parquet-converter commited on
Commit
ccbf277
1 Parent(s): 03d5016

Update parquet files

Browse files
README.md DELETED
@@ -1,706 +0,0 @@
1
- # Comparing model predictions and ground truth labels with Rubrix and Hugging Face
2
-
3
- ## Build dataset
4
-
5
- You can skip this step if you run:
6
-
7
-
8
-
9
- ```python
10
- from datasets import load_dataset
11
- import rubrix as rb
12
-
13
- ds = rb.DatasetForTextClassification.from_datasets(load_dataset("rubrix/sst2_with_predictions", split="train"))
14
- ```
15
-
16
-
17
- Otherwise, the following cell will run the pipeline over the training set and store labels and predictions.
18
-
19
-
20
- ```python
21
- from datasets import load_dataset
22
- from transformers import pipeline, AutoModelForSequenceClassification
23
-
24
- import rubrix as rb
25
-
26
- name = "distilbert-base-uncased-finetuned-sst-2-english"
27
-
28
- # Need to define id2label because surprisingly the pipeline has uppercase label names
29
- model = AutoModelForSequenceClassification.from_pretrained(name, id2label={0: 'negative', 1: 'positive'})
30
- nlp = pipeline("sentiment-analysis", model=model, tokenizer=name, return_all_scores=True)
31
-
32
- dataset = load_dataset("glue", "sst2", split="train")
33
-
34
- # batch predict
35
- def predict(example):
36
- return {"prediction": nlp(example["sentence"])}
37
-
38
- # add predictions to the dataset
39
- dataset = dataset.map(predict, batched=True).rename_column("sentence", "text")
40
-
41
- # build rubrix dataset from hf dataset
42
- ds = rb.DatasetForTextClassification.from_datasets(dataset, annotation="label")
43
- ```
44
-
45
-
46
- ```python
47
- # Install Rubrix and start exploring and sharing URLs with interesting subsets, etc.
48
- rb.log(ds, "sst2")
49
- ```
50
-
51
-
52
- ```python
53
- ds.to_datasets().push_to_hub("rubrix/sst2_with_predictions")
54
- ```
55
-
56
-
57
- Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]
58
-
59
-
60
- ## Analize misspredictions and ambiguous labels
61
-
62
- ### With the UI
63
-
64
- With Rubrix's UI you can:
65
-
66
- - Combine filters and full-text/DSL queries to quickly find important samples
67
- - All URLs contain the state so you can share with collaborator and annotator specific dataset regions to work on.
68
- - Sort examples by score, as well as custom metadata fields.
69
-
70
-
71
-
72
- ![example.png](https://huggingface.co/datasets/rubrix/sst2_with_predictions/resolve/main/example.png)
73
-
74
-
75
- ### Programmatically
76
-
77
- Let's find all the wrong predictions from Python. This is useful for bulk operations (relabelling, discarding, etc.) as well as
78
-
79
-
80
- ```python
81
- import pandas as pd
82
-
83
- # Get dataset slice with wrong predictions
84
- df = rb.load("sst2", query="predicted:ko").to_pandas()
85
-
86
- # display first 20 examples
87
- with pd.option_context('display.max_colwidth', None):
88
- display(df[["text", "prediction", "annotation"]].head(20))
89
- ```
90
-
91
-
92
- <div>
93
- <style scoped>
94
- .dataframe tbody tr th:only-of-type {
95
- vertical-align: middle;
96
- }
97
-
98
- .dataframe tbody tr th {
99
- vertical-align: top;
100
- }
101
-
102
- .dataframe thead th {
103
- text-align: right;
104
- }
105
- </style>
106
- <table border="1" class="dataframe">
107
- <thead>
