{
"cells": [
{
"cell_type": "markdown",
"id": "068cb86a-3fa4-4b78-b3f4-af8734aadd34",
"metadata": {},
"source": [
"# Comparing model predictions and ground truth labels with Rubrix and Hugging Face"
]
},
{
"cell_type": "markdown",
"id": "d1e7f545-d7f2-4eff-a4c5-222f5f50e429",
"metadata": {},
"source": [
"## Build dataset\n",
"\n",
"You skip this step if you run:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b404248d-ef48-4404-b26c-841ebf97b9d9",
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"import rubrix as rb\n",
"\n",
"ds = rb.DatasetForTextClassification.from_datasets(load_dataset(\"rubrix/sst2_with_predictions\", split=\"train\"))"
]
},
{
"cell_type": "markdown",
"id": "8de11d9d-4329-44de-842e-300907c909a3",
"metadata": {},
"source": [
"Otherwise, the following cell will run the pipeline over the training set and store labels and predictions."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a78bf18b-6330-41f7-90de-cf4b0175b109",
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"from transformers import pipeline, AutoModelForSequenceClassification\n",
"\n",
"import rubrix as rb\n",
"\n",
"name = \"distilbert-base-uncased-finetuned-sst-2-english\"\n",
"\n",
"# Need to define id2label because surprisingly the pipeline has uppercase label names \n",
"model = AutoModelForSequenceClassification.from_pretrained(name, id2label={0: 'negative', 1: 'positive'})\n",
"nlp = pipeline(\"sentiment-analysis\", model=model, tokenizer=name, return_all_scores=True)\n",
"\n",
"dataset = load_dataset(\"glue\", \"sst2\", split=\"train\")\n",
"\n",
"# batch predict\n",
"def predict(example):\n",
" return {\"prediction\": nlp(example[\"sentence\"])}\n",
"\n",
"# add predictions to the dataset\n",
"dataset = dataset.map(predict, batched=True).rename_column(\"sentence\", \"text\")\n",
"\n",
"# build rubrix dataset from hf dataset\n",
"ds = rb.DatasetForTextClassification.from_datasets(dataset, annotation=\"label\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bb1a0a0f-3570-4bdd-906a-a3785f38db94",
"metadata": {},
"outputs": [],
"source": [
"# Install Rubrix and start exploring and sharing URLs with interesting subsets, etc.\n",
"rb.log(ds, \"sst2\")"
]
},
{
"cell_type": "code",
"execution_count": 90,
"id": "c9108ebf-94f8-40cf-854a-1199843009ea",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "82020b01e6984e5e9665a519d7b3d125",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ds.to_datasets().push_to_hub(\"rubrix/sst2_with_predictions\")"
]
},
{
"cell_type": "markdown",
"id": "b8ceca37-4b27-4943-86df-0f239dfd4c07",
"metadata": {},
"source": [
"## Analize misspredictions and ambiguous labels\n",
"\n",
"### With the UI\n",
"\n",
"With Rubrix UI you can:\n",
"\n",
"- Combine filters and full-text/DSL queries to quickly find important samples\n",
"- All URLs contain the state so you can share with collaborator and annotator specific dataset regions to work on.\n",
"- Sort examples by score, as well as custom metadata fields.\n",
"\n",
"\n",
"\n",
"![example.png](example.png)\n",
"\n",
"\n",
"### Programmatically\n",
"\n",
"Let's find all wrong predictions from Python. This useful for bulk operations (relabelling, discarding, etc.)"
]
},
{
"cell_type": "code",
"execution_count": 85,
"id": "1c098fc5-a812-4750-9148-d87fe7f6e1c6",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" text \n",
" prediction \n",
" annotation \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" this particular , anciently demanding métier \n",
" [(negative, 0.9386059045791626), (positive, 0.06139408051967621)] \n",
" positive \n",
" \n",
" \n",
" 1 \n",
" under our skin \n",
" [(positive, 0.7508484721183777), (negative, 0.24915160238742828)] \n",
" negative \n",
" \n",
" \n",
" 2 \n",
" evokes a palpable sense of disconnection , made all the more poignant by the incessant use of cell phones . \n",
" [(negative, 0.6634528636932373), (positive, 0.3365470767021179)] \n",
" positive \n",
" \n",
" \n",
" 3 \n",
" plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown . \n",
" [(positive, 0.9968075752258301), (negative, 0.003192420583218336)] \n",
" negative \n",
" \n",
" \n",
" 4 \n",
" into a pulpy concept that , in many other hands would be completely forgettable \n",
" [(positive, 0.6178210377693176), (negative, 0.3821789622306824)] \n",
" negative \n",
" \n",
" \n",
" 5 \n",
" transcends ethnic lines . \n",
" [(positive, 0.9758220314979553), (negative, 0.024177948012948036)] \n",
" negative \n",
" \n",
" \n",
" 6 \n",
" is barely \n",
" [(negative, 0.9922297596931458), (positive, 0.00777028314769268)] \n",
" positive \n",
" \n",
" \n",
" 7 \n",
" a pulpy concept that , in many other hands would be completely forgettable \n",
" [(negative, 0.9738760590553284), (positive, 0.026123959571123123)] \n",
" positive \n",
" \n",
" \n",
" 8 \n",
" of hollywood heart-string plucking \n",
" [(positive, 0.9889695644378662), (negative, 0.011030420660972595)] \n",
" negative \n",
" \n",
" \n",
" 9 \n",
" a minimalist beauty and the beast \n",
" [(positive, 0.9100378751754761), (negative, 0.08996208757162094)] \n",
" negative \n",
" \n",
" \n",
" 10 \n",
" the intimate , unguarded moments of folks who live in unusual homes -- \n",
" [(positive, 0.9967381358146667), (negative, 0.0032618637196719646)] \n",
" negative \n",
" \n",
" \n",
" 11 \n",
" steals the show \n",
" [(negative, 0.8031412363052368), (positive, 0.1968587338924408)] \n",
" positive \n",
" \n",
" \n",
" 12 \n",
" enough \n",
" [(positive, 0.7941301465034485), (negative, 0.2058698982000351)] \n",
" negative \n",
" \n",
" \n",
" 13 \n",
" accept it as life and \n",
" [(positive, 0.9987508058547974), (negative, 0.0012492131209000945)] \n",
" negative \n",
" \n",
" \n",
" 14 \n",
" this is the kind of movie that you only need to watch for about thirty seconds before you say to yourself , ` ah , yes , \n",
" [(negative, 0.7889454960823059), (positive, 0.21105451881885529)] \n",
" positive \n",
" \n",
" \n",
" 15 \n",
" plunges you into a reality that is , more often then not , difficult and sad , \n",
" [(positive, 0.967541515827179), (negative, 0.03245845437049866)] \n",
" negative \n",
" \n",
" \n",
" 16 \n",
" overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration . \n",
" [(positive, 0.9953157901763916), (negative, 0.004684178624302149)] \n",
" negative \n",
" \n",
" \n",
" 17 \n",
" troubled and determined homicide cop \n",
" [(negative, 0.6632784008979797), (positive, 0.33672159910202026)] \n",
" positive \n",
" \n",
" \n",
" 18 \n",
" human nature is a goofball movie , in the way that malkovich was , but it tries too hard \n",
" [(positive, 0.5959018468856812), (negative, 0.40409812331199646)] \n",
" negative \n",
" \n",
" \n",
" 19 \n",
" to watch too many barney videos \n",
" [(negative, 0.9909896850585938), (positive, 0.00901023019105196)] \n",
" positive \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" text \\\n",
"0 this particular , anciently demanding métier \n",
"1 under our skin \n",
"2 evokes a palpable sense of disconnection , made all the more poignant by the incessant use of cell phones . \n",
"3 plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown . \n",
"4 into a pulpy concept that , in many other hands would be completely forgettable \n",
"5 transcends ethnic lines . \n",
"6 is barely \n",
"7 a pulpy concept that , in many other hands would be completely forgettable \n",
"8 of hollywood heart-string plucking \n",
"9 a minimalist beauty and the beast \n",
"10 the intimate , unguarded moments of folks who live in unusual homes -- \n",
"11 steals the show \n",
"12 enough \n",
"13 accept it as life and \n",
"14 this is the kind of movie that you only need to watch for about thirty seconds before you say to yourself , ` ah , yes , \n",
"15 plunges you into a reality that is , more often then not , difficult and sad , \n",
"16 overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration . \n",
"17 troubled and determined homicide cop \n",
"18 human nature is a goofball movie , in the way that malkovich was , but it tries too hard \n",
"19 to watch too many barney videos \n",
"\n",
" prediction \\\n",
"0 [(negative, 0.9386059045791626), (positive, 0.06139408051967621)] \n",
"1 [(positive, 0.7508484721183777), (negative, 0.24915160238742828)] \n",
"2 [(negative, 0.6634528636932373), (positive, 0.3365470767021179)] \n",
"3 [(positive, 0.9968075752258301), (negative, 0.003192420583218336)] \n",
"4 [(positive, 0.6178210377693176), (negative, 0.3821789622306824)] \n",
"5 [(positive, 0.9758220314979553), (negative, 0.024177948012948036)] \n",
"6 [(negative, 0.9922297596931458), (positive, 0.00777028314769268)] \n",
"7 [(negative, 0.9738760590553284), (positive, 0.026123959571123123)] \n",
"8 [(positive, 0.9889695644378662), (negative, 0.011030420660972595)] \n",
"9 [(positive, 0.9100378751754761), (negative, 0.08996208757162094)] \n",
"10 [(positive, 0.9967381358146667), (negative, 0.0032618637196719646)] \n",
"11 [(negative, 0.8031412363052368), (positive, 0.1968587338924408)] \n",
"12 [(positive, 0.7941301465034485), (negative, 0.2058698982000351)] \n",
"13 [(positive, 0.9987508058547974), (negative, 0.0012492131209000945)] \n",
"14 [(negative, 0.7889454960823059), (positive, 0.21105451881885529)] \n",
"15 [(positive, 0.967541515827179), (negative, 0.03245845437049866)] \n",
"16 [(positive, 0.9953157901763916), (negative, 0.004684178624302149)] \n",
"17 [(negative, 0.6632784008979797), (positive, 0.33672159910202026)] \n",
"18 [(positive, 0.5959018468856812), (negative, 0.40409812331199646)] \n",
"19 [(negative, 0.9909896850585938), (positive, 0.00901023019105196)] \n",
"\n",
" annotation \n",
"0 positive \n",
"1 negative \n",
"2 positive \n",
"3 negative \n",
"4 negative \n",
"5 negative \n",
"6 positive \n",
"7 positive \n",
"8 negative \n",
"9 negative \n",
"10 negative \n",
"11 positive \n",
"12 negative \n",
"13 negative \n",
"14 positive \n",
"15 negative \n",
"16 negative \n",
"17 positive \n",
"18 negative \n",
"19 positive "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import pandas as pd\n",
"\n",
"# Get dataset slice with wrong predictions\n",
"df = rb.load(\"sst2\", query=\"predicted:ko\").to_pandas()\n",
"\n",
"# display first 20 examples\n",
"with pd.option_context('display.max_colwidth', None):\n",
" display(df[[\"text\", \"prediction\", \"annotation\"]].head(20))"
]
},
{
"cell_type": "code",
"execution_count": 86,
