ var notebookContainer = gd.closest('#notebook-container');
820
+ if (notebookContainer) {{
821
+ x.observe(notebookContainer, {childList: true});
822
+ }}
823
+
824
+ // Listen for the clearing of the current output cell
825
+ var outputEl = gd.closest('.output');
826
+ if (outputEl) {{
827
+ x.observe(outputEl, {childList: true});
828
+ }}
829
+
830
+ }) }; }); </script> </div>
831
+
832
+
833
+
834
+ ```python
835
+ text_length("sst2", query="predicted_as:positive").visualize()
836
+ ```
837
+
838
+
839
+ <div> <div id="7967280f-41e1-4c3c-9655-6595fc09867e" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> require(["plotly"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("7967280f-41e1-4c3c-9655-6595fc09867e")) { Plotly.newPlot( "7967280f-41e1-4c3c-9655-6595fc09867e", [{"type":"bar","x":[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0],"y":[1,7,44,122,203,291,396,512,587,626,617,695,713,700,735,734,773,792,762,803,768,734,674,647,608,588,593,521,536,510,513,480,497,427,460,408,428,394,358,380,343,356,315,342,317,303,316,279,258,280,272,263,244,262,260,227,243,205,214,232,224,220,206,190,208,203,208,182,174,177,167,186,162,150,164,177,153,168,167,143,161,154,140,131,145,142,140,134,138,127,124,139,114,105,130,112,98,109,123,114,121,103,107,105,102,99,100,103,86,93,90,100,90,85,80,79,70,83,73,86,79,66,82,77,81,74,64,78,56,67,57,56,59,52,69,53,52,44,50,55,41,43,40,40,38,43,55,37,40,36,45,33,42,35,41,36,38,37,28,37,40,41,27,25,25,30,29,26,26,32,32,31,23,26,19,20,15,27,21,22,23,24,12,23,17,18,14,16,18,14,25,13,15,9,8,7,12,8,6,10,8,13,11,11,14,8,10,11,10,14,6,9,10,8,7,4,12,8,10,4,8,2,5,7,4,3,4,9,4,5,4,5,5,3,3,3,3,3,5,2,3,1,1,5,2,4,0,4,2,2,4,2,1,4,2,3,1,2,4,3,1,0,0,0,0,0,1]}], {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}}, {"responsive": true} ).then(function(){
840
+
841
+ var gd = document.getElementById('7967280f-41e1-4c3c-9655-6595fc09867e');
842
+ var x = new MutationObserver(function (mutations, observer) {{
843
+ var display = window.getComputedStyle(gd).display;
844
+ if (!display || display === 'none') {{
845
+ console.log([gd, 'removed!']);
846
+ Plotly.purge(gd);
847
+ observer.disconnect();
848
+ }}
849
+ }});
850
+
851
+ // Listen for the removal of the full notebook cells
852
+ var notebookContainer = gd.closest('#notebook-container');
853
+ if (notebookContainer) {{
854
+ x.observe(notebookContainer, {childList: true});
855
+ }}
856
+
857
+ // Listen for the clearing of the current output cell
858
+ var outputEl = gd.closest('.output');
859
+ if (outputEl) {{
860
+ x.observe(outputEl, {childList: true});
861
+ }}
862
+
863
+ }) }; }); </script> </div>
864
+