108
- <tr style="text-align: right;">
109
- <th></th>
110
- <th>text</th>
111
- <th>prediction</th>
112
- <th>annotation</th>
113
- </tr>
114
- </thead>
115
- <tbody>
116
- <tr>
117
- <th>0</th>
118
- <td>this particular , anciently demanding métier</td>
119
- <td>[(negative, 0.9386059045791626), (positive, 0.06139408051967621)]</td>
120
- <td>positive</td>
121
- </tr>
122
- <tr>
123
- <th>1</th>
124
- <td>under our skin</td>
125
- <td>[(positive, 0.7508484721183777), (negative, 0.24915160238742828)]</td>
126
- <td>negative</td>
127
- </tr>
128
- <tr>
129
- <th>2</th>
130
- <td>evokes a palpable sense of disconnection , made all the more poignant by the incessant use of cell phones .</td>
131
- <td>[(negative, 0.6634528636932373), (positive, 0.3365470767021179)]</td>
132
- <td>positive</td>
133
- </tr>
134
- <tr>
135
- <th>3</th>
136
- <td>plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown .</td>
137
- <td>[(positive, 0.9968075752258301), (negative, 0.003192420583218336)]</td>
138
- <td>negative</td>
139
- </tr>
140
- <tr>
141
- <th>4</th>
142
- <td>into a pulpy concept that , in many other hands would be completely forgettable</td>
143
- <td>[(positive, 0.6178210377693176), (negative, 0.3821789622306824)]</td>
144
- <td>negative</td>
145
- </tr>
146
- <tr>
147
- <th>5</th>
148
- <td>transcends ethnic lines .</td>
149
- <td>[(positive, 0.9758220314979553), (negative, 0.024177948012948036)]</td>
150
- <td>negative</td>
151
- </tr>
152
- <tr>
153
- <th>6</th>
154
- <td>is barely</td>
155
- <td>[(negative, 0.9922297596931458), (positive, 0.00777028314769268)]</td>
156
- <td>positive</td>
157
- </tr>
158
- <tr>
159
- <th>7</th>
160
- <td>a pulpy concept that , in many other hands would be completely forgettable</td>
161
- <td>[(negative, 0.9738760590553284), (positive, 0.026123959571123123)]</td>
162
- <td>positive</td>
163
- </tr>
164
- <tr>
165
- <th>8</th>
166
- <td>of hollywood heart-string plucking</td>
167
- <td>[(positive, 0.9889695644378662), (negative, 0.011030420660972595)]</td>
168
- <td>negative</td>
169
- </tr>
170
- <tr>
171
- <th>9</th>
172
- <td>a minimalist beauty and the beast</td>
173
- <td>[(positive, 0.9100378751754761), (negative, 0.08996208757162094)]</td>
174
- <td>negative</td>
175
- </tr>
176
- <tr>
177
- <th>10</th>
178
- <td>the intimate , unguarded moments of folks who live in unusual homes --</td>
179
- <td>[(positive, 0.9967381358146667), (negative, 0.0032618637196719646)]</td>
180
- <td>negative</td>
181
- </tr>
182
- <tr>
183
- <th>11</th>
184
- <td>steals the show</td>
185
- <td>[(negative, 0.8031412363052368), (positive, 0.1968587338924408)]</td>
186
- <td>positive</td>
187
- </tr>
188
- <tr>
189
- <th>12</th>
190
- <td>enough</td>
191
- <td>[(positive, 0.7941301465034485), (negative, 0.2058698982000351)]</td>
192
- <td>negative</td>
193
- </tr>
194
- <tr>
195
- <th>13</th>
196
- <td>accept it as life and</td>
197
- <td>[(positive, 0.9987508058547974), (negative, 0.0012492131209000945)]</td>
198
- <td>negative</td>
199
- </tr>
200
- <tr>
201
- <th>14</th>
202
- <td>this is the kind of movie that you only need to watch for about thirty seconds before you say to yourself , ` ah , yes ,</td>
203
- <td>[(negative, 0.7889454960823059), (positive, 0.21105451881885529)]</td>
204
- <td>positive</td>