"id": "bbb52dc8-ce4c-44dd-8a58-88be19560c6d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 86,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAO1ElEQVR4nO3dcYykdX3H8fdHDhVP5RTsBu/QtUJjaamoG8TaNCukDWhTSEULRQF7ycUUGy0YezZNqqkxEEtpRatehXC21yrSmqNgqxbctpogguIdcKJXxHAXlIKArlbbs9/+Mb+TKT3c3dnZm5Pf+5Vs9vf8nmfm+e398d6ZZ2fmUlVIkvrwuEkvQJK0/xh9SeqI0Zekjhh9SeqI0Zekjqya9AIADj/88Jqenh7ptt/97ndZvXr1eBckSfvJchp2880331dVz1jKbQ6I6E9PT3PTTTeNdNu5uTlmZ2fHuyBJ2k+W07AkX1/qbby8I0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdMfqS1BGjL0kdOSDekbsc23c/xLkbr53Iue+68BUTOa8kjcpH+pLUEaMvSR0x+pLUEaMvSR0x+pLUEaMvSR0x+pLUEaMvSR0x+pLUEaMvSR0x+pLUEaMvSR0x+pLUEaMvSR0x+pLUEaMvSR0x+pLUEaMvSR1ZdPSTHJTki0muadvPSfK5JDuTfCTJ49v8E9r2zrZ/eoXWLklaoqU80n8jsGNo+yLgkqo6CngAWN/m1wMPtPlL2nGSpAPAoqKfZB3wCuCDbTvAicBV7ZDNwGltfGrbpu0/qR0vSZqwVYs87s+AtwBPaduHAQ9W1Z62vQtY28ZrgbsBqmpPkofa8fcN32GSDcAGgKmpKebm5kb6AaYOgQuO3bPwgStg1DVL0l7z8/P7tSULRj/JrwH3VtXNSWbHdeKq2gRsApiZmanZ2dHu+tItW7l4+2J/d43XXWfNTuS8kh475ubmGLV/o1hMLV8K/HqSlwNPBJ4K/DmwJsmq9mh/HbC7Hb8bOBLYlWQVcChw/9hXLklasgWv6VfVW6tqXVVNA2cA11fVWcCngdPbYecAW9v46rZN2399VdVYVy1JGslyXqf/+8D5SXYyuGZ/WZu/DDiszZ8PbFzeEiVJ47Kki+FVNQfMtfGdwPH7OOb7wKvGsDZJ0pj5jlxJ6ojRl6SOGH1J6ojRl6SOGH1J6ojRl6SOGH1J6ojRl6SOGH1J6ojRl6SOGH1J6ojRl6SOGH1J6ojRl6SOGH1J6ojRl6SOGH1J6ojRl6SOGH1J6ojRl6SOGH1J6ojRl6SOGH1J6ojRl6SOGH1J6ojRl6SOGH1J6ojRl6SOGH1J6siqSS9AkiZteuO1Ezv3FSev3q/n85G+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHVkwegneWKSG5N8KcltSd7e5p+T5HNJdib5SJLHt/kntO2dbf/0Cv8MkqRFWswj/R8AJ1bV84HjgJOTnABcBFxSVUcBDwDr2/HrgQfa/CXtOEnSAWDB6NfAfNs8uH0VcCJwVZvfDJzWxqe2bdr+k5JkXAuWJI1uUR/DkOQg4GbgKOC9wL8DD1bVnnbILmBtG68F7gaoqj1JHgIOA+57xH1uADYATE1NMTc3N9IPMHUIXHDsnoUPXAGjrlnSgWVSDQGYn5/fry1ZVPSr6ofAcUnWAB8DnrfcE1fVJmATwMzMTM3Ozo50P5du2crF2yfzEUJ3nTU7kfNKGq9zJ/zZO6P2bxRLevVOVT0IfBp4CbAmyd7argN2t/Fu4EiAtv9Q4P5xLFaStDyLefXOM9ojfJIcAvwKsINB/E9vh50DbG3jq9s2bf/1VVVjXLMkaUSLuS5yBLC5Xdd/HHBlVV2T5Hbgw0neAXwRuKwdfxnwV0l2At8CzliBdUuSRrBg9KtqG/CCfczfCRy/j/nvA68ay+okSWPlO3IlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSNGX5I6YvQlqSMLRj/JkUk+neT2JLcleWObf3qSTyX5avv+tDafJO9OsjPJtiQvXOkfQpK0OIt5pL8HuKCqjgFOAM5LcgywEbiuqo4GrmvbAKcAR7evDcD7xr5qSdJIFox+Vd1TVV9o4+8AO4C1wKnA5nbYZuC0Nj4V+FAN3ACsSXLEuBcuSVq6VUs5OMk08ALgc8BUVd3Tdn0DmGrjtcDdQzfb1ebuGZojyQYGzwSYmppibm5uiUsfmDoELjh2z0i3Xa5R1yzpwDKphgDMz8/v15YsOvpJngz8HfCmqvp2kh/tq6pKUks5cVVtAjYBzMzM1Ozs7FJu/iOXbtnKxduX9LtrbO46a3Yi55U0XuduvHZi577i5NWM2r9RLOrVO0kOZhD8LVX19236m3sv27Tv97b53cCRQzdf1+YkSRO2mFfvBLgM2FFVfzq062rgnDY+B9g6NH92exXPCcBDQ5eBJEkTtJjrIi8FXgtsT3JLm/sD4ELgyiTrga8Dr277Pg68HNgJfA943TgXLEka3YLRr6rPAHmU3Sft4/gCzlvmuiRJK8B35EpSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSR4y+JHXE6EtSRxaMfpLLk9yb5Nahuacn+VSSr7bvT2vzSfLuJDuTbEvywpVcvCRpaRbzSP8K4ORHzG0Erquqo4Hr2jbAKcDR7WsD8L7xLFOSNA4LRr+q/hX41iOmTwU2t/Fm4LSh+Q/VwA3AmiRHjGmtkqRlGvWa/lRV3dPG3wCm2ngtcPfQcbvanCTpALBquXdQVZWklnq7JBsYXAJiamqKubm5kc4/dQhccOyekW67XKOuWdKBZVINAZifn9+vLRk1+t9MckRV3dMu39zb5ncDRw4dt67N/T9VtQnYBDAzM1Ozs7MjLeTSLVu5ePuyf3eN5K6zZidyXknjde7Gayd27itOXs2o/RvFqJd3rgbOaeNzgK1D82e3V/GcADw0dBlIkjRhCz5ETvK3wCxweJJdwB8BFwJXJlkPfB14dTv848DLgZ3A94DXrcCaJUkjWjD6VXXmo+w6aR/HFnDechclSVoZviNXkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpI0Zfkjpi9CWpIysS/SQnJ7kjyc4kG1fiHJKkpRt79JMcBLwXOAU4BjgzyTHjPo8kaelW4pH+8cDOqrqzqv4L+DBw6gqcR5K0RKtW4D7XAncPbe8CXvzIg5JsADa0zfkkd4x4vsOB+0a87bLkokmcVdJjycsuWlbDnr3UG6xE9BelqjYBm5Z7P0luqqqZMSxJkva7/d2wlbi8sxs4cmh7XZuTJE3YSkT/88DRSZ6T5PHAGcDVK3AeSdISjf3yTlXtSfIG4BPAQcDlVXXbuM8zZNmXiCRpgvZrw1JV+/N8kqQJ8h25ktQRoy9JHfmJjn6S1yc5u43PTfLMoX0f9J3Akn6SJFmT5HeGtp+Z5KqxnuOxck0/yRzw5qq6adJrkaRRJJkGrqmqn1+pc0zskX6S6SRfTrIlyY4kVyV5UpKTknwxyfYklyd5Qjv+wiS3J9mW5E/a3NuSvDnJ6cAMsCXJLUkOSTKXZKY9G3jX0HnPTfKeNn5NkhvbbT7QPjdIkvapdWtHkr9McluST7bePDfJPyW5Ocm/JXleO/65SW5oPXtHkvk2/+Qk1yX5Qtu396NqLgSe25r0rna+W9ttbkjyc0Nr2du41a2VN7Z2/viPvamqiXwB00ABL23blwN/yOAjHH6mzX0IeBNwGHAHDz8zWdO+v43Bo3uAOWBm6P7nGPwieAaDzwLaO/+PwC8BPwv8A3Bwm/8L4OxJ/Xv45ZdfB/5X69Ye4Li2fSXwGuA64Og292Lg+ja+BjizjV8PzLfxKuCpbXw4sBNIu/9bH3G+W9v494C3t/ERwB1t/E7gNW28BvgKsPrRfoZJX9O/u6o+28Z/DZwEfK2qvtLmNgO/DDwEfB+4LMlvAN9b7Amq6j+AO5OckOQw4HnAZ9u5XgR8Psktbfunl/8jSXqM+1pV3dLGNzMI8y8CH20t+QCDKAO8BPhoG//N0H0EeGeSbcA/M/jMsqkFznslcHobvxrYe63/V4GN7dxzwBOBZz3anUzss3eaR/5B4UEGj+r/70GDN3wdzyDMpwNvAE5cwnk+zOAf6cvAx6qqkgTYXFVvHWXhkrr1g6HxDxnE+sGqOm4J93EWg6sQL6qq/05yF4NYP6qq2p3k/iS/APwmg2cOMPgF8sqqWtSHVk76kf6zkrykjX8LuAmYTnJUm3st8C9JngwcWlUfZ/AU5/n7uK/vAE95lPN8jMHHO5/J4BcADJ6OnZ7kpwCSPD3Jkj+xTlL3vg18LcmrADKwt1E3AK9s4zOGbnMocG8L/st4+NMyf1zHAD4CvIVBD7e1uU8Av9seyJLkBT9usZOO/h3AeUl2AE8DLgFex+Bp0nbgf4D3M/hHuKY9FfoMcP4+7usK4P17/5A7vKOqHgB2AM+uqhvb3O0M/obwyXa/n+Lhp2SStBRnAeuTfAm4jYf/D5E3Aee3xhzF4FI1wBZgpnXubAZXIaiq+4HPJrl1+AUoQ65i8MvjyqG5PwYOBrYlua1tP6qJvWRzf7w0SZImKcmTgP9sl5TPYPBH3Yn+p1KTvqYvSY9lLwLe0y69PAj89mSX8xh6c5YkaWGTvqYvSdqPjL4kdcToS1JHjL4kdcToS1JH/heHMPl1Z7UhOwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"df.annotation.hist()"
]
},
{
"cell_type": "code",
"execution_count": 88,
"id": "143615a3-b780-4b76-a747-a7fb43a9ad23",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" text \n",
" prediction \n",
" annotation \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown . \n",
" [(positive, 0.9968075752258301), (negative, 0.003192420583218336)] \n",
" negative \n",
" \n",
" \n",
" 1 \n",
" a minimalist beauty and the beast \n",
" [(positive, 0.9100378751754761), (negative, 0.08996208757162094)] \n",
" negative \n",
" \n",
" \n",
" 2 \n",
" accept it as life and \n",
" [(positive, 0.9987508058547974), (negative, 0.0012492131209000945)] \n",
" negative \n",
" \n",
" \n",
" 3 \n",
" plunges you into a reality that is , more often then not , difficult and sad , \n",
" [(positive, 0.967541515827179), (negative, 0.03245845437049866)] \n",
" negative \n",
" \n",
" \n",
" 4 \n",
" overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration . \n",
" [(positive, 0.9953157901763916), (negative, 0.004684178624302149)] \n",
" negative \n",
" \n",
" \n",
" 5 \n",
" and social commentary \n",
" [(positive, 0.7863275408744812), (negative, 0.2136724889278412)] \n",
" negative \n",
" \n",
" \n",
" 6 \n",
" we do n't get williams ' usual tear and a smile , just sneers and bile , and the spectacle is nothing short of refreshing . \n",
" [(positive, 0.9982783794403076), (negative, 0.0017216014675796032)] \n",
" negative \n",
" \n",
" \n",
" 7 \n",
" before pulling the plug on the conspirators and averting an american-russian armageddon \n",
" [(positive, 0.6992855072021484), (negative, 0.30071452260017395)] \n",
" negative \n",
" \n",
" \n",
" 8 \n",
" in tight pants and big tits \n",
" [(positive, 0.7850217819213867), (negative, 0.2149781733751297)] \n",
" negative \n",
" \n",
" \n",
" 9 \n",
" that it certainly does n't feel like a film that strays past the two and a half mark \n",
" [(positive, 0.6591460108757019), (negative, 0.3408539891242981)] \n",
" negative \n",
" \n",
" \n",
" 10 \n",
" actress-producer and writer \n",
" [(positive, 0.8167378306388855), (negative, 0.1832621842622757)] \n",
" negative \n",
" \n",
" \n",
" 11 \n",
" gives devastating testimony to both people 's capacity for evil and their heroic capacity for good . \n",
" [(positive, 0.8960123062133789), (negative, 0.10398765653371811)] \n",
" negative \n",
" \n",
" \n",
" 12 \n",
" deep into the girls ' confusion and pain as they struggle tragically to comprehend the chasm of knowledge that 's opened between them \n",
" [(positive, 0.9729612469673157), (negative, 0.027038726955652237)] \n",
" negative \n",
" \n",
" \n",
" 13 \n",
" a younger lad in zen and the art of getting laid in this prickly indie comedy of manners and misanthropy \n",
" [(positive, 0.9875985980033875), (negative, 0.012401451356709003)] \n",
" negative \n",
" \n",
" \n",
" 14 \n",
" get on a board and , uh , shred , \n",
" [(positive, 0.5352609753608704), (negative, 0.46473899483680725)] \n",
" negative \n",
" \n",
" \n",
" 15 \n",
" so preachy-keen and \n",
" [(positive, 0.9644021391868591), (negative, 0.035597823560237885)] \n",
" negative \n",
" \n",
" \n",
" 16 \n",
" there 's an admirable rigor to jimmy 's relentless anger , and to the script 's refusal of a happy ending , \n",
" [(positive, 0.9928517937660217), (negative, 0.007148175034672022)] \n",
" negative \n",
" \n",
" \n",
" 17 \n",
" ` christian bale 's quinn ( is ) a leather clad grunge-pirate with a hairdo like gandalf in a wind-tunnel and a simply astounding cor-blimey-luv-a-duck cockney accent . ' \n",
" [(positive, 0.9713286757469177), (negative, 0.028671346604824066)] \n",
" negative \n",
" \n",
" \n",
" 18 \n",
" passion , grief and fear \n",
" [(positive, 0.9849751591682434), (negative, 0.015024829655885696)] \n",
" negative \n",
" \n",
" \n",
" 19 \n",
" to keep the extremes of screwball farce and blood-curdling family intensity on one continuum \n",
" [(positive, 0.8838250637054443), (negative, 0.11617499589920044)] \n",
" negative \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" text \\\n",
"0 plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown . \n",
"1 a minimalist beauty and the beast \n",
"2 accept it as life and \n",
"3 plunges you into a reality that is , more often then not , difficult and sad , \n",
"4 overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration . \n",
"5 and social commentary \n",
"6 we do n't get williams ' usual tear and a smile , just sneers and bile , and the spectacle is nothing short of refreshing . \n",
"7 before pulling the plug on the conspirators and averting an american-russian armageddon \n",
"8 in tight pants and big tits \n",
"9 that it certainly does n't feel like a film that strays past the two and a half mark \n",
"10 actress-producer and writer \n",
"11 gives devastating testimony to both people 's capacity for evil and their heroic capacity for good . \n",
"12 deep into the girls ' confusion and pain as they struggle tragically to comprehend the chasm of knowledge that 's opened between them \n",
"13 a younger lad in zen and the art of getting laid in this prickly indie comedy of manners and misanthropy \n",
"14 get on a board and , uh , shred , \n",
"15 so preachy-keen and \n",
"16 there 's an admirable rigor to jimmy 's relentless anger , and to the script 's refusal of a happy ending , \n",
"17 ` christian bale 's quinn ( is ) a leather clad grunge-pirate with a hairdo like gandalf in a wind-tunnel and a simply astounding cor-blimey-luv-a-duck cockney accent . ' \n",
"18 passion , grief and fear \n",
"19 to keep the extremes of screwball farce and blood-curdling family intensity on one continuum \n",
"\n",
" prediction \\\n",
"0 [(positive, 0.9968075752258301), (negative, 0.003192420583218336)] \n",
"1 [(positive, 0.9100378751754761), (negative, 0.08996208757162094)] \n",
"2 [(positive, 0.9987508058547974), (negative, 0.0012492131209000945)] \n",
"3 [(positive, 0.967541515827179), (negative, 0.03245845437049866)] \n",
"4 [(positive, 0.9953157901763916), (negative, 0.004684178624302149)] \n",
"5 [(positive, 0.7863275408744812), (negative, 0.2136724889278412)] \n",
"6 [(positive, 0.9982783794403076), (negative, 0.0017216014675796032)] \n",
"7 [(positive, 0.6992855072021484), (negative, 0.30071452260017395)] \n",
"8 [(positive, 0.7850217819213867), (negative, 0.2149781733751297)] \n",
"9 [(positive, 0.6591460108757019), (negative, 0.3408539891242981)] \n",
"10 [(positive, 0.8167378306388855), (negative, 0.1832621842622757)] \n",
"11 [(positive, 0.8960123062133789), (negative, 0.10398765653371811)] \n",
"12 [(positive, 0.9729612469673157), (negative, 0.027038726955652237)] \n",
"13 [(positive, 0.9875985980033875), (negative, 0.012401451356709003)] \n",
"14 [(positive, 0.5352609753608704), (negative, 0.46473899483680725)] \n",
"15 [(positive, 0.9644021391868591), (negative, 0.035597823560237885)] \n",
"16 [(positive, 0.9928517937660217), (negative, 0.007148175034672022)] \n",
"17 [(positive, 0.9713286757469177), (negative, 0.028671346604824066)] \n",
"18 [(positive, 0.9849751591682434), (negative, 0.015024829655885696)] \n",
"19 [(positive, 0.8838250637054443), (negative, 0.11617499589920044)] \n",
"\n",
" annotation \n",
"0 negative \n",
"1 negative \n",
"2 negative \n",
"3 negative \n",
"4 negative \n",
"5 negative \n",
"6 negative \n",
"7 negative \n",
"8 negative \n",
"9 negative \n",
"10 negative \n",
"11 negative \n",
"12 negative \n",
"13 negative \n",
"14 negative \n",
"15 negative \n",
"16 negative \n",
"17 negative \n",
"18 negative \n",
"19 negative "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Get dataset slice with wrong predictions\n",
"df = rb.load(\"sst2\", query=\"predicted:ko and annotated_as:negative\").to_pandas()\n",
"\n",
"# display first 20 examples\n",
"with pd.option_context('display.max_colwidth', None):\n",
" display(df[[\"text\", \"prediction\", \"annotation\"]].head(20))"
]
},
{
"cell_type": "code",
"execution_count": 82,
"id": "b125e928-36c1-4859-ab42-9c1fb80b36f9",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" text \n",
" prediction \n",
" annotation \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown . \n",
" [(positive, 0.9968075752258301), (negative, 0.003192420583218336)] \n",
" negative \n",
" \n",
" \n",
" 1 \n",
" accept it as life and \n",
" [(positive, 0.9987508058547974), (negative, 0.0012492131209000945)] \n",
" negative \n",
" \n",
" \n",
" 2 \n",
" overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration . \n",
" [(positive, 0.9953157901763916), (negative, 0.004684178624302149)] \n",
" negative \n",
" \n",
" \n",
" 3 \n",
" will no doubt rally to its cause , trotting out threadbare standbys like ` masterpiece ' and ` triumph ' and all that malarkey , \n",
" [(negative, 0.9936562180519104), (positive, 0.006343740504235029)] \n",
" positive \n",
" \n",
" \n",
" 4 \n",
" we do n't get williams ' usual tear and a smile , just sneers and bile , and the spectacle is nothing short of refreshing . \n",
" [(positive, 0.9982783794403076), (negative, 0.0017216014675796032)] \n",
" negative \n",
" \n",
" \n",
" 5 \n",
" somehow manages to bring together kevin pollak , former wrestler chyna and dolly parton \n",
" [(negative, 0.9979034662246704), (positive, 0.002096540294587612)] \n",
" positive \n",
" \n",
" \n",
" 6 \n",
" there 's an admirable rigor to jimmy 's relentless anger , and to the script 's refusal of a happy ending , \n",
" [(positive, 0.9928517937660217), (negative, 0.007148175034672022)] \n",
" negative \n",
" \n",
" \n",
" 7 \n",
" the bottom line with nemesis is the same as it has been with all the films in the series : fans will undoubtedly enjoy it , and the uncommitted need n't waste their time on it \n",
" [(positive, 0.995850682258606), (negative, 0.004149340093135834)] \n",
" negative \n",
" \n",
" \n",
" 8 \n",
" is genial but never inspired , and little \n",
" [(negative, 0.9921030402183533), (positive, 0.007896988652646542)] \n",
" positive \n",
" \n",
" \n",
" 9 \n",
" heaped upon a project of such vast proportions need to reap more rewards than spiffy bluescreen technique and stylish weaponry . \n",
" [(negative, 0.9958089590072632), (positive, 0.004191054962575436)] \n",
" positive \n",
" \n",
" \n",
" 10 \n",
" than recommended -- as visually bland as a dentist 's waiting room , complete with soothing muzak and a cushion of predictable narrative rhythms \n",
" [(negative, 0.9988711476325989), (positive, 0.0011287889210507274)] \n",
" positive \n",
" \n",
" \n",
" 11 \n",
" spectacle and \n",
" [(positive, 0.9941601753234863), (negative, 0.005839805118739605)] \n",
" negative \n",
" \n",
" \n",
" 12 \n",
" groan and \n",
" [(negative, 0.9987359642982483), (positive, 0.0012639997294172645)] \n",
" positive \n",
" \n",
" \n",
" 13 \n",
" 're not likely to have seen before , but beneath the exotic surface ( and exotic dancing ) it 's surprisingly old-fashioned . \n",
" [(positive, 0.9908103942871094), (negative, 0.009189637377858162)] \n",
" negative \n",
" \n",
" \n",
" 14 \n",
" its metaphors are opaque enough to avoid didacticism , and \n",
" [(negative, 0.990602970123291), (positive, 0.00939704105257988)] \n",
" positive \n",
" \n",
" \n",
" 15 \n",
" by kevin bray , whose crisp framing , edgy camera work , and wholesale ineptitude with acting , tone and pace very obviously mark him as a video helmer making his feature debut \n",
" [(positive, 0.9973387122154236), (negative, 0.0026612314395606518)] \n",
" negative \n",
" \n",
" \n",
" 16 \n",
" evokes the frustration , the awkwardness and the euphoria of growing up , without relying on the usual tropes . \n",
" [(positive, 0.9989104270935059), (negative, 0.0010896018939092755)] \n",
" negative \n",
" \n",
" \n",
" 17 \n",
" , incoherence and sub-sophomoric \n",
" [(negative, 0.9962475895881653), (positive, 0.003752368036657572)] \n",
" positive \n",
" \n",
" \n",
" 18 \n",
" seems intimidated by both her subject matter and the period trappings of this debut venture into the heritage business . \n",
" [(negative, 0.9923072457313538), (positive, 0.007692818529903889)] \n",
" positive \n",
" \n",
" \n",
" 19 \n",
" despite downplaying her good looks , carries a little too much ai n't - she-cute baggage into her lead role as a troubled and determined homicide cop to quite pull off the heavy stuff . \n",
" [(negative, 0.9948075413703918), (positive, 0.005192441400140524)] \n",
" positive \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" text \\\n",
"0 plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown . \n",
"1 accept it as life and \n",
"2 overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration . \n",
"3 will no doubt rally to its cause , trotting out threadbare standbys like ` masterpiece ' and ` triumph ' and all that malarkey , \n",
"4 we do n't get williams ' usual tear and a smile , just sneers and bile , and the spectacle is nothing short of refreshing . \n",
"5 somehow manages to bring together kevin pollak , former wrestler chyna and dolly parton \n",
"6 there 's an admirable rigor to jimmy 's relentless anger , and to the script 's refusal of a happy ending , \n",
"7 the bottom line with nemesis is the same as it has been with all the films in the series : fans will undoubtedly enjoy it , and the uncommitted need n't waste their time on it \n",
"8 is genial but never inspired , and little \n",
"9 heaped upon a project of such vast proportions need to reap more rewards than spiffy bluescreen technique and stylish weaponry . \n",
"10 than recommended -- as visually bland as a dentist 's waiting room , complete with soothing muzak and a cushion of predictable narrative rhythms \n",
"11 spectacle and \n",
"12 groan and \n",
"13 're not likely to have seen before , but beneath the exotic surface ( and exotic dancing ) it 's surprisingly old-fashioned . \n",
"14 its metaphors are opaque enough to avoid didacticism , and \n",
"15 by kevin bray , whose crisp framing , edgy camera work , and wholesale ineptitude with acting , tone and pace very obviously mark him as a video helmer making his feature debut \n",
"16 evokes the frustration , the awkwardness and the euphoria of growing up , without relying on the usual tropes . \n",
"17 , incoherence and sub-sophomoric \n",
"18 seems intimidated by both her subject matter and the period trappings of this debut venture into the heritage business . \n",
"19 despite downplaying her good looks , carries a little too much ai n't - she-cute baggage into her lead role as a troubled and determined homicide cop to quite pull off the heavy stuff . \n",
"\n",
" prediction \\\n",
"0 [(positive, 0.9968075752258301), (negative, 0.003192420583218336)] \n",
"1 [(positive, 0.9987508058547974), (negative, 0.0012492131209000945)] \n",
"2 [(positive, 0.9953157901763916), (negative, 0.004684178624302149)] \n",
"3 [(negative, 0.9936562180519104), (positive, 0.006343740504235029)] \n",
"4 [(positive, 0.9982783794403076), (negative, 0.0017216014675796032)] \n",
"5 [(negative, 0.9979034662246704), (positive, 0.002096540294587612)] \n",
"6 [(positive, 0.9928517937660217), (negative, 0.007148175034672022)] \n",
"7 [(positive, 0.995850682258606), (negative, 0.004149340093135834)] \n",
"8 [(negative, 0.9921030402183533), (positive, 0.007896988652646542)] \n",
"9 [(negative, 0.9958089590072632), (positive, 0.004191054962575436)] \n",
"10 [(negative, 0.9988711476325989), (positive, 0.0011287889210507274)] \n",
"11 [(positive, 0.9941601753234863), (negative, 0.005839805118739605)] \n",
"12 [(negative, 0.9987359642982483), (positive, 0.0012639997294172645)] \n",
"13 [(positive, 0.9908103942871094), (negative, 0.009189637377858162)] \n",
"14 [(negative, 0.990602970123291), (positive, 0.00939704105257988)] \n",
"15 [(positive, 0.9973387122154236), (negative, 0.0026612314395606518)] \n",
"16 [(positive, 0.9989104270935059), (negative, 0.0010896018939092755)] \n",
"17 [(negative, 0.9962475895881653), (positive, 0.003752368036657572)] \n",
"18 [(negative, 0.9923072457313538), (positive, 0.007692818529903889)] \n",
"19 [(negative, 0.9948075413703918), (positive, 0.005192441400140524)] \n",
"\n",
" annotation \n",
"0 negative \n",
"1 negative \n",
"2 negative \n",
"3 positive \n",
"4 negative \n",
"5 positive \n",
"6 negative \n",
"7 negative \n",
"8 positive \n",
"9 positive \n",
"10 positive \n",
"11 negative \n",
"12 positive \n",
"13 negative \n",
"14 positive \n",
"15 negative \n",
"16 negative \n",
"17 positive \n",
"18 positive \n",
"19 positive "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Get dataset slice with wrong predictions\n",
"df = rb.load(\"sst2\", query=\"predicted:ko and score:{0.99 TO *}\").to_pandas()\n",
"\n",
"# display first 20 examples\n",
"with pd.option_context('display.max_colwidth', None):\n",
" display(df[[\"text\", \"prediction\", \"annotation\"]].head(20))"
]
},
{
"cell_type": "code",
"execution_count": 83,
"id": "cd5123e9-5480-45de-8506-ae76bd137a19",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" text \n",
" prediction \n",
" annotation \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" get on a board and , uh , shred , \n",
" [(positive, 0.5352609753608704), (negative, 0.46473899483680725)] \n",
" negative \n",
" \n",
" \n",
" 1 \n",
" is , truly and thankfully , a one-of-a-kind work \n",
" [(positive, 0.5819814801216125), (negative, 0.41801854968070984)] \n",
" negative \n",
" \n",
" \n",
" 2 \n",
" starts as a tart little lemon drop of a movie and \n",
" [(negative, 0.5641832947731018), (positive, 0.4358167052268982)] \n",
" positive \n",
" \n",
" \n",
" 3 \n",
" between flaccid satire and what \n",
" [(negative, 0.5532692074775696), (positive, 0.44673076272010803)] \n",
" positive \n",
" \n",
" \n",
" 4 \n",
" it certainly does n't feel like a film that strays past the two and a half mark \n",
" [(negative, 0.5386656522750854), (positive, 0.46133431792259216)] \n",
" positive \n",
" \n",
" \n",
" 5 \n",
" who liked there 's something about mary and both american pie movies \n",
" [(negative, 0.5086333751678467), (positive, 0.4913666248321533)] \n",
" positive \n",
" \n",
" \n",
" 6 \n",
" many good ideas as bad is the cold comfort that chin 's film serves up with style and empathy \n",
" [(positive, 0.557632327079773), (negative, 0.44236767292022705)] \n",
" negative \n",
" \n",
" \n",
" 7 \n",
" about its ideas and \n",
" [(positive, 0.518638551235199), (negative, 0.48136141896247864)] \n",
" negative \n",
" \n",
" \n",
" 8 \n",
" of a sick and evil woman \n",
" [(negative, 0.5554516315460205), (positive, 0.4445483684539795)] \n",
" positive \n",
" \n",
" \n",
" 9 \n",
" though this rude and crude film does deliver a few gut-busting laughs \n",
" [(positive, 0.5045541524887085), (negative, 0.4954459071159363)] \n",
" negative \n",
" \n",
" \n",
" 10 \n",
" to squeeze the action and our emotions into the all-too-familiar dramatic arc of the holocaust escape story \n",
" [(negative, 0.5050069093704224), (positive, 0.49499306082725525)] \n",
" positive \n",
" \n",
" \n",
" 11 \n",
" that throws a bunch of hot-button items in the viewer 's face and asks to be seen as hip , winking social commentary \n",
" [(negative, 0.5873904228210449), (positive, 0.41260960698127747)] \n",
" positive \n",
" \n",
" \n",
" 12 \n",
" 's soulful and unslick \n",
" [(positive, 0.5931627750396729), (negative, 0.40683719515800476)] \n",
" negative \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" text \\\n",
"0 get on a board and , uh , shred , \n",
"1 is , truly and thankfully , a one-of-a-kind work \n",
"2 starts as a tart little lemon drop of a movie and \n",
"3 between flaccid satire and what \n",
"4 it certainly does n't feel like a film that strays past the two and a half mark \n",
"5 who liked there 's something about mary and both american pie movies \n",
"6 many good ideas as bad is the cold comfort that chin 's film serves up with style and empathy \n",
"7 about its ideas and \n",
"8 of a sick and evil woman \n",
"9 though this rude and crude film does deliver a few gut-busting laughs \n",