205
- </tr>
206
- <tr>
207
- <th>15</th>
208
- <td>plunges you into a reality that is , more often then not , difficult and sad ,</td>
209
- <td>[(positive, 0.967541515827179), (negative, 0.03245845437049866)]</td>
210
- <td>negative</td>
211
- </tr>
212
- <tr>
213
- <th>16</th>
214
- <td>overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration .</td>
215
- <td>[(positive, 0.9953157901763916), (negative, 0.004684178624302149)]</td>
216
- <td>negative</td>
217
- </tr>
218
- <tr>
219
- <th>17</th>
220
- <td>troubled and determined homicide cop</td>
221
- <td>[(negative, 0.6632784008979797), (positive, 0.33672159910202026)]</td>
222
- <td>positive</td>
223
- </tr>
224
- <tr>
225
- <th>18</th>
226
- <td>human nature is a goofball movie , in the way that malkovich was , but it tries too hard</td>
227
- <td>[(positive, 0.5959018468856812), (negative, 0.40409812331199646)]</td>
228
- <td>negative</td>
229
- </tr>
230
- <tr>
231
- <th>19</th>
232
- <td>to watch too many barney videos</td>
233
- <td>[(negative, 0.9909896850585938), (positive, 0.00901023019105196)]</td>
234
- <td>positive</td>
235
- </tr>
236
- </tbody>
237
- </table>
238
- </div>
239
-
240
-
241
-
242
- ```python
243
- df.annotation.hist()
244
- ```
245
-
246
-
247
-
248
-
249
- <AxesSubplot:>
250
-
251
-
252
-
253
-
254
-
255
- ![png](https://huggingface.co/datasets/rubrix/sst2_with_predictions/resolve/main/output_9_1.png)
256
-
257
-
258
-
259
-
260
- ```python
261
- # Get dataset slice with wrong predictions
262
- df = rb.load("sst2", query="predicted:ko and annotated_as:negative").to_pandas()
263
-
264
- # display first 20 examples
265
- with pd.option_context('display.max_colwidth', None):
266
- display(df[["text", "prediction", "annotation"]].head(20))
267
- ```
268
-
269
-
270
- <div>
271
- <style scoped>
272
- .dataframe tbody tr th:only-of-type {
273
- vertical-align: middle;
274
- }
275
-
276
- .dataframe tbody tr th {
277
- vertical-align: top;
278
- }
279
-
280
- .dataframe thead th {
281
- text-align: right;
282
- }
283
- </style>
284
- <table border="1" class="dataframe">
285
- <thead>
286
- <tr style="text-align: right;">
287
- <th></th>
288
- <th>text</th>
289
- <th>prediction</th>
290
- <th>annotation</th>
291
- </tr>
292
- </thead>
293
- <tbody>
294
- <tr>
295
- <th>0</th>
296
- <td>plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown .</td>
297
- <td>[(positive, 0.9968075752258301), (negative, 0.003192420583218336)]</td>
298
- <td>negative</td>
299
- </tr>
300
- <tr>
301
- <th>1</th>
302
- <td>a minimalist beauty and the beast</td>
303
- <td>[(positive, 0.9100378751754761), (negative, 0.08996208757162094)]</td>
304
- <td>negative</td>
305
- </tr>
306
- <tr>
307
- <th>2</th>
308
- <td>accept it as life and</td>
309
- <td>[(positive, 0.9987508058547974), (negative, 0.0012492131209000945)]</td>
310
- <td>negative</td>
311
- </tr>
312
- <tr>
313
- <th>3</th>
314
- <td>plunges you into a reality that is , more often then not , difficult and sad ,</td>
315
- <td>[(positive, 0.967541515827179), (negative, 0.03245845437049866)]</td>
316
- <td>negative</td>
317
- </tr>
318
- <tr>
319
- <th>4</th>
320
- <td>overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration .</td>
321
- <td>[(positive, 0.9953157901763916), (negative, 0.004684178624302149)]</td>