"10 to squeeze the action and our emotions into the all-too-familiar dramatic arc of the holocaust escape story \n",
"11 that throws a bunch of hot-button items in the viewer 's face and asks to be seen as hip , winking social commentary \n",
"12 's soulful and unslick \n",
"\n",
" prediction \\\n",
"0 [(positive, 0.5352609753608704), (negative, 0.46473899483680725)] \n",
"1 [(positive, 0.5819814801216125), (negative, 0.41801854968070984)] \n",
"2 [(negative, 0.5641832947731018), (positive, 0.4358167052268982)] \n",
"3 [(negative, 0.5532692074775696), (positive, 0.44673076272010803)] \n",
"4 [(negative, 0.5386656522750854), (positive, 0.46133431792259216)] \n",
"5 [(negative, 0.5086333751678467), (positive, 0.4913666248321533)] \n",
"6 [(positive, 0.557632327079773), (negative, 0.44236767292022705)] \n",
"7 [(positive, 0.518638551235199), (negative, 0.48136141896247864)] \n",
"8 [(negative, 0.5554516315460205), (positive, 0.4445483684539795)] \n",
"9 [(positive, 0.5045541524887085), (negative, 0.4954459071159363)] \n",
"10 [(negative, 0.5050069093704224), (positive, 0.49499306082725525)] \n",
"11 [(negative, 0.5873904228210449), (positive, 0.41260960698127747)] \n",
"12 [(positive, 0.5931627750396729), (negative, 0.40683719515800476)] \n",
"\n",
" annotation \n",
"0 negative \n",
"1 negative \n",
"2 positive \n",
"3 positive \n",
"4 positive \n",
"5 positive \n",
"6 negative \n",
"7 negative \n",
"8 positive \n",
"9 negative \n",
"10 positive \n",
"11 positive \n",
"12 negative "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Get dataset slice with wrong predictions\n",
"df = rb.load(\"sst2\", query=\"predicted:ko and score:{* TO 0.6}\").to_pandas()\n",
"\n",
"# display first 20 examples\n",
"with pd.option_context('display.max_colwidth', None):\n",
" display(df[[\"text\", \"prediction\", \"annotation\"]].head(20))"
]
},
{
"cell_type": "code",
"execution_count": 105,
"id": "d4ae4f83-f9a0-4410-8e70-ef6bb7a94a44",
"metadata": {},
"outputs": [],
"source": [
"from rubrix.metrics.commons import *"
]
},
{
"cell_type": "code",
"execution_count": 103,
"id": "6745c1db-a2d6-4447-b02b-f6bc4aa5c18d",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"type": "bar",
"x": [
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176,
177,
178,
179,
180,
181,
182,
183,
184,
185,
186,
187,
188,
189,
190,
191,
192,
193,
194,
195,
196,
197,
198,
199,
200,
201,
202,
203,
204,
205,
206,
207,
208,
209,
210,
211,
212,
213,
214,
215,
216,
217,
218,
219,
220,
221,
222,
223,
224,
225,
226,
227,
228,
229,
230,
231,
232,
233,
234,
235,
236,
237,
238,
239,
240,
241,
242,
243,
244,
245,
246
],
"y": [
9,
3,
5,
9,
11,
17,
20,
15,
17,
10,
14,
14,
10,
15,
16,
13,
13,
17,
15,
11,
14,
8,
11,
9,
9,
17,
11,
16,
11,
11,
7,
15,
6,
12,
5,
5,
5,
10,
5,
7,
7,
4,
8,
5,
5,
6,
5,
5,
6,
7,
5,
5,
7,
6,
8,
5,
5,
5,
7,
2,
2,
1,
4,
1,
4,
4,
4,
2,
4,
2,
4,
6,
4,
4,
5,
9,
4,
1,
2,
2,
1,
0,
1,
5,
2,
3,
4,
4,
3,
3,
1,
0,
1,
2,
3,
2,
4,
1,
3,
1,
2,
3,
3,
4,
1,
2,
1,
3,
2,
0,
1,
2,
1,
1,
3,
1,
3,
1,
2,
2,
3,
1,
2,
0,
4,
1,
1,
1,
0,
1,
1,
1,
0,
1,
1,
0,
3,
1,
0,
1,
2,
0,
1,
0,
2,
0,
0,
1,
0,
2,
1,
0,
1,
0,
1,
1,
0,
0,
1,
0,
0,
1,
1,
0,
1,
1,
1,
0,
0,
0,
0,
1,
2,
0,
0,
2,
0,
0,
1,
0,
0,
1,
1,
0,
1,
0,
0,
1,
0,
0,
0,
1,
0,
0,
1,
0,
0,
0,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
0,
0,
1,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Computes the input text length distribution"
},
"xaxis": {
"autorange": true,
"range": [
4.5,
246.5
],
"title": {
"text": ""
},
"type": "linear"
},
"yaxis": {
"autorange": true,
"range": [
0,
21.05263157894737
],
"title": {
"text": ""
},
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAFoCAYAAABNITkUAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3QeUFFXaxvGnu4ecM4wBkCC7YMKAiqigIoIiUWAII1FADOuaVj/Tqquuq6urCJJzRpGkqICKEcRVRGRFFAQVJRoIwlTXd241nWZ6mO6pnqEH/nXOnqPdt6pv/e6tcs9Td97y2LZtiw0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRcCXgI3F35sTMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAo4AgTsTAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBJAgQuCcBkUMggAACCCCAAAIIIIAAAggggAACCCCAAAIIIEDgzhxAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAJAgTuSUDkEAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIELgzBxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSIIAgXsSEDkEAggggAACCCCAAAIIIIAAAggggAACCCCAAAIE7swBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSSIEDgngREDoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAIE7cwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSQIELgnAZFDIIAAAggggAACCCCAAAIIIIAAAggggAACCCBA4M4cQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCQIE7klA5BAIIIAAAggggAACCCCAAAIIIIAAAggggAACCBC4MwcQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEiCAIF7EhA5BAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBO7MAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEkiBA4J4ERA6BAAIIIIAAAggggAACCCCAAAIIIIAAAggggACBO3MAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEkCBC4JwGRQyCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQODOHEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIAkCBO5JQOQQCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQuDMHEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIggCBexIQOQQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgTuzAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJIgQOCeBEQOgQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAgTtzAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBJAgQuCcBkUMggAACCCCAAAIIIIAAAggggAACCCCAAAIIIEDgzhxAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAJAgTuSUDkEAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIELgzBxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSIIAgXsSEDkEAggggAACCCCAAAIIIIAAAggggAACCCCAAAIE7swBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSSIEDgngREDoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAIE7cwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSQIELgnAZFDIIAAAggggAACCCCAAAIIIIAAAggggAACCCBA4J6EObD7l99k21KF8mXk83qTcEQOERR47LmpqnNiTfXoeFmBoGzfuUe7f/ldDU85sUCOfzwcdM7Ct7Xuq026/7bMlDvdXXt+0+PPT1XntpeoWdM/JaV/lmXp3sfHqtVFZ6n1Jec6x/xm8w8qXaqkalavnJTfiHWQAwcO6n/fbFGTRnWd+0xBnFtunbdtW5+v/0b1ap+gMqVLFtg5cmAEEEAAAQQQQAABBBBAAAEEEECgqAsQuOdzBL/6ZquefnGWPvn8K+3ddyB0lEsvPFP33dqnQIO3fHY5od0OHspy2hcvlpbQfvltnNvvtep6m845o6H++X+D83voI+53y33P6c0Vq7X6tVEqWbJ4gfxGIgdNxP23vftVrkypRA6fUNt4+3L/k+P02vKVWrl4ZELHT3bjWP3d+uN2XdnjDj10R191aXdJUn7yj4OH1LT1QN14fQcNvb6DTBjdpGVfnXtmI0145u64f2P/gT+c68vn88W1z7SX39Sjz07RhGfv1rlnNFJBnJvpSCzHrzZuUcf+9+mmfp00uE/7uPpLIwQQQAABBBBAAAEEEEAAAQQQQOB4FCBwz8eoL3jjfd396ChnpWfvLq3V8JSTnKOYVb4ffrJOU5//P6WlxRei5ePnC2WXvz89UZUrldewvh2P6u8VdOD+/qq1+uKrTRrY8+pCOc+8fiRe920/79Jl191WoA8K4u1LqgTusfpbEKF09sDdjOnUl95UjWqVdHmLs/Ma4tD3V2bcoQf/er0uOLtxXPts3vqT5i56WwMy2ql8uTIFFrjHcjSr61+Y9Iquvux8NawXuN+xIYAAAggggAACCCCAAAIIIIAAAgjkFCBwT3BW7Pn1dzVvP0w1qlXW2KfvVN2TaiZ4hKLR3ATdndq2KLTAPbffK+jAPdVGI1734EOfglyZH29fCjNwt/z+XMs2xepvYQXuic6j77ftUOvut2vMU3fEHbhn/42CODfzG/GOe6LnTHsEEEAAAQQQQAABBBBAAAEEEEDgeBAgcE9wlJ8b+5JGTp6vf90/RFe1apbn3h998qXmvbZCS9/9RJUqllOrC89Sz05X6MT0aqF9R0x8RSbIN+VoTJmadV9tduo0m3btW1+oibNe07wl78mUdfhzw9q6fXD3qHrUQ+/+t1pfeq4sy69xMxZr05ZtTru+3duqbUQfTTmKnbt/0dMP3hjV7zmL3nZW6E4ffp9+3rlbDz41QabfZgX/CbUC/TT7BB8uzF7wll5/e5U+W7dRZzZuoA5XXRT1O2Yl7suvrtDbH37m9Nmc60XnnqZh/TqqUoVyUb/93fc/HfH3goH7hec0cc5t46YfHJsOV16Uo677t1u2adpLbzrWZru8RVMN6nWNqlaukOs4GftVn63XuKfvctqYPr84ab6eemCoMxbm381mzvOOod3UoG641nu87q8seU8TZr2mic/c7axMDm5mnO99Yowe+EumKlcql6d7cD8zH4ZPmOeUMqpXJ90pSXLhOY11x5DuTpPf9+7XpNlL9MaK1fr+x+3OvOrdubVO+9Mpzvf/fGGGVn36pf790DCdeHh8zecP/Gu81n/9ne77Sx/n3I80ByJBYwXuefXB7G/sf/1tr6689Dw9PWqWVq/5yvmripYXnqm/3tDNeSdCcDOGM19Z5sw5s5nzDm5/HdzNuUZi9bdYms8pKXPPzb1k6vXPf/19/b53nzOe/Xu0zbOuuymv8vz4l7XkrZXa+sN2p2zMrQO6qOewR0IlZUw/zFw4tf7JumVAZ6dbZmxmzl+ud1eucfplzqtpkwZOOZbde37To/+Z4lyn5sGdOc8ypUpqyvP3OvPthQnznPn4zxem69VlHznHWrNsnN5d+bmeGT1Hzz96i06oWTW0wt2skv/hp51a+u5qmb98MOd2+5BuUe8lcHvtm/7dcNdTzjlHruKP9/4W7zjneUOlAQIIIIAAAggggAACCCCAAAIIIJDiAgTuCQ5Qr2GPavP3P+mtuc/k+YJUEw5mDH1YdU6qqTYtz9OPP+/Sm+98rGpVKmr6C/eFwtdgYGmCtSsvPVen1E6XWcFsAj7z7yZo697hMu3c9Yvmvfau0+P35j+viuXLOv9sQulDWVnatftXXdvmItWoWskJxE2g9/i9g3TNFRc67Qbf9bR++GmH5k/4R9RZmwcI5kHCR4tGaPuuXzR/yXsaNWWBzmrSQM3PbeK07XrNpU5wHawjbc6p7WXn64OPv9B/125wQsCWzc/SoUNZanXdbfrjj4PqcvWlqlmtkjZ8u1XvrfpCr059QiWKF4v6bROSH+n3zLn9tH2Xs0+7y8937Exoas71sXsGOQ8kzGYCva43POiYdWhzkcqXLa1Jc17XGX+up/HP3J3jd4OdyB4WB1eOm4D0pFrVdNF5p2nNl99oxUdrnHB08ZTHVbJEoNZ7vO7jZryqp0bO1Ip5z6lyxfADh48/+58yb3lMI5+4TSemVz+iQyTarPnLHQPjbkrhGFMzHuYBkKkn/pcHhuuNdz52QvjT/1RPC5d+4IS8L4152Hn4YR5yXNXzLjU/9zS9+M/b5PF4nPa33v+8/jKoqy5rcXbcfTH9ym4YTx8i9wvO+/p1TnAeEpiHNGasg3X7Teh8+99HOGF3+9bNtebLjTIPfcx43Ny/k+rXSdfSd/8bc84e+OOgE7ibzYzplZecqz8OHtRLi1c4ny2Y+A/nesttMybGplXzpjqjcT199sVGLXsv8EAnWMM9OBci3zVw3z/HOr/Rud3Fql/3RCcIN3Xun3vkJv3y615n/MxcM+dZ96RaTgkqM5bB+WfO1ZSoMmNq5rJ5qBD8buGkx1T35FqhwN08GCtbprTzgMnMBRP0G1NzvZ18Qo2kXPtBx8ha+Pm9v+U2zgneimmOAAIIIIAAAggggAACCCCAAAIIpKQAgXuCw3Je28H6c8M6cb0csUXHm1UsLU2vTHg09HJLs4q3z83/cAJsszI1GDzOXfSOU75lSOa1zmdmlXjbXoFV15Ofu0dNT2vo/PP0l5fqkWcnhwLuYNhnQunh/7jVWc1sNhPqXdH9r86q+sVTnnAeDsQTuJctU0rBGtWmL5E13J0HABl3OKvZn/i/wfJ6Pc4LFrsNfsj5vWWzn9bXm77Xtdffq3tv6aWMjpeHdE0Ia4LdWFtuvxd5bv955GZddlFTZ3cTrl9wzY3OQwyzEt1sZlW+CWFfHvdIaGVvMKiNfOiQ/fdzC9ybNf2TRj95e+iFlv8eNVtjpi1y6vOf2aS+c5jgw4C83OMJ3Fs0Oz1X91hmZhW0WeWevaTM4qUf6o6HR+r+2zLVrX1LZ9ctP/ysNhl3OuHv3+/oF5hTc17X489Pcx7IXHL+GWrX52/Ow5EZI+53zvlIY5KXYbx9MPZm3kcG1+bYZj6tXf+t1iwd6/TltgeHa8lbq/TBguGhh1TX3/q4Vn26Xp+8PtoJmXOds4dfmmpCaTM3zMpws5kHKOZ6iHTKfl5fbtisLgMfiAr/I+fakQJ3c58wtdmfffimmNeAWRne77YncpSUiXzgM3f031W9asXQ/rkF7qbB0llPh17UHOy3GX9zfmZzfe3HePlsove3vMY55s2BDxFAAAEEEEAAAQQQQAABBBBAAIEiJkDgnsCABUO9yNW3ue3+8449atnlVif0DIZewbYm/DIh6KLJjzsfBYPH5XOeiQrYTGjnlJM4HDyatsFAOzIoNMGv2UzgHbkFg8pgGOc2dDOr5s3qaRNEX3h45bv5vZGT5uu5cS85q+5N+HlOmxucsi+P33tDXDXu8wrcY52beWixc/evIcN2ve9WhXJlNO2F+0IE5mHAWVcMUOZ1bXTn0EC5lexbboG7KaFj/roguJlw14S8kZ/H616YgbspHWL+CiEynDbnYPr+y2979fLYh51TMrXQM29+TF99s8UJht9csTrqYYWbwD3ePuQ2702pGVPGJXg9dOx/n/btP6Al054MjccTw6c7ZXPMnDcr3fMK3CMfcJmDmJeAnt1mkPNQyDwcirUFH0o8ef+QqJJJX/zvW113w0NHXOFu5qcpz/PMQ8OirpXg7+QVuP/frb3Vo8NlUd3KLXDvcvUleuj2vlFtzV/ibN+1J2Tm9trPXi8+Gfe37OOcwK2YpggggAACCCCAAAIIIIAAAggggEDKChC4Jzg0ZlVneo0qmjnygSPu+f6qtRp4x7+iSroEd3hyxAxNmPmaPn7tRZUqWSIUuH++bLyzajy4mdXkptyEKTkS3EwpFdOH/7uld6iGuQl+TZmGUU/+NapPpqTKE89Pc0JoU1rFbehmVlSbldUm4CxWzBf6LVOuxDwYmD7iPqeEiam3fc9jo53vTb3nfj3aOr+f25ZX4B7r3P72j1H66L/rncA1GJ6a40fWxjf/blblm9XjkYaR/cgtcDfjax4aBDdT+ubq3nfriXtv0NVXXOB8HK97YQbuJmg1pWZiOZg+r10+PvSXBsFzMp/f1L+TBvduHzpfN4F7vH0IBu6RfTIdMKVYTEmWN2Y+5VxrjzwzWdPnLdWc0Q/pTw1qO+N9bb97nZJKweswr8D9thuuc2q2R27mOmrV/KwcYXWwjal1b2rDvzbtnzopvXpo1+CLk4+0wt3U5zc1z831at6nMCDjaqfki1mxb7a8AvfgNRvZ39wCd1M33ryrIPu8Nn89ELynuL32swfu+bm/5TXOR7yh8iUCCCCAAAIIIIAAAggggAACCCBQRAQI3BMcqBvveUZvvf9pKMjKbffgavAX//lXpw545BZ88Wqwpnesl06a9iZwb3Jq3VDZFPNZboF7w1NOzBEqL3zjA9316IuhMii5hW7Pjpnr1L82NdyPVFLmseemasrcN5yVvcHgMPK8OrRp7oTxZjM1qyfPfd15sGA2s5L47psyYta9zytwj6yNHfy9yMDdrHS/uOPNTs15E65n30wZkWBInv273AL3YJ3sYPvcAvd43HML3IOhpXkYkKySMmal/6+/71OvTlfkcDAVfSKD2WAtd9PQ1G4fkNEutI+bwD3ePuQ277MH7uavOvr+5Qln7puHIKbcjNmCbuaf8wrcI2uPB08yr8D94X9P0oxXlkX9hYnZN/iA50iBu2lnHkKZdy6YdySYvpv5acoPmZek5hW4mzJU5kFT5JZb4H73sAz17tI6qm32vru99rMH7sm4v2Uf5wRvxTRHAAEEEEAAAQQQQAABBBBAAAEEUlKAwD3BYQmG05FhX6xDmBWuXQc94NRpN+UsIre/PvSC8wLF4IrPZATupUoWD5VXCf5W8GWowResmtDtq2+25ig9c8ffR2jxso/yDNxffnWF/u+JsVoy/UmdWKtaXHKmtvtDT09wanDHWrV7pLDUfGdWkecVuJt2JjxteeGZoRrlcXUuxgs/s4eawePkFrjH4z5+5qv614iZen3Gv0I1xM1xTc15U3s+mYF75IOIIxmYkjJ9b33cKXtyzumn6u0PP0taSZl4+xBv4G5KA934t3/rpx271fycJqpapaIuPv90Nah7YugUCyJwHz11oZ4ZPUfL5vzbeRFxcPvhp526ottfj1hSJtLevEh44uwlMu8BCK60T2bg3j+jnW4b1DVquIfe/W9t3bY99IJkt9d+9sA9Gfc3Avd471K0QwABBBBAAAEEEEAAAQQQQACBoiRA4J7gaG3c9IPaX3+PzEsYXxn/qGrVqBLzCKbm9KWdb3VWqZqXngZXhJuXm16TeY9TYmX0v+5w9k1G4G6Oa+pzN6x3knNME0B26n+ftu/co5WLRzqf/eM/UzT1pTejAnPzAlLzwkyzAje4wt2Esae36pfjZZHBlzGa0iOmBEm822frNipj