322
- <td>negative</td>
323
- </tr>
324
- <tr>
325
- <th>5</th>
326
- <td>and social commentary</td>
327
- <td>[(positive, 0.7863275408744812), (negative, 0.2136724889278412)]</td>
328
- <td>negative</td>
329
- </tr>
330
- <tr>
331
- <th>6</th>
332
- <td>we do n't get williams ' usual tear and a smile , just sneers and bile , and the spectacle is nothing short of refreshing .</td>
333
- <td>[(positive, 0.9982783794403076), (negative, 0.0017216014675796032)]</td>
334
- <td>negative</td>
335
- </tr>
336
- <tr>
337
- <th>7</th>
338
- <td>before pulling the plug on the conspirators and averting an american-russian armageddon</td>
339
- <td>[(positive, 0.6992855072021484), (negative, 0.30071452260017395)]</td>
340
- <td>negative</td>
341
- </tr>
342
- <tr>
343
- <th>8</th>
344
- <td>in tight pants and big tits</td>
345
- <td>[(positive, 0.7850217819213867), (negative, 0.2149781733751297)]</td>
346
- <td>negative</td>
347
- </tr>
348
- <tr>
349
- <th>9</th>
350
- <td>that it certainly does n't feel like a film that strays past the two and a half mark</td>
351
- <td>[(positive, 0.6591460108757019), (negative, 0.3408539891242981)]</td>
352
- <td>negative</td>
353
- </tr>
354
- <tr>
355
- <th>10</th>
356
- <td>actress-producer and writer</td>
357
- <td>[(positive, 0.8167378306388855), (negative, 0.1832621842622757)]</td>
358
- <td>negative</td>
359
- </tr>
360
- <tr>
361
- <th>11</th>
362
- <td>gives devastating testimony to both people 's capacity for evil and their heroic capacity for good .</td>
363
- <td>[(positive, 0.8960123062133789), (negative, 0.10398765653371811)]</td>
364
- <td>negative</td>
365
- </tr>
366
- <tr>
367
- <th>12</th>
368
- <td>deep into the girls ' confusion and pain as they struggle tragically to comprehend the chasm of knowledge that 's opened between them</td>
369
- <td>[(positive, 0.9729612469673157), (negative, 0.027038726955652237)]</td>
370
- <td>negative</td>
371
- </tr>
372
- <tr>
373
- <th>13</th>
374
- <td>a younger lad in zen and the art of getting laid in this prickly indie comedy of manners and misanthropy</td>
375
- <td>[(positive, 0.9875985980033875), (negative, 0.012401451356709003)]</td>
376
- <td>negative</td>
377
- </tr>
378
- <tr>
379
- <th>14</th>
380
- <td>get on a board and , uh , shred ,</td>
381
- <td>[(positive, 0.5352609753608704), (negative, 0.46473899483680725)]</td>
382
- <td>negative</td>
383
- </tr>
384
- <tr>
385
- <th>15</th>
386
- <td>so preachy-keen and</td>
387
- <td>[(positive, 0.9644021391868591), (negative, 0.035597823560237885)]</td>
388
- <td>negative</td>
389
- </tr>
390
- <tr>
391
- <th>16</th>
392
- <td>there 's an admirable rigor to jimmy 's relentless anger , and to the script 's refusal of a happy ending ,</td>
393
- <td>[(positive, 0.9928517937660217), (negative, 0.007148175034672022)]</td>
394
- <td>negative</td>
395
- </tr>
396
- <tr>
397
- <th>17</th>
398
- <td>` christian bale 's quinn ( is ) a leather clad grunge-pirate with a hairdo like gandalf in a wind-tunnel and a simply astounding cor-blimey-luv-a-duck cockney accent . '</td>
399
- <td>[(positive, 0.9713286757469177), (negative, 0.028671346604824066)]</td>
400
- <td>negative</td>
401
- </tr>
402
- <tr>
403
- <th>18</th>
404
- <td>passion , grief and fear</td>
405
- <td>[(positive, 0.9849751591682434), (negative, 0.015024829655885696)]</td>
406
- <td>negative</td>
407
- </tr>
408
- <tr>
409
- <th>19</th>
410
- <td>to keep the extremes of screwball farce and blood-curdling family intensity on one continuum</td>
411
- <td>[(positive, 0.8838250637054443), (negative, 0.11617499589920044)]</td>
412
- <td>negative</td>
413
- </tr>
414
- </tbody>
415
- </table>
416
- </div>
417
-
418
-
419
-
420
- ```python
421
- # Get dataset slice with wrong predictions
422
- df = rb.load("sst2", query="predicted:ko and score:{0.99 TO *}").to_pandas()
423
-
424
- # display first 20 examples
425
- with pd.option_context('display.max_colwidth', None):
426
- display(df[["text", "prediction", "annotation"]].head(20))
427
- ```
428
-
429
-
430
- <div>
431
- <style scoped>
432
- .dataframe tbody tr th:only-of-type {
433
- vertical-align: middle;
434
- }
435
-
436
- .dataframe tbody tr th {
437
- vertical-align: top;
438
- }
439
-
440
- .dataframe thead th {
441
- text-align: right;
442
- }
443
- </style>
444
- <table border="1" class="dataframe">
445
- <thead>
446
- <tr style="text-align: right;">
447
- <th></th>
448
- <th>text</th>
449
- <th>prediction</th>
450
- <th>annotation</th>
451
- </tr>
452
- </thead>
453
- <tbody>
454
- <tr>
455
- <th>0</th>
456
- <td>plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown .</td>
457
- <td>[(positive, 0.9968075752258301), (negative, 0.003192420583218336)]</td>
458
- <td>negative</td>
459
- </tr>
460
- <tr>
461
- <th>1</th>
462
- <td>accept it as life and</td>
463
- <td>[(positive, 0.9987508058547974), (negative, 0.0012492131209000945)]</td>
464
- <td>negative</td>
465
- </tr>
466
- <tr>
467
- <th>2</th>
468
- <td>overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration .</td>
469
- <td>[(positive, 0.9953157901763916), (negative, 0.004684178624302149)]</td>
470
- <td>negative</td>
471
- </tr>
472
- <tr>
473
- <th>3</th>
474
- <td>will no doubt rally to its cause , trotting out threadbare standbys like ` masterpiece ' and ` triumph ' and all that malarkey ,</td>
475
- <td>[(negative, 0.9936562180519104), (positive, 0.006343740504235029)]</td>
476
- <td>positive</td>
477
- </tr>
478
- <tr>
479
- <th>4</th>
480
- <td>we do n't get williams ' usual tear and a smile , just sneers and bile , and the spectacle is nothing short of refreshing .</td>
481
- <td>[(positive, 0.9982783794403076), (negative, 0.0017216014675796032)]</td>
482
- <td>negative</td>
483
- </tr>
484
- <tr>
485
- <th>5</th>
486
- <td>somehow manages to bring together kevin pollak , former wrestler chyna and dolly parton</td>
487
- <td>[(negative, 0.9979034662246704), (positive, 0.002096540294587612)]</td>
488
- <td>positive</td>
489
- </tr>
490
- <tr>
491
- <th>6</th>
492
- <td>there 's an admirable rigor to jimmy 's relentless anger , and to the script 's refusal of a happy ending ,</td>
493
- <td>[(positive, 0.9928517937660217), (negative, 0.007148175034672022)]</td>
494
- <td>negative</td>
495
- </tr>
496
- <tr>
497
- <th>7</th>
498
- <td>the bottom line with nemesis is the same as it has been with all the films in the series : fans will undoubtedly enjoy it , and the uncommitted need n't waste their time on it</td>
499
- <td>[(positive, 0.995850682258606), (negative, 0.004149340093135834)]</td>
500
- <td>negative</td>
501
- </tr>