6MPKXgs7uH9uv2e+jzdwv+ne/2jZe58o+FcD8fbN7Qr3eNzfeOdj3Xr/81HlhcxLZG/82zNO0B0M3I/kkP18giF+9pX4ZnzNOGevs599/8iXpl7c7Axdnfk3Va1cQbNGPqBixdKcGu+x5kAs1+yG8fYh3sA9+ILTl8Y+rFMPz+/s/citv9mD4sj98lrhvvy9/2rYvc9GlW8y+wcflOS1wj3yt7KyLJ1xef/QOx3WfLlRPYY8rOwr74MPfBJZ4V7npJpaMPGxUDmqXXt+U4sON+maKy505lwyrv3sjsm4vxG4x3uXoh0CCCCAAAIIIIAAAggggAACCBQlAQL3fIzW2x98qqF/e8YJ3du0PE/nn91YpUoUd16EumPXL84qVrMFa6ibl6ya8Ou33/c5K11NSYzI1d7JCtzr1UlX/x7tVKVSec1Z+LZM0PvAbZm6rn1Lpz/BMO/Ccxo79d8ty+/Uxjarbc0WDNzNP5uA3JTyePjO/qpVo7JOPqGGypct49TWNmUyzItIzSpjjzz6ZvMPWr/xO6cW9v82btHY6YvU+uJzdUKtqk5pGfMSz/c//kJvznwq1wcUsX7P1OiON3A3DwMyb3lM1apUdFYep9eoqp17fpUp22JefnreWX+KOdLJCNzzcjd15E15IBOM9u1+ldKrV3FeUjpz/nKnT5F/LZGbQ/bOf7D6Cw3465POQ5HenVs7YWvjU+vKPEDJvPVxfbVxi0ypkcan1nFKm3z+5TcqW7a0+nRpreBq/UsvPNMpcWI287DCPLSIDJHj7Ut2w3j6YH4z3sD9i6826bpBDzp16U2JJZ/Pqwrlyjrzz4yreVFvbnP29737dWWPO3IE26Z9XoG7ZVlqf/292rRlm3MdNTzlJOcls/8aOdMxPVLgPvD2J9X2svNl5oYpQfPGO6ud6+DJ+wY7n+8/8IfzcmFT3/2OId3l8XqcvzRY+OYHuvvRUUokcDfn0rZVM+cvaUyw/+zYuc49JljzPhnXfixHt/c3Avd8/MeHXRBAAAEEEEAAAQQQQAABBBBAIOUFCNzzOUQmoHzj7Y/17qq1zurw4NahzUV69O4Bzr+aVcwmVH36xVlOQGc2E7re/5dMNWsaDoCPFLif3ugUZ2V4cAuuXs3+0tQzG9dzXsBqwnCzVa5UXhkdLtOQzGtD+5r+/Hv0HI2dtij0mQldW154lh7413hnJbx5iGC2T9d+rUF3/ivU76nP/5/ObFJfJoR86sXZTkkcs7o7uPXsdLnuubmX89DB1Lk3fwkQ3Exdd1PyIrc66kf6PRO4n3dmo9BK3eAxY5UtMX1+Zswcrfp0fei3jfeT9w1xgs1YW66B++THVfekmqFdNm/9SW173RUKTM0Xpm/xuJu2pub1w89MDs0V85cIxsSU+ois85+be/a+m2DVjFlwvM1DlOBfTJia9o8+O1nvrvw8NH5mXO+9pbeuvbK5zEtNTXC8cNLjql61YujQdz4yUove/DD0lxLx9iXW/M2rD+ZHc5v3wdJF5gGNmTvzX39P9z4+xpnT5iWqfr9fZjzMNRVZTiVWf6tVrajW3W93Sg11bndxFKMJ3C+7qKlT9im3zazsNi8AXr3mK6eJcTTtTbmmq1o2C11f2eepCdzNQ6bgZvYzNfLNi1uDf+1iHnaZF8IGtzVLxzqlnUzgvmDiP3RK7fSoboXKHR2em99v2+Gc27in79KISa+E5r2ZWzf166hWzZsm7dqP5ej2/hY5zrn9pVCuA8MXCCCAAAIIIIAAAggggAACCCCAQIoKELgnYWBMbWmvxyOzItuU44i1mQDSrMQ1LyVN9mbCvrNPa+AE82Y1rXlpZmSQmv33/H5b23ftUdnSpUIBe6w+BdsVL5amShXK5WhiHjSYUh7mu7Q0X9T3e379XWZVrPkuGOLndd55/V5e+we/NzW/d+76xVnRXa4AvIO/k6i72c88MDFb5Yo5PYPHTcTBhM7mLyfMXzVkn3vOcXbuVvHixZwV4WYVfKJbIn3JdQ656MOqz9br+lse12P3DFL71heGfsI8+LnzkRdlys2889J/VLJkcec7t/3NzceUUPl97wGn7E68jmYVu7nuS5cqmet4m/ru5q9izItUTTs3m7n2Dxw86NyHctuSde1nP35B3t/cmLAvAggggAACCCCAAAIIIIAAAgggUNgCBO6FLV4Av2eC37Oa1NdTDwwtgKNzyNwEcC/4ufH8+Jc1YuIrWjLtSaekTOQWXJG/+rVRocC94HvELyCAAAIIIIAAAggggAACCCCAAAIIIJC7AIH7MTA7CH6PziDiXvDu5qWyQ+/+t1OCqUu7S5x3AOzc9atef2eVU/7mlgGdNajXNQXfEX4BAQQQQAABBBBAAAEEEEAAAQQQQACBOAQI3ONASvUmkaVNUr2vx1L/cC+c0TS1y+cveS+qJnqTRnXV9epL1antxXGXeCmc3vIrCCCAAAIIIIAAAggggAACCCCAAALHswCB+zEw+qa+tNfrVckSgTrWbIUjgHvhOAd/5cAfB50XEZuXA7MhgAACCCCAAAIIIIAAAggggAACCCCQigIE7qk4KvQJAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoMgJELgXuSGjwwgggAACCCCAAAIIIIAAAggggAACCCCAAAKpKEDgnoqjQp8QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEipwAgXuRGzI6jAACCCCAAAIIIIAAAggggAACCCCAAAIIIJCKAgTuqTgq9AkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgyAkQuBe5IaPDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqkoQOCeiqNCnxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSKnACBe5EbMjqMAAIIIIAAAggggAACCCCAAAIIIIAAAgggkIoCBO6pOCr0CQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDICRC4F7kho8MIIIAAAggggAACCCCAAAIIIIAAAggggAACqShA4J6Ko0KfEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIqcAIF7kRsyOowAAggggAACCCCAAAIIIIAAAggggAACCCCQigIE7qk4KvQJAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoMgJELgXuSGjwwgggAACCCCAAAIIIIAAAggggAACCCCAAAKpKEDgnoqjQp8QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEipwAgXuRGzI6jAACCCCAAAIIIIAAAggggAACCCCAAAIIIJCKAgTuqTgq9AkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgyAkQuBe5IaPDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqkoQOCeiqNCnxBAAAEEEEAAAQQQQABiQ0D/AAAgAElEQVQBBBBAAAEEEEAAAQSKnACBe5EbMjqMAAIIIIAAAggggAACCCCAAAIIIIAAAgggkIoCBO6pOCr0CQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDICRC4F7kho8MIIIAAAggggAACCCCAAAIIIIAAAggggAACqShA4J6Ko0KfEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIqcAIF7kRsyOowAAggggAACCCCAAAIIIIAAAggggAACCCCQigIE7qk4KvQJAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoMgJELgXuSGjwwgggAACCCCAAAIIIIAAAggggAACCCCAAAKpKEDgnoqjQp8QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEipwAgXuRGzI6jAACCCCAAAIIIIAAAggggAACCCCAAAIIIJCKAgTuqTgq9AkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgyAkQuBe5IaPDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqkoQOCeiqNCnxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSKnACBe5EbMjqMAAIIIIAAAggggAACCCCAAAIIIIAAAgggkIoCBO6pOCr0CQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDICRC4F7kho8MIIIAAAggggAACCCCAAAIIIIAAAggggAACqShA4J6Ko0KfEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIqcAIF7kRsyOowAAggggAACCCCAAAIIIIAAAggggAACCCCQigIE7qk4KvQJAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoMgJELgXuSGjwwgggAACCCCAAAIIIIAAAggggAACCCCAAAKpKEDgnoqjQp8QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEipwAgXuRGzI6jAACCCCAAAIIIIAAAggggAACCCCAAAIIIJCKAgTuqTgq9AkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgyAkQuBe5IaPDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqkoQOCeiqNCnxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSKnACBe5EbMjqMAAIIIIAAAggggAACCCCAAAIIIIAAAgggkIoCBO6pOCr0CQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDICRC4uxyyH3bud3kEdkcAAQQQQAABBBBAAAEEEEAAAQQQQAABBFJDIL1KqdToSBHtBYG7y4EjcHcJyO4IIIAAAggggAACCCCAAAIIIIAAAgggkDICBO7uhoLA3Z2fCNxdArI7AggggAACCCCAAAIIIIAAAggggAACCKSMAIG7u6EgcI/w8/tt/b53n8qXKxNTde++AypTumTUdwTu7iYgeyOAAAIIIIAAAggggAACCCCAAAIIIIBA6ggQuLsbCwJ3SZZl6cXJCzRh1mshzQdv76u2rZo5//7jTzv1t8dGa91Xm1SpYjndfWOGWjY/y/mOwN3dBGRvBBBAAAEEEEAAAQQQQAABBBBAAAEEEEgdAQJ3d2NB4C7JrGyfNHuJrrqsmWpUraQlb63SbQ8O1yevj1aJ4sWcf65Vo4puG9RVa778Rjfc+ZSWTH9SlSqUI3B3N//YGwEEEEAAAQQQQAABBBBAAAEEEEAAAQRSSIDA3d1gELjH8Nu3/4DOvWqwls95RlUqldPpl/XXW3OfUbUqFZ3W/W57Qr06X6FWzZsSuLubf+yNAAIIIIAAAggggAACCCCAAAIIIIAAAikkQODubjAI3GP4vf3Bp3ro6UlaNvtp/bxjj1p2uVVrl4+Xx+NxWt//5DidWu9k9ex0OYG7u/nH3ggggAACCCCAAAIIIIAAAggggAACCCCQQgIE7u4Gg8A9m9+uPb+py8AHdM/NPXV5i7O14dut6nnjI1q5eGSo5VMjZ6p48WK6qV8n/bY/y90IJGHvrCx/zKOkpXmTcHQOgQACCCCAAAIIIIAAAggggAACCCCAAALHi0C5UmnHy6kWyHkSuEew7j/wh66/9XFddO5puql/J+cbE8C36HCTPl82Xl5vYIX7ff8cq7onp6tf96tSInD/ebtf81+Nnh/t20rVqxK4F8hVw0ERQAABBBBAAAEEEEAAAQQQQAABBBA4RgUI3N0NLIH7Yb+Dh7I07J5nlV6zih64LTNUPsa2bTVp2VdvzHxK6TWqOK17DXtUGZ0uV9tWzVKipMyvv3g0ZaZX27YFHgjUqmmrZ3e/ype33c0O9kYAAQQQQAABBBBAAAEEEEAAAQQQQACB40qAkjLuhpvAXZJlWbrj4UDJmH/cPVA+X2BluNfnlc/r1d+fnqi0NJ/uHNpDq9d85bw09f35w1WhfBkCd3fzj70RQAABBBBAAAEEEEAAAQQQQAABBBBAIIUECNzdDQaBu6Qvvtqk6wY9mEPSlJUZ3Lu9dv/ym+56ZJTeW/W5ypQuqYdu76urWjVz2v+wc7+7EUjC3qxwTwIih0AAAQQQQAABBBBAAAEEEEAAAQQQQAABEbi7mwQE7gn47d13QKVLlQiVmyFwTwCPpggggAACCCCAAAIIIIAAAggggAACCCCQ8gIE7u6GiMDdnR8r3F36sTsCCCCAAAIIIIAAAggggAACCCCAAAIIpI4Agbu7sSBwd+dH4O7Sj90RQAABBBBAAAEEEEAAAQQQQAABBBBAIHUECNzdjQWBuzs/AneXfuyOAAIIIIAAAggggAACCCCAAAIIIIAAAqkjQODubiwI3N35Ebi79GN3BBBAAAEEEEAAAQQQQAABBBBAAAEEEEgdAQJ3d2NB4O7Oj8DdpR+7I4AAAggggAACCCCAAAIIIIAAAggggEDqCBC4uxsLAnd3fgTuLv3YHQEEEEAAAQQQQAABBBBAAAEEEEAAAQRSR4DA3d1YELi78yNwd+nH7ggggAACCCCAAAIIIIAAAggggAACCCCQOgIE7u7GgsDdnR+Bu0s/dkcAAQQQQAABBBBAAAEEEEAAAQQQQACB1BEgcHc3FgTu7vwI3F36sTsCCCCAAAIIIIAAAggggAACCCCAAAIIpI4Agbu7sSBwd+dH4O7Sj90RQAABBBBAAAEEEEAAAQQQQAABBBBAIHUECNzdjQWBuzs/AneXfuyOAAIIIIAAAggggAACCCCAAAIIIIAAAqkjQODubiwI3N35Ebi79GN3BBBAAAEEEEAAAQQQQAABBBBAAAEEEEgdAQJ3d2NB4O7Oj8DdpR+7I4AAAggggAACCCCAAAIIIIAAAggggEDqCBC4uxsLAnd3fgTuLv3YHQEEEEAAAQQQQAABBBBAAAEEEEAAAQRSR4DA3d1YELi78yNwd+nH7ggggAACCCCAAAIIIIAAAggggAACCCCQOgIE7u7GgsDdnR+Bu0s/dkcAAQQQQAABBBBAAAEEEEAAAQQQQACB1BEgcHc3FgTu7vwI3F36sTsCCCCAAAIIIIAAAggggAACCCCAAAIIpI4Agbu7sSBwd+dH4O7Sj90RQAABBBBAAAEEEEAAAQQQQAABBBBAIHUECNzdjQWBuzs/AneXfuyOAAIIIIAAAggggAACCCCAAAIIIIAAAqkjQODubiwI3N35Ebi79GN3BBBAAAEEEEAAAQQQQAABBBBAAAEEEEgdAQJ3d2NB4O7Or9AD9x07c3a4RHGPJk/3ats2j/NlrZq2enb3q3x5O0fjvXs92n8g+nOfV6pUySVEIe++a5fkz3Z6ZUpLpUoVckfi/DnTV9Pn7FvVKnEegGYIIIAAAggggAACCCCAAAIIIIAAAggUggCBuztkAnd3foUeuH/yX6+WLveGet3+akvptZRQ4D5jlle7dgfC+eLFbfXpaRXJwH3iFJ+ysgLnUbWqre5drZQO3GfN9mnL1kB/zXZ9b0vVquV8KOJySrI7AggggAACCCCAAAIIIIAAAggggAAC+RYgcM83nbMjgbs7v6MSuM9bEA7ce3bPX+C+eUsg+K1SuWgH7rv3BM6jbp2iEbivWx/ob8mS0sC+BO4uLz92RwABBBBAAAEEEEAAAQQQQAABBBBIsgCBuztQAnd3fgTuLv3yu7spz2JWuBO451eQ/RBAAAEEEEAAAQQQQAABBBBAAAEEEMgpQODublYQuLvzI3B36Zff3Qnc8yvHfggggAACCCCAAAIIIIAAAggggAACCOQuQODubnYQuLvzI3B36Zff3Qnc8yvHfggggAACCCCAAAIIIIAAAggggAACCBC4F9QcIHB3KfvDzv0uj5DY7ualqdRwlwjcE5s3tEYAAQQQQAABBBBAAAEEEEAAAQQQQCAeAVa4x6OUexsCd3d+rHB36Zff3Qnc8yvHfggggAACCCCAAAIIIIAAAggggAACCOQuQODubnYQuLvzI3B36Zff3Qnc8yvHfggggAACCCCAAAIIIIAAAggggAACCBC4F9QcIHB3KUtJmfwBfrTSG7XjKXVtVatmx32wYz1wd+sTNyQNEUAAAQQQQAABBBBAAAEEEEAAAQQQiBBghbu76UDg7s6PFe759Fv0qlcfrQqH7jcNsQjcIywXLvJp5WqP84nHIw0bnJhPPoeF3RBAAAEEEEAAAQQQQAABBBBAAAEEjnMBAnd3E4DA3Z0fgXs+/QjcpYF9cw/RCdzzObHYDQEEEEAAAQQQQAABBBBAAAEEEEDAlQCBuys+Ebi78yNwz6cfgTuBez6nDrshgAACCCCAAAIIIIAAAggggAACCBSgAIG7O1wC9wi/rzZu0V8eHK6rL79AQzKvDX3z/PiXNWLiK6F/r1GtspbNftr5d2q4528CErgTuOdv5rAXAggggAACCCCAAAIIIIAAAggggEBBChC4u9MlcD/s9+qyj/SP56bqpFrV1KLZ6VGB+9+fnqhT65+sTle1cFp7PB6lpfkI3F3MPQJ3AncX04ddEUAAAQQQQAABBBBAAAEEEEAAAQQKSIDA3R0sgfthv/+u3aAqlcrr5VffVfFiaVGB+633P6/2V16oVs2b5tBmhXv+JiCBO4F7/mYOeyGAAAIIIIAAAggggAACCCCAAAIIFKQAgbs7XQL3bH7PjpmbI3DvNexRVa9aUTWqVlLtk2qq9cXnqHKl8s6eBO75m4AE7gTu+Zs57IUAAggggAACCCCAAAIIIIAAAgggUJACBO7udAnc4wjc5732rn77fZ8OHsrS0hWrtXPPr5o18kFVKF9GBw/53Y1AAntblq233rc09xVPaK8+GX7VPtGj0ZOkbdsCn9eqaWtAH8mych68RAlp3GRp85ZA2yqVbQ28Xjo5PS2BnsTfdOuPWTkaV67k0Zz5fn240hv67tYb/WpYt1jcB960NUujJ0i79wTOo24dW/16Sfv35zxEek2fvJ6wWdw/ksSG+//wa+xkv9atD/SjZElp6EC/6tfOec4Hs/yaNsevlR8H2pqu3zI0MZ9YXc+ybG37OeekSAWfJFJzKAQQQAABBBBAAAEEEEAAAQQQQAABFwLFi4UzOxeHOW53JXDPNvSxVrhHNsnKsnRh+xv16N0DdMXF52jnr38U2uSxbemjj6WX54cnfa8elk5MlyZM9UYF7pk9/fpui/Tm8nDbi5v71ehUafI0b1Tgfn0vv6pXK5hA+vsfbc2YHe7DCelS145+zV/k0Yerwp/fPMTSCenx9+Gn7bbGT/JGBe69uvv12ecefbgyfJyrWvv1p1M9Tmh9NLesLFtTZ3qjAvcb+llKr5WzY36/rZcXeKMC95uMT4y2iZyTmT/vfSh9tCr8m22v9KtRw6Pvk8h50BYBBBBAAAEEEEAAAQQQQAABBBBAoOAEqpQvUXAHPw6OTOCeYOBumg+8/Um1u/wCdWhzUcqWlOmd4deWrdL0WYGXu5qtcwdLDRtI02ZEB+59elqqVKlgZvv27R69MMoXWm1/1hm2Ol5rqSBKymR0s7RmrVcLFoWD/D4ZlurXtwvm5BI4qt+WZs32RQXuA/taqlYtdt8WLvJp5erwCvdhg3Nvm0A3tPJjrxYuDvtk9rRUr97R90nkHGiLAAIIIIAAAggggAACCCCAAAIIIFBwApSUcWdL4J5H4G5Zlj5bt1FnNWkgj8cj83JVU9N98ZQnVPvEGgTuecw/AvcAEIG7uxsVeyOAAAIIIIAAAggggAACCCCAAAIIFI4Agbs7ZwL3bH7PjX1JaWk+Dcm81vnm0KEsdR54vzZu+sF5UWrpUiV014091Kp5U+f7VH1pKivcAwPLCvfoCc4Kd3c3TPZGAAEEEEAAAQQQQAABBBBAAAEEjnUBAnd3I0zgHqffvv0HZPltlStTKmoPAvcjA7LCPeDDCvc4LzSaIYAAAggggAACCCCAAAIIIIAAAggcVQECd3f8BO7u/FjhnocfgTuBu8tLjN0RQAABBBBAAAEEEEAAAQQQQAABBApRgMDdHTaBuzs/AncC97hmECvc42KiEQIIIIAAAggggAACCCCAAAIIIIDAURYgcHc3AATu7vwI3Anc45pBBO5xMdEIAQQQQAABBBBAAAEEEEAAAQQQQOAoCxC4uxsAAnd3fsd04H7ooLRhoydKqEZ1WwcPerR7TzTcn/9kx5RM5ZIy676MPjdzArmdh8tpQg13t4DsjwACCCCAAAIIIIAAAggggAACCCBQKAIE7u6YCdzd+R3zgfuMOT5t+DoQTJctK/XPzHIC9xGjfSG5Fs39uuIyf5EM3GfMDp9Hl46WTj8t9oMDl9OEwN0tIPsjgAACCCCAAAIIIIAAAggggAACCBSKAIG7O2YCd3d+BO6SCNzznkSUlMnbiBYIIIAAAggggAACCCCAAAIIIIAAAkdfgMDd3RgQuLvzI3AncI9rBhG4x8VEIwQQQAABBBBAAAEEEEAAAQQQQACBoyxA4O5uAAjc3fkRuBO4xzWDCNzjYqIRAggggAACCCCAAAIIIIAAAggggMBRFiBwdzcABO7u/AjcCdzjmkEE7nEx0QgBBBBAAAEEEEAAAQQQQAABBBBA4CgLELi7GwACd3d+BO4E7nHNIAL3uJhohAACCCCAAAIIIIAAAggggAACCCBwlAUI3N0NAIG7Oz8CdwL3uGYQgXtcTDRCAAEEEEAAAQQQQAABBBBAAAEEEDjKAgTu7gaAwN2dH4F7EgP30qVzDkapUrb27/fk+OLgQVsTJvu0e0/gu7p1bGV0s7RmrVcLFnlD7ftkWKpf3445yuu+9GjGbF/ouy4dLZ1+Wuy2LqeJCNzdCrI/AggggAACCCCAAAIIIIAAAggggEBhCBC4u1MmcHfnR+CexMDd45FeWRAOy0uVlrp3tbTiPa++/jocure+wq+yZQjc8zN1V37s1cLFYePMnpbq1SuYhwz56R/7IIAAAggggAACCCCAAAIIIIAAAggcXQECd3f+BO7u/Ajckxy4jxnv0779gUFpdKodCtyXLg+HxAP7WQTu+Zy3BO75hGM3BBBAAAEEEEAAAQQQQAABBBBA4DgRIHB3N9AE7u78CNwJ3OOaQZSUiYuJRggggAACCCCAAAIIIIAAAggggAACR1mAwN3dABC4u/MjcCdwj2sGEbjHxUQjBBBAAAEEEEAAAQQQQAABBBBAAIGjLEDg7m4ACNzd+RG4E7jHNYMI3ONiohECCCCAAAIIIIAAAggggAACCCCAwFEWIHB3NwAE7u78CNwJ3OOaQQTucTHRCAEEEEAAAQQQQAABBBBAAAEEEEDgKAsQuLsbAAJ3d34E7gTucc0gAve4mGiEAAIIIIAAAggggAACCCCAAAIIIHCUBQjc3Q0Agbs7PwJ3Ave4ZhCBe1xMNEIAAQQQQAABBBBAAAEEEEAAAQQQOMoCBO7uBoDA3Z0fgTuBe1wzqCgG7ps3e3KcW+3adlznSyMEEEAAAQQQQAABBBBAAAEEEEAAgaIpQODubtwI3N35EbgTuMc1g4pi4L52rUezXvKFzq9bZ0uNGxO4xzXgNEIAAQQQQAABBBBAAAEEEEAAAQSKqACBu7uBI3B350fgTuAe1wwicI+LiUYIIIAAAggggAACCCCAAAIIIIAAAkdZgMDd3QAQuLvzI3AncI9rBhG4x8VEIwQQQAABBBBAAAEEEEAAAQQQQACBoyxA4O5uAAjc3fkRuBO4xzWDCNzjYqIRAggggAACCCCAAAIIIIAAAggggMBRFiBwdzcABO7u/AjcCdzjmkEE7nEx0QgBBBBAAAEEEEAAAQQQQAABBBBA4CgLELi7GwACd3d+BO4E7nHNIAL3uJhohAACCCCAAAIIIIAAAggggAACCCBwlAUI3N0NAIG7Oz8CdwL3uGYQgXtcTDRCAAEEEEAAAQQQQAABBBBAAAEEEDjKAgTu7gaAwN2dX4EF7llZOTvm8UifrfFq3gJv6Mue3S2l15ImT/dq2zaP83mtmrZ6Z/i1Zas0fZYv1LZzB0sNG0jTZni1eUugbZXKtvr0tFSpUs7fO3RQmjHHpw1fB9qWLSv1z8zSwYMejRgdPm6L5n5dcZk/puT27R69MMonywp8fdYZtjpea2nRq159tCp8HjcNsWTOb8x4n/btD7RtdKqt7l0trXjPq6XLw20H9rNUtoytCZN92r0n0Le6dWxldLO0Zq1XCxaF2/bJsFSnri3Z0d0ze/1vg0czZofPo0tHS6eflq3h4d1ijUdaWvyTJ7fAvVKlnL9njrtwkU8rVwfOzbgMG2zGKGdbn08h28je5Na3lR97tXBx2Cezp6V69WKf89q1Hs16KezTrbOlxo1jt41fgpYIIIAAAggggAACCCCAAAIIIIAAAqksQODubnQI3N35FVjgvmuX9Orr4bDTdLNzB7/WfekhcE8wcK9eXVoQETIbyw7X+LX5O8UduH/zrUcffBQOquufYqvZebEfMsSaUrkF7qbt60vDxy1XVmp/tRUzcJdHev3NcFufV+rW1dJbb3v1w+GHLeZ4l17s1wnpsYNxAneXFzy7I4AAAggggAACCCCAAAIIIIAAAse4AIG7uwEmcHfnV6CB+8SpPu3eHVjlXKe2WcFN4G4sEl3hbgL3ydO8+unngKUJo3v1SDxwNyvqg1u7Nv6kBe7DX/TJfzi7P6epfcTAfcw4n/YfCPTiz43sUOC+/J1wEH/DAIvA3eV1ze4IIIAAAggggAACCCCAAAIIIIDA8SpA4O5u5Anc3fkRuBeBGu4E7uFJzgp3lxc8uyOAAAIIIIAAAggggAACCCCAAALHuACBu7sBJnBPwG/vvgMqU7pk1B4/7DxccDyB48TT1JSUYYV7cmq4E7gTuMdzzdEGAQQQQAABBBBAAAEEEEAAAQQQQEAicHc3CwjcI/y+2rhFf3lwuK6+/AINybw29M2PP+3U3x4brXVfbVKliuV0940Zatn8LOd7Ancp1V+aSuBO4O7uNsneCCCAAAIIIIAAAggggAACCCCAwPEjQODubqwJ3A/7vbrsI/3juak6qVY1tWh2elTgftuDw1WrRhXdNqir1nz5jW648yktmf6kKlUoR+BOSZm4rsAjvTSVGu5xEdIIAQQQQAABBBBAAAEEEEAAAQQQQKAQBAjc3SETuB/2++/aDapSqbxefvVdFS+WFgrcLcvS6Zf111tzn1G1KhWd1v1ue0K9Ol+hVs2bErgTuMd1BRK4x8VEIwQQQAABBBBAAAEEEEAAAQQQQACBoyxA4O5uAAjcs/k9O2ZuVOD+8449atnlVq1dPl4ej8dpff+T43RqvZPVs9PlBO4E7nFdgQTucTHRCAEEEEAAAQQQQAABBBBAAAEEEEDgKAsQuLsbAAL3PAL3Dd9uVc8bH9HKxSNDLZ8aOVPFixfTTf06udM/wt5fbz6oF8dLu3cHQv46tW0NzPTokzW25s4LfGa2zJ626pzk0YsTbG3bFvi8Vk1bg66XNm6SpswIt72uk1+n/9mr0RNtbd4S+LxKZVuD+3m074A/R29qVfdq9CRbG74OtC1bVhoywNaBA7aeG+kNtb/kIlsd2nn13fdW1DG8Ho9sW3p2hEfW4a/OOtNWn24ezXzZrw9Xho/xl2F++bwevTDao32H30Pb6FRbA3p7tWS5X28sDZ/H0IF+VSjn0chx0u49gc/r1rE1oI9Hq/5ra96CcNt+vW2dkO7RqPG2fvo58PkJ6bYGXi99/Y2tKTPCfejW2a+WzYsrzRfe37T3+22t/OyQxkwIf35NW1ttL0tTsbTw/keaDHv3W3pxgqV16wPHKFlSunGQ7Rz72Re88h/mP/dsWxldPJo+19bKjwNtzXOeW28M+Awf5dH+A4Ff+nMjW/17e7XoDb+WvRXu27Ab/DrjTyWc/SK3Q1l+vbY8S68sDH/Rv4+tZmcVk9cb3TjLsvX2Bwc1fXb4/DKu8+vi83P6HOm8s39n5sO6r//IsUuDOsVUvFh8lon8Hm0RQAABBBBAAAEEEEAAAQQQQAABBBAoTAEC92za2Ve479rzm1p0uEmfLxsfCiXv++dY1T05Xf26X3VMrHDP7GVpzx6Pxk3yhTTaXOHXeef4NX22Lypw75+ZpYMHPRoxOtw2+NLUmXN8+mJdILgtXly6oX8gZX9hlC8cuJ9hq+O1lha96tVHq8IB601DLCcgHjPeFxW4d+9qacV7Xi1dHm47sJ+lsmVsTZjsiwrcM7pZWrPWqwWLwm37ZFjipanhSb7yY68WLg77ZPa0VK+eHfOes3atR7NeCo9zt86WGjeO3TaRm9bWrR6NGhc+bqtL/br04pwPfBI5Jm0RQAABBBBAAAEEEEAAAQQQQAABBJIjwAp3d44E7nkE7rZtq0nLvnpj5lNKr1HFad1r2KPK6HS52rZqRuAeUVKGwD33i5GSMmEbAnd3N232RgABBBBAAAEEEEAAAQQQQAABBApSgMDdnS6Bex6Bu/n6709PVFqaT3cO7aHVa75yXpr6/vzhqlC+DIE7gXtcVyCBO4F7XBOFRlTL4zYAACAASURBVAgggAACCCCAAAIIIIAAAggggMBRFiBwdzcABO7Z/J4b+5ITrg/JvDb0ze5fftNdj4zSe6s+V5nSJfXQ7X11Vatmzvc/7DxccNzdOOTYe9cuaeJUX1QN94xufq370qN5C8IlQXp2t5ReS5o83RtVw713hl9btkrTZ4VLd3TuYKlhA2naDG9UDXdKygT4u3S0dPppsUumfPOtxylhE9zatfGr2Xnxl0EhcCdwT/ItgsMhgAACCCCAAAIIIIAAAggggAACBSJA4O6OlcA9Ab+9+w6odCnzMsrwCyYJ3CVquOc9iQjcCdzzniW0QAABBBBAAAEEEEAAAQQQQAABBI6+AIG7uzEgcHfnxwp3SsrENYMI3Anc45ooNEIAAQQQQAABBBBAAAEEEEAAAQSOsgCBu7sBIHB350fgTuAe1wwicCdwj2ui0AgBBBBAAAEEEEAAAQQQQAABBBA4ygIE7u4GgMDdnV+BBe67d0sTplDDvXtXSyve82rp8nDd+oH9LJUtYzs11XfvCZT3qVvHVkY3S2vWerVgUbhtnwxL1atLk6d59dPPgbYnpNvq1cOvzd9JM2aH67IXZA1325ZmzvZp3fpAH0qWlAb2tZx/Hv6iT/7D5eDPaWqr/dWWFi7yaeXqQFtTwWjYYEvySGPG+bT/QGDS/rmRrW5dLb31tlfL3wmf8w0DLOccY20rP/Zq4eJw28yelurVi9127VqPZr0U9unW2VLjxrHbJnIZbd3q0ahx4eO2utSvSy+Ovx5+Ir9FWwQQQAABBBBAAAEEEEAAAQQQQACBxAQI3BPzyt6awN2dnz5bf0AffBQOMM3hTGCayPbe+17t3BWuC3/GaX6VL28TuJ9qK5UD96Zn+vXq6+Hg2Iz5RRdaOnDAo48/Cc+JMmVsmVCZwD1wVRC4J3J3oC0CsQV+3+vRsogHkaZVi+aWKlVCDAEEEEAAAQQQQAABBBBAAAF3AgTu7vwI3N35OYH7iNE+ZWUFDnTGabY6d0w8cF/yZjig7Z9pEbhLalQEAvfps3z6+pvAw5Ly5aR+mVlO4D5yTDiIv6SFn8A94jojcHd502F3BCSZwH3GTK++2xq4/1StYqt3BoE7kwMBBBBAAAEEEEAAAQQQQMC9AIG7O0MCd3d+BO7HcQ13s8KdwD3xC4jAPXEz9kAguwCBO3MCAQQQQAABBBBAAAEEEECgoAQI3N3JEri78yNwJ3BnhXuC1xCBe4JgNEcghgCBO9MCAQQQQAABBBBAAAEEEECgoAQI3N3JEri78yNwJ3AncE/wGiJwTxCM5ggQuDMHEEAAAQQQQAABBBBAAAEEClGAwN0dNoG7Oz8CdwJ3AvcEryEC9wTBaI4AgTtzAAEEEEAAAQQQQAABBBBAoBAFCNzdYRO4u/MjcCdwJ3BP8BoicE8QjOYIELgzBxBAAAEEEEAAAQQQQAABBApRgMDdHTaBuzs/AncCdwL3BK8hAvcEwWiOAIE7cwABBBBAAAEEEEAAAQQQQKAQBQjc3WETuLvzI3A/xgL3+qdIe/dHT4rixWzt3OXRhMm+0Bft2vjV9Ey/ps/yEbgneA0VduC+fYcnRw+rVbUT7HXRb45D0R/DyDPgpanH1nhyNggggAACCCCAAAIIIIBAKgkQuLsbDQJ3d34E7sdg4D51hlc7dgZC2rJlbfXpaRG4S+rW2VLjxu6D6sIO3Jcu92rlKm/oSs/sZSk93f15uLx1FPru27d7NGZ8+KFRg3q2unS2Cr0f/GByBAjck+PIURBAAAEEEEAAAQQQQAABBHIKELi7mxUE7u78CNyP0cB9y/eBwN2shCZwD1wkRTlwf3tFOHAfPOD4DdxHjvHp0KHAeJ7emMDd5e3/qO5O4H5U+flxBBBAAAEEEEAAAQQQQOCYFiBwdze8BO7u/AjcCdwpKZPgNXQ0VrgTuEtmhTuBe4KTNYWbE7in8ODQNQQQQAABBBBAAAEEEECgiAsQuLsbQAJ3d34E7gTuBO4JXkME7gmCJak5gXuSIFPkMATuKTIQdAMBBBBAAAEEEEAAAQQQOAYFCNzdDSqBuzs/AncCdwL3BK8hAvcEwZLUnMA9SZApchgC9xQZCLqBAAIIIIAAAggggAACCByDAgTu7gaVwN2dH4E7gTuBe4LXEIF7gmBJak7gniTIFDkMgXuKDATdQAABBBBAAAEEEEAAAQSOQQECd3eDSuDuzo/AncCdwD3Ba4jAPUGwJDUncE8SZIochsA9RQaCbiCAAAIIIIAAAggggAACx6AAgbu7QSVwd+dH4E7gTuCe4DVE4J4gWJKaE7gnCTJFDkPgniIDQTcQQAABBBBAAAEEEEAAgWNQgMDd3aASuLvzI3AncE/JwL1USVuff+GNmt0XnOfXp597tXBx+PPMnpbq1bNjXgVr13o06yVf6LtunS01bhy7bSKXUSKBuwmJ1633RB3+khZ+vb0i+tz+3MhWtWqx+7Z0uTeq/eABltLT3Z9HIuccq+3+/dLKj6PP47TGflWuHP+Rf/rZo/X/y+kT6wgFFbjv2i19vjb6PM5taqt0maNvHL9k0WtJ4F70xoweI4AAAggggAACCCCAAAJFRYDA3d1IEbi78yNwJ3BP2cB9/KQ0/fJrYILXq2urx3VWkQzcnxsRDv2bnetXu6v8mjffp08+DQTNPp80dJBVJAP3GbN9+nZT4DwqVbSV2ctKOHAfPjLsc34zv9pe6Y95VyvIwH3SVJ927QqcR+2TbfXo6idwd/nflrx2J3DPS4jvEUAAAQQQQAABBBBAAAEE8itA4J5fucB+BO7u/AjcCdwJ3BO8hhJd4U7gnjuwWeFO4J7gBDxGmhO4HyMDyWkggAACCCCAAAIIIIAAAikoQODublAI3N35EbgTuBO4J3gNEbgHwExJGVa4Jzh5aB4SIHBnMiCAAAIIIIAAAggggAACCBSUAIG7O1kCd3d+BO4E7gTuCV5DBO4E7glOGZrHECBwZ1oggAACCCCAAAIIIIAAAggUlACBuztZAnd3fgTuBO4E7gleQwTuBO4JThmaE7gzBxBAAAEEEEAAAQQQQAABBApRgMDdHTaBuzs/AncCdwL3BK8hAncC9wSnDM0J3JkDCCCAAAIIIIAAAggggAAChShA4O4Om8DdnR+BO4E7gXuC1xCBO4F7glOG5gTuzAEEEEAAAQQQQAABBBBAAIFCFCBwd4dN4O7Oj8CdwL3IB+5Vq9qyrOgLoWRJj775Rpr1ki/0RbfOlho3tl1eMVJRC9x375bsbKddvIRHZcvEb7FrV062MmWkaTN9+naTx/myUkVbmb0sVa4cP/FPP3s0fGR4jM5v5lfbK/2K9XuW5dHIMT4dOhQ4/umNbXXpnG3g4//pUMtdu6VJU33atStwHrVPttWjq1+lE/DJx88WmV1ijUWpUpL5n5uNGu5u9NgXAQQQQAABBBBAAAEEEEDgSAIE7u7mB4G7Oz8CdwL3YyJwN4Fp1uHstWxpqWcPP4H74XuDCdwnT/PJ8gc+KFdG6t7Nn1Dg/tUGjxa95g3dbS5ubqtJY3+BBe5zX/bpu63hm1uv7oHOE7i7vOHnY3cTuE+cGn4oUrGC1L2rReCeD0t2QQABBBBAAAEEEEAAAQQQKBwBAnd3zgTu7vwI3Ancj5nAffuOwArlk06wCdwj7gvBwH3HzoDPySfa+Qrcp0wPh67XXu0v8MD9s88D/U1Lk4YMDDxNIXB3ecPPx+5O4D7Fp917AuNRt45N4J4PR3ZBAAEEEEAAAQQQQAABBBAoPAECd3fWBO7u/AjcCdwJ3BO8hopiSRmzwp3APfZAU1LmyBcAgXuCNwiaI4AAAggggAACCCCAAAIIHHUBAnd3Q0DgHoff8+Nf1oiJr4Ra1qhWWctmP+38+2frD2jEaJ+ysgJfn3Garc4dE6uL/N77Xi15M1xuon+mpfLlbU0wqyJ3B1ZF1qltK6ObX+u+9GjegnDbnt0tpdeSJk/3atu2QNtaNW31zvBry1Zp+qzwqtrOHSw1bCBNm+HV5i2BtlUqB+pG79nj0bhJ4bZtrvDrvHP8mj7bpw1fB9qWLSv1z8zSwYMe55yDW4vmfl1xmV8z5/j0xbpA2+LFpRv6BxxeGOUL1Qg/6wxbHa+1tOhVrz5aFT6Pm4ZY8nikMeN92rc/cORGpwZWgq54z6uly8NtB/aznHIeEyZHrxrN6GZpzVqvFiwKt+2TYal6dVMSxCtT79psJ6Tb6tXDr83fSTNmh8+jS0dL9U+Rps7wasv3gbbVqtrq09PSzl0e5/eCW7s2fjU90+/4fv1NoG35clK/zCwdOBColR3cLmnhV6tL/Zo526d16wNtS5aUBvYN+Ax/0Sf/4XIl5zS11f5qSwsX+bRydaCtcRk22JKMzzif9h8IHPnPjWx162rprbe9Wv5O+JxvGGCpVElb4yel6ZdfA23r1bXV4zpLn37u1cLF4baZPS2ZGu6mpAwr3ENDFvUPrHCP7RL8lMA9Dx9WuB8ZiG8RQAABBBBAAAEEEEAAAQRSToDA3d2QELjH4ff3pyfq1Ponq9NVLQ4HoB6lpQUCVQJ3icCdwD2OyyjUhBXuEiVlEpkxRbstK9yL9vjRewQQQAABBBBAAAEEEEDgeBQgcHc36gTucfjdev/zan/lhWrVvGmO1gTuBO6scI/jIopoQuBO4J7YjCnarQnci/b40XsEEEAAAQQQQAABBBBA4HgUIHB3N+oE7nH49Rr2qKpXragaVSup9kk11fric1S5UnlnTwJ3AncC9zguIgJ38dLUxObJsdKawP1YGUnOAwEEEEAAAQQQQAABBBA4fgQI3N2NNYF7HH7zXntXv/2+TwcPZWnpitXauedXzRr5oCqUL6M1/zvg1CiPrOHevYtfXm+gzEjkZts5f8x89va70mtvhOtqD7jeUoUK0rhJ3qga7r17+LV2nUcvzw+37dXD0onp0oSp0TXcM3v69d0WaVpEDfcuHSw1OjVQzzyyhnvf3n7t3iONnRiuO35Va7/OP8/WlBneqBrupm8HDwbqsge3i5v7dWVrW9NmeqNquA8ZYMmcsqlRbh0ua29quHft6Nf8RR59GFHD/WZTw90rjR4XXcO9Zze/3l7h0ZsRNdxvMDXcy0njJnq1e0/AuW4dW726+/XZ5x7Nj6jhbmqU16whTZgSXcO9T4ZfmzbLqVEf3Lp2tNSgfsAnsob79b382rFTGp+thvu5TQM+kYG78TE11iNr3F/awq/LW9qaNssbVcPdnIfxeX5kRA33s211usaveQu9WvlxuIZ7sMb9qLHRNdxNXf+lyz1RNdwHD7BUulRgPCNruJu69Z986tGCiBru1/eyVK2aNGGyN6qGu3kHwMZvpJlzwz7du1g64zSPU1M+al6bOvMxriMzt7O3Nc2+3WzrxbHh4152qV+XtZRiXDL64Udb/xkRbnv+uX61b2drzjyvcy5m8/mkG2+wdEKtnL3w29KSN6S3VoSvmSEDLdU+Kfb1Gau/O3fZGj/ZG/XSVONTrmx8xzBj/OV6W5Omhc+jwzV+nd7Edt698O2mwHEqVbTVL9OvalXiO67Z5/sfbT0X4XNBM7+uucrWzLle51owW1qaNHSQ5YzRC6N9OnQoMFjm93O7V8W6LeY2njt22ho32atduwK/V/vkwLVYvlysWRHHDfcYa/LTdvM+heh7lbmvxZo/ubnH+vy3323nXvXd1oBz1Sq2zL2qWtXUdI/13z/T71jX3DE2BTgdBBBAAAEEEEAAAQQQQKDICVQpX6LI9TmVOkzgnuBoZGVZurD9jXr07gG64uJz9MWGP/TcSG9U4N43w6vixcIBX/AnNn6Xpc3fRafu55zlcQL3V98IhySD+vlVuaJHL45XVODev5f06Vpp7ivhtiY4rn2iR6MnKeqlqQP6BILNKTPD/ejaya8mjTwaN1lRgfugvtKOXbZGjw+3bXulrRYXeDRuih0VuA/uZ+vAQVvPjwy3veQiv65p49H4aYoK3IcN8suELP8Z6Y0K3Ht29WjOfL8+XBk+xq03mocU0sgx3qiXpvbtKb35lq03loXbDh7gV4VyHo0yPhGBe79e0upPpXkLwz59e/mVXsujMRMV9dLU/n2kjd/amhrhc11nv/7U0Lw8VlGB+8BM6acdtsZODPfBhJoXnBvwiQzcb+hna98BW8NfDLdtebFfba/waPxURQXuQwf6nZel/meEN/TS1HPPttWtk0ezXrajAvdbhgZ8Roz2Rr009fqeHr32pl/L3g7/3tBBfpUt7dGL4zxRgXu/3tLK1dIri8I+/Xr7VbO6NHqiJypwNz7rN9iaMSd83B5d/WpYz6Mv1kfP4VPre/TjT7Z+/S36YjrzNK8+/fzw22APf1Wvrke//m475xHcLm/pV+uWHq38JPq4J58kx+WZ4eG255/nV5drPZo+24x1OHC/ebBfDeoWy3E1H8rya95iK+qBxI03+FWqpEebNkf/XtMzPPrks+jPKlYwL871aPQERQXu/frIcbAjTq9kCfPgx6Mv/xd9jEYNPdr6ve08FAtundrbOuv0wPyJDNzNtfjLr7bzgCdyM/eJj/8bfdzaJ8u57zz7Qvi4Fzbzq1N7jybPUFTgftPgQEeff9EbFbj36e7Rhx9Hj1GtmlKJEjl9zj7Do9XZfCpXlnOvGjVBUYF7/14eVa0cfsCQ4G32mGq+aWuWM3+i71UeVakYn4/fb+vD1Vk68EeYxTycNPfysZMUFbibe9VJ6Wkp6XfI8mvFB9EvFDcP+5o0LEbonpIjRqcQQAABBBBAAAEEEEDgeBaIlWsezx6JnjuBe6Jikgbe/qTaXX6BOrS5KKGSMjt2mFXHadq7N/CjDRvY6t7V0kcrvVryZjg0659pqXx5WxOm+KICd7Oaed2XHs1bEG7bs7ul9FpyVspu2xYIIGvVtGVW4G7ZKk2PWOHeuYOlhg2kaTOiV7hn9rK0Z48JmsMBUJsr/DrvHL+zAnzD14Hjli0r9c/M0sGDnqgV3Lw09fh5aWqdOtLUGV5t/T5wztWr2TIPfbbvkCZODc+fq9v6deZpfucvLL75NtDWhNfX98nSvr0ejRoXbtvqUr8uvsivmbN9+vJ/gbalSkoD+lkyfwIQuYK72bl+tbvKr3nzfVEr3M0K7mrVYvwJiaSly716O2KFu/kLgBIlbI2bmKbffg9ciw3q2ep+naXVn3i1eEn4+urb21LlyrYmTvFFBe4ZPfzasEGaOy98Hj2us3TSidKU6V798GPgPGrUCPj8uM18Hm6b20tTr+9t6bffPRozPtz2ilZ+XXiBXzNm+/S/rwLHLVNa6n+9JcsvDR8Z8RcAzfxqe6Vfc1/2RQXuZlW/2UaOiVjh3thWl86WXn/Tq3ffj3xgY6lYMfOAKU2/B33q2+ph7lWrct6rKlQI3KsiV7ibhzOly8Qej3zccov0LskoKfPlek+Oe7n5axxzL49c4d47w1KlSqnL9dY7Xi17KzzXBvWzdOKJzJPUHTF6hgACCCCAAAIIIIAAAserACVl3I08gXsefpZl6bN1G3VWkwbyeDz679oNMjXdF095QrVPrEHgLmq4H0813AncpZNPtEXgHrhxmoeDBO5H/o8IgXvYh8Dd3f9hY28EEEAAAQQQQAABBBBAoLAECNzdSRO45+F36FCWOg+8Xxs3/eC8KLV0qRK668YeatW8qbNnIi9NZYW7ZGq4d7zW0qJXvc5q2eAWrFFuVvbu2x/4tNGpgb8AWPGe11mlHNwGmhruZWxNmOyLKtOQ0c3SmrVeLYio4d4nw1L16oG67D/9HFgdfEK6LVPPfPN3clYNB7cuHS3VPyWwgjuyhnufnpZ27vI4vxfc2rXxq+mZfmfVKYE7K9zNvGCFe7iGOyvcw/9hIXAPWxC4u/s/bOyNAAIIIIAAAggggAACCBSWAIG7O2kC9zj99u0/IMtvq1yZUlF7ELizwp3AncCdwJ2SMrn9p4TAncA9zv+bQTMEEEAAAQQQQAABBBBAIGUECNzdDQWBuzs/VrhTUoYV7tRwd+4irHBnhXus/5wQuBO4u/y/GeyOAAIIIIAAAggggAACCBS6AIG7O3ICd3d+BO4E7gTuBO4E7rw0Ndf/khC4E7i7/L8Z7I4AAggggAACCCCAAAIIFLoAgbs7cgJ3d34E7gTuBO4E7gTuBO4E7nH8t5Qa7nEg0QQBBBBAAAEEEEAAAQQQSAEBAnd3g0Dg7s6PwJ3AncA9RQL3EiVyXszlytla9pZXb68Iv3R38ABLJUrYGjcxTb/9HtinQT1b3a+ztPoTrxYvCbft29tS5cq2Jk7xacfOQMmUk0+0ldHDrw0bpLnzwi/SpaRMckvK7NvrUZaVc0zLl7dzfHjooLT/QOD389rM/r/+mrNtrOOaY7lta1mxX/D8xx85++D1Sn5/9BmYz7ZslfOC5uDWuYOlBvWlaTO8+m5r4DhVq9gyL3j2euM/t7yskv2928A91lik+RT3PEn2+ST7eInMtWT/9pGOt3+/dOhQ6s6rwrQ4Vn4rVefaseLLeSCAAAIIIIAAAseCAIG7u1EkcHfnR+BO4E7gniKBu7mU584Lh+UVK0rdulgE7mnSkIGB5HrkGJ8OHQrc9E5vbKtLZ0uvv+nVu++H3YYOslSsmK2xE9P0e/CBRH1bPbpa+miVV0veDLftn2mpQgVbEwpghbsJ3KfP9ob6a/p8XRdLlSvlvGmbwH3GHJ/27g1/16Wjpawsj+YtCPf3lLq2Wl/u15y5Pu3YFW7buYNf1arlDPJNC/MA5rvvwmFjx2v9qlE9dtsV73r1xZfhtm3b+FWubOzAfe0XXq1aHW7b6lK/ataQps0M99f8fq8e/oQC9927PVFjdObpts5vli3Fd/nfvfzu7jZw37PHoxmzwz7mYUSv7n59u0laETGHL7rAryZNYo9RfvteGPstXe7Vhq/Dc6J9O7/S0/+/vTuBkqo68D/+q6pm3/d9U3DBHdeIGEAQEUT2fV9c40zGySSZzH8yZibJJONJ/snfOCoq+44IIqCIokZxQUEERARkkU022ZeGfu/9z63X3a+r6nVT1fVaoev7zvEc7Lp1693PfXXr1e/duu+Hb4cJ3GfNjSg721Po38dcjPw+VHiNkhBY8UFY677wjrWud9tq1uyHP9ZKoq3UiQACCCCAAAIIIFA8AQL34rnlPYvAPT0/AncCdwL3CyhwHz/BC4VaX+kQuEvKusgD9x25Ybf5pYGZwV1U4J4XVlauLI0enhMN3P93vDcz/I7b7fzAfW1u2FSmjGR+9VBU4P7Rx17I++hDVpGB+7LlXtmxo6wiA/dXFnllhw6yooH71Jlh7dvnBmENGzjFCtwnTvXafG8Xu1QF7tNmhrX/gOvTuJGTH7jPnue1uX9v66IN3ON/jXMhBe7btrvuNao7GjGUwD3N08cf9OkmcI+/eErg/oN2CS+OAAIIIIAAAghccAIE7ul1CYF7en4E7gTuBO4E7tFRhCVlgl9SxsxwJ3BPfYY7gTuBe5qnNjFPz5vhTuAepOoPWxeB+w/rz6sjgAACCCCAAAIXgwCBe3q9ROCenh+BO4E7gTuBO4F7CS4pQ+BO4J73MW2WlGGGe5onLcV4OoF7MdAu8KcQuF/gHcTuIYAAAggggAACF4AAgXt6nUDgnp4fgTuBO4E7gTuBO4F79Bgwa7izpEzhH6pBrOFO4J7mSUsxnk7gXgy0C/wpBO4XeAexewgggAACCCCAwAUgQOCeXicQuKfnR+BO4E7gTuBO4E7gTuCexGcpgXvRSOamqazhnsSBRJG0BQjc0yakAgQQQAABBBBAoNQLELin18UE7un5EbgTuBO4E7gTuBO4E7gn8VlK4E7gnsRhQpHvQYDA/XtA5iUQQAABBBBAAIGLXIDAPb0OJHBPzy+lwP3QQemFyVk6edJ90ctaORrYz9LHK8Na+mY4f0/GjLBUtaqjSdMiOnzYvRFh82aOBg+wteHLkBa86pUdMtBSwwbS1JlhffutW7ZBfUfDBvuv+3tZK2nGrLB27HTL1qrpaMRQS2Zt3AlTIvn7cE9nW7fcZGvm3Ig2b3HLVq4sjRmRo7NnQ3rmea9su7a2Ot9la/ZLEX2xwS1btqz04Bgr+u//HR+R5f5TN1znqNf9lha/FtbHn3jteOxhS6GQ9MLEiE6ddstecbnr896KsMzMv7xt3GhLlSs5mjQ1osNH3Ndr0dz4WFq7PqxXF3tlhw+2VLeuNHVGWPv2u2UbNXQ0dJCtHd9Is+Z67ejby1LLS6Tps8LaudstW6e2o+FDLB36LhR9vbyt2z222lxva+acCIE7gXv0sOCmqdw0lSVl8odI33+kG7gfOxbSlOlh7T/gHmuNGzkaOtDWtu3S7Hne+Ny/NzdNLbonUnv0zBlFP+u4aWpqbhdyaQL3C7l32DcEEEAAAQQQQODCECBwT68fCNzT8ys0cN+SG1LnVV+lipQVcQjcCdyjh0T58tK4Ue5ViKefi8i23SPlpjaOenS3tGhxRCtXuaGSuRDxk4csyVyQmBDR6TNu2dZXOBrQz9I774b19t+9iwwPjrVUobyjiVOydPSYW/bSFk40EF6zLqxFS7yyI4ZYql3b0ZTpER046L5ek0aOhgyytXWrNOdlL8Qa0MdS8+buBYlduRck6tZxNJzAPepG4E7gTuBe9AdqKoF7/GeoGQfr1FHSgfslLaQ9e2P3x4xXZpxznNi/t2wZ94c0zwsKPj2+HdWqmXb4v14qS8rE1xuOSJe0SL4dx4+HtG9fbEPr1ZX27U9sfJMmjmbMLpnAPRWfALvlvFWZizv74yzq1pGqVks0PnU6pD27Y6usWdNRzZrnfZnzFigpHwJ3l/7gwZCOHInthhYtHEW8U5/z9hEFEEAAAQQQQACB0ipA4J5ezxK4p+dXaOC+9I2wVnzkBZuPPmgRuDPDXRs2uqEkgbv3bbZje1t33mFrD0cA7AAAIABJREFU9tyIvvzK9alQXho72pIc6alnvLK33myrW1dbCxZGtHqNW9Z8MX7kAffixfgJEWVnu2/q1lc6GtDX0vJ3EtdFLlfO0YTJWTp+wi3b6lJHA/tbWrU6rCVLvfftqGGWTHAyeVpEBw+5r9e0saPBg2xt3izNW+DtG4E7gTuBe9EfqKkE7is/Tbw4mGrgHv9rJXOB0QTuk6d779vu97q/5iqpbeGiiD5d7b43wmHJnAsEEbibX8Ytft0bq0YOs1IO3GfMDmv3Hnff6tV1L56awH3KDM/nvm62rr3aLrHAff4rEX32eexYXphPSfWRX70mcDfHz97cXw7Wr+9o6AC70MB91pywtu9w21GjhiNzrAURuM+bH9Hn69x6s7Kkh8cVfvyk4kPg7mqZwD3+l5XmvIHAPZWjibIIIIAAAgggUFoFCNzT61kC9/T8CNxZw50lZZjhHh1FCNwJ3AncCdzjBQjciz4mCNyL9iFwT/Mk/TxPJ3AvWV9qRwABBBBAAIGLW4DAPb3+I3BPz4/AncCdwJ3AncCdm6ZGjwECdwJ3AvfUTqoI3AncUztigi1N4B6sJ7UhgAACCCCAQOkSIHBPrz8J3NPzI3AncCdwJ3AncCdwJ3BP4rOUJWVYUib+MCFwJ3BPYugosSIE7iVGS8UIIIAAAgggUAoECNzT60QC9/T8CNwJ3AncCdwJ3AncCdyT+CwlcCdwJ3BP4o1SoAhLyqTmlWppAvdUxSiPAAIIIIAAApkkQOCeXm8TuKfnR+BO4E7gTuBO4E7gTuCexGcpgTuBO4F7Em8UAvfUkNIoTeCeBh5PRQABBBBAAIFSL0Dgnl4XE7in50fgTuBO4E7gTuBO4E7gnsRnKYE7gTuBexJvFAL31JDSKE3gngYeT0UAAQQQQACBUi9A4J5eFxO4p+dH4E7gTuBO4E7gHhe4DxlgSyEnYXQNhyQ78c8qXz5xID51MqSZc8Pa8U0o+mDNmo6GD7FUs0Zi2XNnpVkvRbR5i1u2cmVp9PAc5eSE9L/jI/lPuON2W3d3svXSvIjWfuGWLVNGemispSpVEnfM7NeSpWF99HE4v45HH7JUrWpiWVPPBx+GtWy5V3bsKEtVKjuaNDWiw0fc12vR3NHgAZbWfxHWK4u8skMHWapfT5o6M6x9+9yyDRs4GjrI1s5d0sw5Xjv69LTUqqU0Y1ZY3+xyy9au5focPhzSxKle2Xu72LrtVtv3k+7MmcQ/ly8nncn2+btPH6X68ekXuNep48iJ4zTHyZp1YS1a4vmMGGKpTh1pyvSw9h9w29y4kaOhA21t2y7Nnue1uX9vS5e0kKbPCmvnbrdsndqOTB0HDoY0ebpXtvu9tm65yd8nlfb5WpaXFi6K6NPV7j6Ew27g7neslSsnLX8nrHff89psjsuGDX3eMJI+XhnW4te9siOHmTb7l/XbN/PeMD6797j7Vq+uo+GDbe3bL02Z4fnc183WtVfbmjE7om3b3bI1qjsaMdRSzZqJQpYlnTuX/PHjt4Z7Ye/FIPoj2TqOHXN99n7rtrl+fUdDB9iqWi3R+NTpkGbNCWv7jlyfGu6x5udjbIxRMpsZf1JZUqawY9DvtVZ8ENbSN73jZ8wIS82a+R8/yezrxVqmpAJ3v74wRn6fdanYZWcrYbwMot7C9sGvHWXLSWaMZivdAjk5kvkvfkvlGE5lTCrdmrQOAQQQuHgFCNzT6zsC9/T8CNwJ3AncCdyjo8ig/paaNJamzQxrz97cEKueG2Lt/db83Qux7u9u6+qrEkMsE5odPxHSCxO9sp072rr9R7ZmzY3oq01uvZUqSmNGWrJs6elnvbImWDUBq19IY5737AuR/DDs2qsc9e1j6Y03w3r/Ay94eeQBS2XKOHpxcpZOnHAHyFYtHQ3qZ+njTxJDmmrVHE3yCdy//Epau86r99ZbbDVuKM1b4P3N1N3rfltVfQLs7ztwN/uypECAaUL7Pr0s38A9EpYWv+a1I6uMNLCfddEF7nv2hLTsLa8djRs7uqu9Hb14kV0gjL/3HlsmGE938wvcK1Zy9Ooi7xjOey9dbIH7gQOhmOOnVk2pezfLN3CPP9ZM2D6gn1VigfvadSF9tsbr55tvstW0iXtBoiQC99kvRWQuguVt3braql3b//jxC9zjfcpXkAb0TTKlzn1Rc/Er7wKc+dOP29lq3jz5Y7gkA3fjYxUIsrp1tWRZIb3+htdH9es56nK3/1he2Htx6RthfZt7sc60+Z67bdWr599mAnf3QCmpwP3o0ZAWLIz9rOvd0/a92JbKuGoC99lzIzGhe/d7LdWqlUotyZc1FyiXFPisM2NV/34WgXvyhBdtSRO2m7Eqp8AF1KLGcr+Gxn8umnNXc97JhgACCCBw8QgQuKfXVwTu6fkRuBO4E7gTuEdHEQJ392JAs6aOzAx3E7jPX+gFqWZWtwnczQzuvFmjDeo7GjLwwgncn3k+kj+j67prnCID9xcnRXTylPsBcvllzkUbuJuLMHmbCSXzAvcNX7r9aQKWB0ab2eXJh5WFfawWFrhPmpKlI0fdZ5lZ2oP7WxfdDHcTLPztWS8Iu+VGp8jA/fmJEeXN/mt9hVPigftL871+NheHSjpw3/iVe/xUrCCZX3qkGrg/92JEZ3ND+6taO8UK3F9f5gWeo4dbF1Tgvmlz7sXTStKYETnRwP3p57w+anubXazAfcVHBX6N86BF4H6ec/ySDNzNxfd9+91+btTQ/LIpuMB9y1a33qpVpFHDc0o0cH9hQkSncy/AmrGKwD3NL44XydPzAvf4iR6FjeV+zTKfi34TPS4SAnYTAQQQQMD84rpWBRzSECBwTwPPPPXzjWfkF9KYmUbxX3yyIo5emJylkyfdF72slRvSmJ+Gx/+018z4NLNGzfIAZmvezD1ZNyHIgle9L1RDBlpq2MANsb7N/emzCbGGDfZfhuCyVu4yBDt2uvXWqun+NPzIkZAmTPG+7N3T2f2Z/cy5scs0mC+GZ8+Gom3O29q1tdX5Ljs6E+KLDW69ZctKD45xZzGYJR3yfkJ9w3WOet1vRWeHmtmyedtjD1sKhRSd2XvqtPvXKy53fd5bEdZbb3tlx422VLmS/zINa9eH9epir+zwwZbq1pWmzoj94mOWadjxjaKzhvO2vr0stbwkcRkCs0zDoe9C0WUh8rZu99hqc70dXeah4Bef0SNydOaMe4KZt5kQq2N7OzoracNG18f8JHPcKNfHfMm2c1c0uKmNox7dLS1aHNHKVW5Z4/KThyzJ+MR98TGzIt95N6y3/+61+cGxliqUdzRxSpaOHnP34tIWTjQQ9ps1ak6ep0yPRJdaMFuTRo6GDLK1das052WvHQP6mMDC9dmVu0xD3TruDO4DB5WwTMP119iaMSeirdvceqtXk0YOz5GZuTx+glevsbnzDtfny9yQpkJ5aexoS3Kkp57xyt56sy0zw2bBwohWr3HrjUQkMyvbbKZeMwPMbK2vdEMav2UaypVzNGFylo7nzeC+1NHA/pZWrQ5HZzTnbaOGmWUBHE2eFtHBQ+7rNW3saPAgW5s3m9na3r4RuBO4X2xLypgZ7gTuwSwpQ+Dujprms96cCxC4F76kjPEhcM//mP1B/0HgXjS/OS8kcP9BD9Ef7MUJ3H8wel4YAQQQuKAECNzT6w4C9/T8CNyZ4U7gTuAeHUUI3AncCdyL/kBlhru7hrvZmOHuHiuFLSnDDHdmuKd5ep7U0wncCdyTOlAysBCBewZ2Ok1GAAEEfAQI3NM7LAjc0/MjcCdwJ3AncCdwL2QNd5aUubBvmsoMdymom6Yyw909mWKGu1TjPDdNZYZ7mifeAT6dwJ3APcDDqVRVReBeqrqTxiCAAALFFiBwLzZd9IkE7un5EbgTuBO4E7gTuBO4s4Z7Ep+lzHBnhnv8YcIMd9ZwT2LoKLEiBO4E7iV2cF3kFRO4X+QdyO4jgAACAQkQuKcHSeCenh+BO4E7gTuBO4E7gTuBexKfpQTuBO4E7u4a96zhnsSA8T0UIXAncP8eDrOL8iUI3C/KbmOnEUAAgcAFCNzTIyVwT8+PwJ3AncCdwJ3AvSQC91MhzZwT1o5v3LXhzc1rzQ2ea1RPHLTPnZVmvRR7g+fRw3OUkxOK3rQ5b7vjdlt3d7L10ryI1n7h1lumjPTQWHddbb8bYJub6H70sXcj3UcfshQJSy9OiujkKbfmyy9zb/DMGu5Ff6ASuJeewH3kMEs1aiT2d2lZUub4sZCmzQprb+7N6OvXdzR0gK2q1ZyERp8+7Y5V23e4Y4pZUmakGat8fM6dI3BP87Q70KcTuBO4B3pAlaLKCNxLUWfSFAQQQCANAQL3NPBYUiY9PPPszzee8Q1plr4R1oqPCoQ0D1rKijh6YXKWTp50X/eyVm5I8/HKsJa+6ZUdM8JS1aqOJk2L6PBh9wtc82aOBg+wteHLkBa86pUdMtBSwwbS1JlhfZv7xbBBfUfDBtvauUuaOccLm/r0tHRZK2nGrLB27HTrrZUbYh05EtKEKV7ZezrbuuUmWzPnxoZYY0bk6OzZULTNeVu7trY632VHZ219scGtt2xZ6cExbohlAi/zJdxsN1znqNf9lha/FtbHn3jteOxhS6GQ9MLEiE6ddstecbnr896KsN562ys7brSlypUcTZoa0eEj7uu1aG58LK1dH9ari72ywwdbqltXmjojrH373bKNGjoaOsjWjm+kWXO9dvTtZanlJdL0WWHt3O2WrVPb0fAhlg59F4q+Xt7W7R5bba63o75btrplq1aRRo/I0ZkzIT37glf2x+1sdWxva/bciDZsdMuWLy+NG+WiPP1cRLbt1nxTG0c9ultatDiilavcssblJw9ZkvGZENHpM27Z1lc4GtDP0jvvhvX23702PzjWUoXyjiZOydLRY27ZS1s40Zt6rlkX1qIlXtkRQyzVru1oyvSIDhx0X69JI0dDBtnaulWa87LXjgF9LDVv7vrsyvWpW8fRcAL3qBs3TS3eTVPNWHUs9zjNf4OZgL2GNH12YuB++pT7OgU3cxzGj1UE7q7QvV1s3djGllljvOBWrryjbJ+x6q72dvTihfmsMVu5ctIDo92xyoSFBbeGDRPDR/O4GUvMRZCCm/lcevf9sJa/440/pt6KZiyfkqUjR93Sl7RwNLiQsapOHWnK9LD257alcSNHQwfa2rZdmj3PG6v697Z0SYvEsdyMd2bfJk/3ypo13K+/xtbBQ3E+5RzVqpVwqMl2pG/3xpYtU1aSI/3t2YicXJJbbnTUvZulhYsi+nS1Wz4cTj1wL1/O0Zns2Nczn0ur14S1+HXP0gTg5vP85MnYstWrS1u+ll6a77XZfK42beL67N7jlq9X1x3L9+2Xpszwyt7Xzda1V9uaMTuibdtzA+XqjszrmaA5fqtfz4kePxu/ch+rWEEaO8qKuvgdP+kuKXPwoKLnJPHjwcpPw3p9meczeril6tUdnYobP0wofvhwYj+bz3NzXlUwcB8+yNax44lla9aUZsxODNz9fOrWdaLnHenMcC/sveh33lmvnv97dMUH/ued8fts2vbdd4ltrlJFOh5nUbmyoueu8Zs5Jo/mvr/zHqtYMbEvzGNmLM97f+eVLVvWUe3aiftg/mLuQ1FwMxdQC/Pxq8EvcDfvj7zz6YLPKWy8i98H8xxjEX/eac7hq1RJ9DlxIpTwGWh8zHs3fsvOVvRcsuB556jhOb5jlb+Yop8FqYzlfuede+PGQPNaqfikUrZaNfkcP4q+n5Pd/PqosH0orM5kj7UGDZzoeXv8dvCQdDZ+LK/jJHw2m+dVqpQ4lletpuh3n5LY/HzM2GHGqq82uY2pVFEaM9L9zpDsZo41830o73i79ipHffvkfiFMspJ0++7YsZBOnIh9sapV5XvemcpxGcTxU6dO8pbJHpdFvRf96jh6NJSfS+Q9XthYnmSXlXgxv/diEJZ+O27ykVO5k2vyHjfnB5V9xvIgGp7u8R7EPnzfdaTbZpMx7dsXO+iaHCqVser7bvOF/Hp+76/rrih/Ie/yBb9vzHBPs4sI3CUCdwL3AwflG2LNmBPR1m2uT/Vq0sjhOTp1MqTxE7xAx1yMuPMO94LEl7khTYXy0lgT8jnSU894ZW+92Va3rrYWLIxo9Rq33khEeuQB9wTe1Gu+kJqt9ZWOBvS1ogHfu+95wYuZzVyunKMJk7N0PPckvNWljgb2t7RqdVhmRnPeNmqYFZ1ZPXlaJD+Qa9rY0eBBtjZvluYt8PaNwL34gfuu3Saw8ix79bB05eX+gfuxoyG9ONkr26WTLXNcELi7FwfNRdqJBS4O5gXus+ZEtPlrt4+qVJZGj8xJOXAvePG0zfWOevbw/+JsQu2CIc2VuRdPL+TA3Vw8/Tp3rKpWVRo5zD/EMoH7nAIXTwuOVSUVuE+YkpUf9La8xL14Wljg7nfxtKQC9xMnQ3q+wFh+Vwdb7W53L9j4Be5+Y3kQgbvxyQtUWrV0NKifpcICdzOWmwvoZmvWxNHggbY2+Y3ljfwD9917zYUKb/zpeZ8d/azxC9xN0JMwVt1iBxK4+/0aJ4jAPZ2JHkMG2oUG7rPMr5WKOdHDXDwtLHBPZaKH3+l+YYG730SPJo39w7FPViU30aOowH3m7NiJHsMGmwtEiXscVODuN9HDzyd+LC9qooeZzOK3mfdi/ESPSy/1L7t+fSipiR5m0kwqgfuuXYnnne3vzJ3pkuT3wFTOOwsL3Cemcd45cIBdYoH7NztD0QlPeVvnjrZu/5E7Vv3Qgfv7H4T1RtyktGbNkg+qzThsLi7nXTzNm5Tmd955w/X+9e7YkTiWt709tePH75eVQYTE770f1rLl3vcWc4G7aZPkfUzgbn7NlRdYNmzgTvDzu3ia5FulxIv5TdoLwtJvx03gPm1m7ESPwf3tEgvczSSI5wpM2utwp60O7VM71kq8AwJ+gS1bQgkTPW6+Mfk2p/rLyoB3v9RVN29+RJ+vc8+Ts7Kkh8dZInBPr5sJ3NPzY4Y7S8oww50Z7tFRhMCdwP1CXVLGzHAncHdU1Ax3AvfUZ7gTuEsE7u64b0IsAnf3C0Vhv6wkcHd9zDhM4C6lOtGDwN09fsyvwAncvfCCwF0yv5IncE8z0PoBn07g/gPi+7w0gXvw/UHgnoLpyVNnVKli7E8qmOHODHeWlLHFDHcC9+/yZo02dTRkgK0vv5LmL/RmTJklnxo3jJ01WtRMI2a4S2amkZnJ57c8WKuW7vJg3+xyA6/atZjhnvdxXpwlZQjcCdzzjp/oxVNmuKe8lCGBO4G731cqZri7KmZJGWa4p76kDDPciw4qCNwJ3FOIsi7IogTuF1a3ELgH3x8E7kmY7t13SP/6389rw6btqlG9in756GB1aHtD9JkE7gTuBO4E7mYsYIY7M9yZ4e5+oLKkjBTkGu4sKeMuD+a3mTXcWVLGUZ9ellhSpuh7B/kfP+5SGsncO4glZYq+dxBLynhLGbKkTO65QABruBO4E7jHC7CkTBLh1UVUhMD9wuosAvfg+4PAPQnTx594Wg3q1dLjD/TT2i+36sGf/0lLZz6pGtWqELizpAxLyrCkTHQUIXAncCdwJ3AviZumErgTuJt3Vt5amubfrOHujjWs4S4V56aprOFuizXcvS/ArOEumXsHsYa7+8tK1nD33hus4Z5EUJZmEQL3NAEDfjqBe8Cgkgjcz2NqWZauvWuM3pn3F9Wp5d7BaPTjf9TQPp3VsW0bAncCdwJ3AncC92kRsaSMJQJ3AncCd26aWqOGo5FDLXHTVHc8OHkyJG6a6oZYVaok3szwxImQuGmqe6xw01Rp1DBLNWs6Mjd4PnjIncjQtLEj1nB3jxHWcI8NLlhShiVlgo8Hv98aCdy/X+/zvRqB+/mEUn+cwP08ZvsPHlGHvj/V+rcnKpT7G8FfPzlBl1/aVEN6dyJwJ3AncCdwJ3AncNfAfgTueR+nLCnDkjIbv3KDoooVpLGjLJkLEU89493T4dabbXXramv+KxF99rlbNhKRHnnAXTrmuRcjOnvWPaKuas0Md+PADPfEE3ZmuDPDPZmvvrt2hTR+gjf+dGzPDPeCbsxwZ4b7vn3u5zAz3GNHFGa4JzPCpleGwD09v6CfTeAetCgz3M8runnbLg159LdaueTZ/LJ/ena2ypYto8dG99aGLWe19C2vmqyINHJwSPMW2jp81P3wMlun9o7KlglpybLYlxw5KKzl79n6Zpf39ztuc1SzRkgLX4stO7hvSKvXOtq4yfv7TTdIzZuE9NLC2FkzfXtIX2+XPlvrlb3qCkfXtg5r5suxZXveG9KB72yt+Mjb32ZNpPZtQ5o8K7bsvXdLZ844Wv53r2ztmlLPbmG9MNWO2eF77lL0S/bS5d6fy5aVhg8IafZ8W8dPeHXc3dFRJBzSa2/GtnnU4LCWvm1rz17v7z9u66halZAWvp7o88lnjjZ/7f391hulRg1DevnV2Hb06ylt2eros7XePlx9paOrrghr9vzYsr26hfTtAUcfrvTqvaS51PbWkKbOji3brYt06pSjt9/z6q1bR+reJawJ0+J8Okm27eiN5V5ZE06Yfp45z9HJU97rFeYzekhYi5fZ2rffK9uhnaPKFUN6dWmsz9D+IX30qaMtW72/33aTVL+etGBxbNkBvaQvNzla+4W3b9dd7ejylmHNWRDb5t7dQ9rzraOPPvXqaHmJdOuNIU2fG1v2vnukY8cdvbvCq7dBPalrp7AmTI/16dpJsuJ8qlR2NKBXWNPmODqT7b1el46OQuGQXo87fsYMNQ6O9h+I9alYIaTFb8S2efjAsN770Na2Hd7fb7/FUd06oQSfgb2ldRscfbHRa8cN10otW4Q095XYNvfpEdI3uxx9stqr9/KW0k3XhzT9pdiyPbpKh484eu9Dr15zo9FO7UOaNCPuvdhZOpfjaNnbXtlqVRz16xmOls0psORxl7vc1y44VkXC0qghIc1f5OjQYW/f7vqxo/Ll/H3eeT9xrKpVM6RXlsS9F/uEtGa9rQ25oZt59MbrpBbN/MaqkLbtcLTqc6+O1pc7uu7qcPR9UHC7/96QDn1n6/0CY1XTxlKHO/zHquxsR2+96/nUqiH16h7WxOm2rAKHm59P3lg+d4Gto8e9Ojp3cFQmy38sf/NdW7v2eHvc7keOalT3H8tXrXH01Rav7M1tpKaNQpoXP1bdL23ZljiWX9M6rFnxY3m3kPYfsPXBSm9/WzST2t0W0pT4sepu6dTpxLHqvi5hvegzVjm2o6UFxqry5aRRgyPKsRJnbO7aYyeM5Waseu1NW3v3xY7lVauE9GrcWF7YWNWgvnu8Ftz695K+2uzo8/Vem6+9ytGVl/mP5Xv3JY5Vt90Uio4pBbfuXaQG9cKxB7b5WaBCGj8ldj1xv7GqUkVpUJ+QZrzk5K8PbSozY3nYZ6waPSSkRW8kjlWVKoa0KG4sH9Y/pBUrHW3d7u3ej26R6tXxH8u/2Oho/