502
- <tr>
503
- <th>8</th>
504
- <td>is genial but never inspired , and little</td>
505
- <td>[(negative, 0.9921030402183533), (positive, 0.007896988652646542)]</td>
506
- <td>positive</td>
507
- </tr>
508
- <tr>
509
- <th>9</th>
510
- <td>heaped upon a project of such vast proportions need to reap more rewards than spiffy bluescreen technique and stylish weaponry .</td>
511
- <td>[(negative, 0.9958089590072632), (positive, 0.004191054962575436)]</td>
512
- <td>positive</td>
513
- </tr>
514
- <tr>
515
- <th>10</th>
516
- <td>than recommended -- as visually bland as a dentist 's waiting room , complete with soothing muzak and a cushion of predictable narrative rhythms</td>
517
- <td>[(negative, 0.9988711476325989), (positive, 0.0011287889210507274)]</td>
518
- <td>positive</td>
519
- </tr>
520
- <tr>
521
- <th>11</th>
522
- <td>spectacle and</td>
523
- <td>[(positive, 0.9941601753234863), (negative, 0.005839805118739605)]</td>
524
- <td>negative</td>
525
- </tr>
526
- <tr>
527
- <th>12</th>
528
- <td>groan and</td>
529
- <td>[(negative, 0.9987359642982483), (positive, 0.0012639997294172645)]</td>
530
- <td>positive</td>
531
- </tr>
532
- <tr>
533
- <th>13</th>
534
- <td>'re not likely to have seen before , but beneath the exotic surface ( and exotic dancing ) it 's surprisingly old-fashioned .</td>
535
- <td>[(positive, 0.9908103942871094), (negative, 0.009189637377858162)]</td>
536
- <td>negative</td>
537
- </tr>
538
- <tr>
539
- <th>14</th>
540
- <td>its metaphors are opaque enough to avoid didacticism , and</td>
541
- <td>[(negative, 0.990602970123291), (positive, 0.00939704105257988)]</td>
542
- <td>positive</td>
543
- </tr>
544
- <tr>
545
- <th>15</th>
546
- <td>by kevin bray , whose crisp framing , edgy camera work , and wholesale ineptitude with acting , tone and pace very obviously mark him as a video helmer making his feature debut</td>
547
- <td>[(positive, 0.9973387122154236), (negative, 0.0026612314395606518)]</td>
548
- <td>negative</td>
549
- </tr>
550
- <tr>
551
- <th>16</th>
552
- <td>evokes the frustration , the awkwardness and the euphoria of growing up , without relying on the usual tropes .</td>
553
- <td>[(positive, 0.9989104270935059), (negative, 0.0010896018939092755)]</td>
554
- <td>negative</td>
555
- </tr>
556
- <tr>
557
- <th>17</th>
558
- <td>, incoherence and sub-sophomoric</td>
559
- <td>[(negative, 0.9962475895881653), (positive, 0.003752368036657572)]</td>
560
- <td>positive</td>
561
- </tr>
562
- <tr>
563
- <th>18</th>
564
- <td>seems intimidated by both her subject matter and the period trappings of this debut venture into the heritage business .</td>
565
- <td>[(negative, 0.9923072457313538), (positive, 0.007692818529903889)]</td>
566
- <td>positive</td>
567
- </tr>
568
- <tr>
569
- <th>19</th>
570
- <td>despite downplaying her good looks , carries a little too much ai n't - she-cute baggage into her lead role as a troubled and determined homicide cop to quite pull off the heavy stuff .</td>
571
- <td>[(negative, 0.9948075413703918), (positive, 0.005192441400140524)]</td>
572
- <td>positive</td>
573
- </tr>
574
- </tbody>
575
- </table>
576
- </div>
577
-
578
-
579
-
580
- ```python
581
- # Get dataset slice with wrong predictions
582
- df = rb.load("sst2", query="predicted:ko and score:{* TO 0.6}").to_pandas()
583
-
584
- # display first 20 examples
585
- with pd.option_context('display.max_colwidth', None):
586
- display(df[["text", "prediction", "annotation"]].head(20))
587
- ```
588
-
589
-
590
- <div>
591
- <style scoped>
592
- .dataframe tbody tr th:only-of-type {
593
- vertical-align: middle;
594
- }
595
-
596
- .dataframe tbody tr th {
597
- vertical-align: top;
598
- }
599
-
600
- .dataframe thead th {
601
- text-align: right;
602
- }
603
- </style>
604
- <table border="1" class="dataframe">
605
- <thead>
606
- <tr style="text-align: right;">
607
- <th></th>
608
- <th>text</th>
609
- <th>prediction</th>
610
- <th>annotation</th>
611
- </tr>
612
- </thead>
613
- <tbody>
614
- <tr>
615
- <th>0</th>
616
- <td>get on a board and , uh , shred ,</td>
617
- <td>[(positive, 0.5352609753608704), (negative, 0.46473899483680725)]</td>
618
- <td>negative</td>
619
- </tr>
620
- <tr>
621
- <th>1</th>
622
- <td>is , truly and thankfully , a one-of-a-kind work</td>
623
- <td>[(positive, 0.5819814801216125), (negative, 0.41801854968070984)]</td>
624
- <td>negative</td>
625
- </tr>
626
- <tr>
627
- <th>2</th>
628
- <td>starts as a tart little lemon drop of a movie and</td>
629
- <td>[(negative, 0.5641832947731018), (positive, 0.4358167052268982)]</td>
630
- <td>positive</td>
631
- </tr>
632
- <tr>
633
- <th>3</th>
634
- <td>between flaccid satire and what</td>
635
- <td>[(negative, 0.5532692074775696), (positive, 0.44673076272010803)]</td>
636
- <td>positive</td>
637
- </tr>
638
- <tr>
639
- <th>4</th>
640
- <td>it certainly does n't feel like a film that strays past the two and a half mark</td>
641
- <td>[(negative, 0.5386656522750854), (positive, 0.46133431792259216)]</td>
642
- <td>positive</td>
643
- </tr>
644
- <tr>
645
- <th>5</th>
646
- <td>who liked there 's something about mary and both american pie movies</td>
647
- <td>[(negative, 0.5086333751678467), (positive, 0.4913666248321533)]</td>
648
- <td>positive</td>
649
- </tr>
650
- <tr>
651
- <th>6</th>
652
- <td>many good ideas as bad is the cold comfort that chin 's film serves up with style and empathy</td>
653
- <td>[(positive, 0.557632327079773), (negative, 0.44236767292022705)]</td>
654
- <td>negative</td>
655
- </tr>
656
- <tr>
657
- <th>7</th>
658
- <td>about its ideas and</td>
659
- <td>[(positive, 0.518638551235199), (negative, 0.48136141896247864)]</td>
660
- <td>negative</td>
661
- </tr>
662
- <tr>
663
- <th>8</th>
664
- <td>of a sick and evil woman</td>
665
- <td>[(negative, 0.5554516315460205), (positive, 0.4445483684539795)]</td>
666
- <td>positive</td>
667
- </tr>
668
- <tr>
669
- <th>9</th>
670
- <td>though this rude and crude film does deliver a few gut-busting laughs</td>
671
- <td>[(positive, 0.5045541524887085), (negative, 0.4954459071159363)]</td>
672
- <td>negative</td>
673
- </tr>
674
- <tr>
675
- <th>10</th>
676
- <td>to squeeze the action and our emotions into the all-too-familiar dramatic arc of the holocaust escape story</td>
677
- <td>[(negative, 0.5050069093704224), (positive, 0.49499306082725525)]</td>
678
- <td>positive</td>
679
- </tr>
680
- <tr>
681
- <th>11</th>
682
- <td>that throws a bunch of hot-button items in the viewer 's face and asks to be seen as hip , winking social commentary</td>
683
- <td>[(negative, 0.5873904228210449), (positive, 0.41260960698127747)]</td>
684
- <td>positive</td>
685
- </tr>
686
- <tr>
687
- <th>12</th>
688
- <td>'s soulful and unslick</td>
689
- <td>[(positive, 0.5931627750396729), (negative, 0.40683719515800476)]</td>
690
- <td>negative</td>
691
- </tr>
692
- </tbody>
693
- </table>
694
- </div>
695
-
696
-
697
-
698
- ```python
699
- from rubrix.metrics.commons import *
700
- ```
701
-
702
-
703
- ```python
704
- text_length("sst2", query="predicted:ko").visualize()
705
- ```
706
- ![example.png](https://huggingface.co/datasets/rubrix/sst2_with_predictions/resolve/main/output_14_0.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1,103 +0,0 @@
1
- {"rubrix--sst2_with_predictions": {
2
- "description": "",
3
- "citation": "",
4
- "homepage": "",
5
- "license": "",
6
- "features": {
7
- "text": {
8
- "dtype": "string",
9
- "id": null,
10
- "_type": "Value"
11
- },
12
- "inputs": {
13
- "text": {
14
- "dtype": "string",
15
- "id": null,
16
- "_type": "Value"
17
- }
18
- },
19
- "prediction": [
20
- {
21
- "label": {
22
- "dtype": "string",
23
- "id": null,
24
- "_type": "Value"
25
- },
26
- "score": {
27
- "dtype": "float64",
28
- "id": null,
29
- "_type": "Value"
30
- }
31
- }
32
- ],
33
- "prediction_agent": {
34
- "dtype": "null",
35
- "id": null,
36
- "_type": "Value"
37
- },
38
- "annotation": {
39
- "dtype": "string",
40
- "id": null,
41
- "_type": "Value"
42
- },
43
- "annotation_agent": {
44
- "dtype": "null",
45
- "id": null,
46
- "_type": "Value"
47
- },
48
- "multi_label": {
49
- "dtype": "bool",
50
- "id": null,
51
- "_type": "Value"
52
- },
53
- "explanation": {
54
- "dtype": "null",
55
- "id": null,
56
- "_type": "Value"
57
- },
58
- "id": {
59
- "dtype": "null",
60
- "id": null,
61
- "_type": "Value"
62
- },
63
- "metadata": {
64
- "dtype": "null",
65
- "id": null,
66
- "_type": "Value"
67
- },
68
- "status": {
69
- "dtype": "string",
70
- "id": null,
71
- "_type": "Value"
72
- },
73
- "event_timestamp": {
74
- "dtype": "null",
75
- "id": null,
76
- "_type": "Value"
77
- },
78
- "metrics": {
79
- "dtype": "null",
80
- "id": null,
81
- "_type": "Value"
82
- }
83
- },
84
- "post_processed": null,
85
- "supervised_keys": null,
86
- "task_templates": null,
87
- "builder_name": null,
88
- "config_name": null,
89
- "version": null,
90
- "splits": {
91
- "train": {
92
- "name": "train",
93
- "num_bytes": 12402330,
94
- "num_examples": 67349,
95
- "dataset_name": "sst2_with_predictions"
96
- }
97
- },
98
- "download_checksums": null,
99
- "download_size": 6242768,
100
- "post_processing_size": null,
101
- "dataset_size": 12402330,
102
- "size_in_bytes": 18645098
103
- }}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
example.png DELETED
Binary file (426 kB)
 
output_14_0.png DELETED
Binary file (36.9 kB)
 
output_16_0.png DELETED
Binary file (38.1 kB)
 
output_17_0.png DELETED
Binary file (28.8 kB)
 
output_18_0.png DELETED
Binary file (25.7 kB)
 
output_9_1.png DELETED
Binary file (3.94 kB)
 
data/train-00000-of-00001.parquet → rubrix--sst2_with_predictions/train/0000.parquet RENAMED
File without changes
data/validation-00000-of-00001.parquet → rubrix--sst2_with_predictions/validation/0000.parquet RENAMED
File without changes
sst2_example.ipynb DELETED
The diff for this file is too large to render. See raw diff