ZcFxypHrVqENSd+rLovpF17HH28yqu31aXSLTf4j1VHj8WO5Q0bSF06hDQxbqwqaiw3x2VesG5etUtHycxteL3AeZX5+0MjI9HPg/ht97e2lviM5e+usLVjp1e67W2OavuMVYN6h7R2g50wll/a3H+s2r7T0aefefVecZnU5lq3nwtuZiz/7rCTOFa1C2nyzMSx/Ow5R2++4/VRjWqO+vSIaNIM+7xjeVHnnS2bZyW4ZZUJa/HSnODPO+8LqUYNrw15HidOSDNfjv18T/W8s1H9xPeiOWd8dlLse7Gw884xQ5Ifqwo772x9WRnlFPzgkFQmEtayv+ckd955f0jVqyX6HDvmaHbceZXxqVM7sWx2tjRldqylOe9s6DNWVa6QpROnc2KOS2O29ZuchPPOEQMTfcz7cOdu/7Hc77zzipb+Pm+8m5Nw3nnDNYmvl5UV0oqPc5I67zTn5bVrJfpULJelU9mxbc6KhLVh07mE887e3bJ0NifW0vj4jTNZETOuWUmddz44IiI776dOBfT3fGuned4ZUpXKiW0uVyas7HOx7ShbJqyzcX8zu1KhXESns2PfM5FISF9szEn6vLNRg8T3ot+xFgpLO3baCeedD4zwfy+a/bDizieysnLHqt0epPmOfM2VWQnnHuXLhXUmO9bBPOvwYUcvxZ1X9e3hf97Zvm0ZnYs7Jkzfr/syJ2Es73Z3lnLijx+fNph9MHWMn2wlnHc2axKWE7fLfpamDr9js0yZsBa+lpNw3nnVFVkJln59b+o9dNhJ/I7cI6Tq1ROPtfJlwzpzNnaHy2SFE8xMvX7vRb8+NmX92mzOkxzHieYIBbcykZCmzs1JyBAuaZr4WVeYpRkT4sdyv/01r3vwkKP5i+POO3uGVK1qcj6FvRcLG6s2bjkXkyHUqyv17e4/VplxJt7H970YksKhxLGtcJ9QwvurMB+/9vkdJ8bSb6wy743Va62E887Od2bpXPznbSHHmmOH9MK0xPPyxg2TH6tMb9rJvhd93ueF+fi9Pwobq1IZy/3qSOm9WMRn3fNTrITzztYtyyacf/OH5AWY4X4eq++OHFe7no9p3fKJ0S/JZvv3/3lRLZo21OiBXZOXpiQCCCCAAAIIIIAAAggggAACCCCAAAIIIIBAqRYgcD9P95qrq1d3GKVls/+khvVqRUsP/cnvNLh3J93b8dZSfXDQOAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHkBQjck7D6zz9PVlZWRD9/ZJBWrd0UvWnqBwufVrWqlZJ4NkUQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEMkGAwD2JXj589Lh+8dvxWvHJOlWqWF6/+dkodWV2exJyFEGg9AqcPHUmOh6wIYAAAsURKGoMYXwpjijPQQCBwgQYUzg2EEAgXsDcS+zEyVOqWsV/EiHnKRwzCCCAQHoCBO4p+JkPnYoVyilk7iTEhgA6Dcf1AAAPkElEQVQCpVbALBv12frN+e3rd197PfHPI6P//+GqL/Tbv0zVgUNH1LJ5I/3uX8epRZP6pdaChiGAQPEEjh47qV/94XmZc4dJf/llfiV79x3Sv/7389qwabtqVK+iXz46WB3a3hB9vKjHircXPAsBBEqLwKavd+qfnnha3Tv9SA+PuD+/WX+bOF/PTH4l///r1amp5XP/zDlLael42oFAwAKWZem5qa9q0hzvrvVP/GxU/nK5RX3X4XtQwJ1BdQggUKoFCNxLdffSOAQQKI5Al8H/oqd++4/5Qbq5YXIkEtHpM9m6e9C/6D/+aYQ63tFGE2e/pvc+XhsTphXn9XgOAgiULoFNW3fpoV/8OXpR7kx2tqb8v1/lN/DxJ55Wg3q19PgD/bT2y6168Od/0tKZT6pGtSoq6rHSJURrEEAgFYHXln+s3z81XU0a1FG7W6+NCdzN0peXt2yq3l3bRas0E4PMUpics6QiTFkEMkfAzGyfMneput51q+rVrqGl73wSPf9Y/cbzsm270O86jCmZc4zQUgQQCEaAwD0YR2pBAIFSJHBV+5F6/5WnogFYwW3N+i36tz++oMVT/xD985nss7qxywO+ZUsRB01BAIEUBfYfPKIt23ZFn/Xs1IX5gbuZVXbtXWP0zry/qE6t6tHHzX1hhvbprB/fdl2hj3Vs2ybFPaA4AgiUJgHzq7taNapq/mvvq2yZrJjA/ae//pt6dLld8eME5yyl6QigLQiUnMCp02d0c9eH9PZLf9Gebw8W+l1nx859fA8quW6gZgQQKIUCBO6lsFNpEgIIFF8g++w5tbl7nEYOuEfhUEiXX9pU93S4JTpbzMwAmf/ae3r2j4/nv0DHfo/r6d//o65s1az4L8ozEUCgVAp88Mn6mMDdBPEd+v5U69+emL883a+fnBAdZzrfeVOhjw3p3alU+tAoBBBITeCvL8xLCNzNMnh1a1ePzlRt1qS+7r7zJtWsUZVzltRoKY1Axgq8++Ea/ebPU6JLURX1Xeeb3fv5HpSxRwkNRwCB4ggQuBdHjecggECpFcjJsTRh1hJVq1pZu789qEXLPtQ1V7TQX//rMc1e+LY+XbNRT/764fz29xrz7/r5IwP1oxuvKrUmNAwBBIonEB+4b962S0Me/a1WLnk2v8I/PTtbZcuWiV7YK+yxx0b3Lt4O8CwEEChVAn6B+4LX39fxE6d09lyO3npvlQ4dOaY5zz6h199ZyTlLqep9GoNA8ALfHTmuvuP+Q7/6hyHq1O7GIr/rmMCd70HB9wE1IoBA6RUgcC+9fUvLEEAgAAGzFnOv0f9H7778V32+4WvNfuVtjX/yn/NrbtfrH/S33/2jrmt9aQCvRhUIIFCaBOIDd/PFtl3Px7Ru+USZe0OY7d//50W1aNpQPe+5o9DHRg/sWppYaAsCCBRTwC9wL1iVmTRwe49H9btfjlU4HOacpZjOPA2BTBAwa7KP/OkfdMfN1+ixMe6F/bfeX13ouHHwu6OMKZlwYNBGBBAITIDAPTBKKkIAgdIoYL68XtdpjF6b/kcdP3k6elOh16f/T3Q5iLw1D9+a82fVr1uzNDafNiGAQBoC8YG74zi6usMoLZv9JzWsVytas1kOYnDvTura4ZZCH7u3461p7AVPRQCB0iJwvsDdtHPcz55Ut04/UqtLGnPOUlo6nnYgELCA+UXMT371VzWsX0v/8fiI/GXuvti0vdBxw/x6hu9BAXcE1SGAQKkWIHAv1d1L4xBAIFUBs8aymfHRrHE9mXBs2rxlGj99kf7+8l9lwveeo/+PHh3VS13a36znpy+K/nx77vjfpPoylEcAgQwQiA/cTZP/88+To/eE+Pkjg7Rq7aboTVM/WPi0qlWtVORjGcBFExFA4DwC8YG7uRGz+fXdDVe3igZm5uaq5iLekml/jF7U45yFQwoBBOIFzLjxL//lLm33+1+OUyQSjv47HAnLtuxCx41z53IYUzicEEAAgRQECNxTwKIoAgiUfoGvvt6psT97UtnZZ6ONbdG0gf7wbw+qRZP60f9fs36LfvN/J2vT1zvVuGEdPf37n6pl80alH4YWIoBAygJ+gfvho8f1i9+O14pP1qlSxfL6zc9GqWvuDPaiHkv5xXkCAgiUOoGnXnw5esHu4RH3R9tmArA+436tr7fvid4otWKFcvrFo4PUsW0bzllKXe/TIASCETCz2Ps/8ERCZWZZmYeG9Sjyuw7fg4LpA2pBAIHMECBwz4x+ppUIIJCCgJnZbm5AZm5kWL5cWd9nmuVlqlSqkEKtFEUAAQQ8gZOnzkTDMTMrNX4r6jEMEUAAgXgBs8SdZTuFnpdwzsIxgwACqQoUNW4wpqSqSXkEEMhEAQL3TOx12owAAggggAACCCCAAAIIIIAAAggggAACCCAQuACBe+CkVIgAAggggAACCCCAAAIIIIAAAggggAACCCCQiQIE7pnY67QZAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIHABAvfASakQAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBMFCNwzsddpMwIIIIAAAggggAACCCCAAAIIIIAAAggggEDgAgTugZNSIQIIIIAAAggggAACCCCAAAIIIIAAAggggEAmChC4Z2Kv02YEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBwAUI3AMnpUIEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBTBQgcM/EXqfNCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAoELELgHTkqFCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApkoQOCeib1OmxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQCFyBwD5yUChFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQyUYDAPRN7nTYjgAACCCCAAAIIIIAAAggggAACCCCAAAIIBC5A4B44KRUigAACCCCAAAIIIIAAAggggAACCCCAAAIIZKIAgXsm9jptRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhcgMA9cFIqRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhEAQL3TOx12owAAggggAACCCCAAAIIIIAAAggggAACCCAQuACBe+CkVIgAAggggAACCCCAAAIIIIAAAggggAACCCCQiQIE7pnY67QZAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIHABAvfASakQAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBMFCNwzsddpMwIIIIAAAggggAACCCCAAAIIIIAAAggggEDgAgTugZNSIQIIIIAAAggggAACCCCAAAIIIIAAAggggEAmChC4Z2Kv02YEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBwAUI3AMnpUIEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBTBQgcM/EXqfNCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAoELELgHTkqFCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApkoQOCeib1OmxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQCFyBwD5yUChFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQyUYDAPRN7nTYjgAACCCCAAAIIIIAAAggggAACCCCAAAIIBC5A4B44KRUigAACCCCAAAIIIIAAAggggAACCCCAAAIIZKIAgXsm9jptRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhcgMA9cFIqRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhEAQL3TOx12owAAggggAACCCCAAAIIIIAAAggggAACCCAQuACBe+CkVIgAAggggAACCCCAAAIIIIAAAggggAACCCCQiQIE7pnY67QZAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIHABAvfASakQAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBMFCNwzsddpMwIIIIAAAggggAACCCCAAAIIIIAAAggggEDgAgTugZNSIQIIIIAAAggggAACCCCAAAIIIIAAAggggEAmChC4Z2Kv02YEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBwAUI3AMnpUIEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBTBQgcM/EXqfNCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAoELELgHTkqFCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApkoQOCeib1OmxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQCFyBwD5yUChFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQyUYDAPRN7nTYjgAACCCCAAAIIIIAAAggggAACCCCAAAIIBC5A4B44KRUigAACCCCAAAIIIIAAAggggAACCCCAAAIIZKIAgXsm9jptRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhcgMA9cFIqRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhEAQL3TOx12owAAggggAACCCCAAAIIIIAAAggggAACCCAQuACBe+CkVIgAAggggAACCCCAAAIIIIAAAggggAACCCCQiQIE7pnY67QZAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIHABAvfASakQAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBMFCNwzsddpMwIIIIAAAggggAACCCCAAAIIIIAAAggggEDgAgTugZNSIQIIIIAAAggggAACCCCAAAIIIIAAAggggEAmChC4Z2Kv02YEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBwAUI3AMnpUIEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBTBQgcM/EXqfNCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAoELELgHTkqFCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApkoQOCeib1OmxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQCFyBwD5yUChFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQyUYDAPRN7nTYjgAACCCCAAAIIIIAAAggggAACCCCAAAIIBC5A4B44KRUigAACCCCAAAIIIIAAAggggAACCCCAAAIIZKIAgXsm9jptRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhcgMA9cFIqRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhEAQL3TOx12owAAggggAACCCCAAAIIIIAAAggggAACCCAQuACBe+CkVIgAAggggAACCCCAAAIIIIAAAggggAACCCCQiQL/H9+ONnOzjFtZAAAAAElFTkSuQmCC",
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"text_length(\"sst2\", query=\"predicted:ko\").visualize()"
]
},
{
"cell_type": "code",
"execution_count": 104,
"id": "ca531153-d048-4f01-8cfd-7d370deb27b7",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"type": "bar",
"x": [
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176,
177,
178,
179,
180,
181,
182,
183,
184,
185,
186,
187,
188,
189,
190,
191,
192,
193,
194,
195,
196,
197,
198,
199,
200,
201,
202,
203,
204,
205,
206,
207,
208,
209,
210,
211,
212,
213,
214,
215,
216,
217,
218,
219,
220,
221,
222,
223,
224,
225,
226,
227,
228,
229,
230,
231,
232,
233,
234,
235,
236,
237,
238,
239,
240,
241,
242,
243,
244,
245,
246,
247,
248,
249,
250,
251,
252,
253,
254,
255,
256,
257,
258,
259,
260,
261,
262,
263,
264,
265,
266,
267,
268
],
"y": [
3,
10,
80,
247,
413,
590,
722,
917,
1053,
1054,
1092,
1106,
1188,
1173,
1243,
1202,
1255,
1274,
1239,
1303,
1208,
1188,
1137,
1052,
1031,
984,
965,
921,
904,
875,
834,
808,
857,
736,
811,
721,
723,
714,
652,
650,
612,
652,
606,
612,
603,
546,
550,
554,
472,
536,
506,
490,
473,
480,
526,
471,
434,
423,
389,
434,
417,
403,
401,
380,
381,
371,
391,
353,
341,
328,
340,
339,
334,
291,
310,
325,
296,
292,
313,
290,
308,
297,
257,
279,
295,
265,
258,
270,
239,
250,
243,
247,
246,
215,
220,
237,
203,
199,
219,
204,
209,
212,
201,
197,
189,
184,
185,
181,
178,
183,
178,
182,
157,
159,
143,
153,
143,
155,
146,
147,
138,
142,
139,
136,
143,
144,
116,
137,
107,
126,
105,
108,
115,
101,
122,
97,
87,
97,
91,
101,
90,
83,
82,
89,
95,
87,
100,
70,
81,
74,
81,
68,
78,
73,
72,
75,
68,
60,
61,
55,
66,
76,
53,
55,
58,
58,
54,
46,
48,
51,
56,
61,
51,
40,
47,
32,
35,
46,
35,
34,
45,
37,
27,
30,
36,
25,
34,
30,
30,
26,
32,
24,
27,
17,
16,
18,
21,
17,
9,
18,
15,
20,
21,
20,
18,
16,
15,
18,
14,
21,
14,
17,
18,
16,
15,
10,
13,
9,
14,
6,
14,
4,
10,
9,
6,
6,
7,
11,
7,
7,
4,
8,
8,
6,
6,
5,
4,
4,
6,
4,
5,
1,
1,
6,
4,
5,
5,
7,
4,
6,
8,
3,
1,
6,
2,
3,
2,
5,
4,
4,
1,
0,
0,
0,
0,
0,
1
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Computes the input text length distribution"
},
"xaxis": {
"autorange": true,
"range": [
1.5,
268.5
],
"title": {
"text": ""
},
"type": "linear"
},
"yaxis": {
"autorange": true,
"range": [
0,
1371.578947368421
],
"title": {
"text": ""
},
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABOAAAAFoCAYAAAD+YIRiAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3QeUFFWih/F/dQ85Z0kKRkRFRUVWTKAIogiSc85gzu6aVt014RoAyUFRBBEUgaeiYERBQUVFRQRBBUGiZJiqeudW0z0948wwzJ3BZubrc97Zbaaru/pX1T0737u3ruP7vi9uCCCAAAIIIIAAAggggAACCCCAAAIIIJArAg4BLldceVIEEEAAAQQQQAABBBBAAAEEEEAAAQQCAQIcJwICCCCAAAIIIIAAAggggAACCCCAAAK5KECAy0VcnhoBBBBAAAEEEEAAAQQQQAABBBBAAAECHOcAAggggAACCCCAAAIIIIAAAggggAACuShAgMtFXJ4aAQQQQAABBBBAAAEEEEAAAQQQQAABAhznAAIIIIAAAggggAACCCCAAAIIIIAAArkoQIDLRVyeGgEEEEAAAQQQQAABBBBAAAEEEEAAAQIc5wACCCCAAAIIIIAAAggggAACCCCAAAK5KECAy0VcnhoBBBBAAAEEEEAAAQQQQAABBBBAAAECHOcAAggggAACCCCAAAIIIIAAAggggAACuShAgMtFXJ4aAQQQQAABBBBAAAEEEEAAAQQQQAABAhznAAIIIIAAAggggAACCCCAAAIIIIAAArkoQIDLRVyeGgEEEEAAAQQQQAABBBBAAAEEEEAAAQIc5wACCCCAAAIIIIAAAggggAACCCCAAAK5KECAy0VcnhoBBBBAAAEEEEAAAQQQQAABBBBAAAECHOcAAggggAACCCCAAAIIIIAAAggggAACuShAgMtFXJ4aAQQQQAABBBBAAAEEEEAAAQQQQAABAhznAAIIIIAAAggggAACCCCAAAIIIIAAArkoQIDLRVyeGgEEEEAAAQQQQAABBBBAAAEEEEAAAQIc5wACCCCAAAIIIIAAAggggAACCCCAAAK5KECAy0VcnhoBBBBAAAEEEEAAAQQQQAABBBBAAAECHOcAAggggAACCCCAAAIIIIAAAggggAACuShAgMtFXJ4aAQQQQAABBBBAAAEEEEAAAQQQQAABAhznAAIIIIAAAggggAACCCCAAAIIIIAAArkoQIDLRVyeGgEEEEAAAQQQQAABBBBAAAEEEEAAAQIc5wACCCCAAAIIIIAAAggggAACCCCAAAK5KECAy0VcnhoBBBBAAAEEEEAAAQQQQAABBBBAAAECHOcAAggggAACCCCAAAIIIIAAAggggAACuShAgMtFXJ4aAQQQQAABBBBAAAEEEEAAAQQQQAABAhznAAIIIIAAAggggAACCCCAAAIIIIAAArkoQIDLRVyeGgEEEEAAAQQQQAABBBBAAAEEEEAAAQIc5wACCCCAAAIIIIAAAggggAACCCCAAAK5KECAy0VcnhoBBBBAAAEEEEAAAQQQQAABBBBAAAECHOcAAggggAACCCCAAAIIIIAAAggggAACuShAgMtFXJ4aAQQQQAABBBBAAAEEEEAAAQQQQAABAlyac+DAgWRt2b5DpYoXU+HCBTlDclBg+uz3tXzFz7r35u45+KwpT+X7vr7+fpVOOK6qihUtnCuvkdefdMu2HXpk2Itq1exi1a9bO+Hebm6cQ89Nej14nwO7twj+c+/e/fph1S86vVZNhUOhXDNYtWadihYprGMqlg1eIzfeW0Y7n/a1c+1N8sQIIIAAAggggAACCCCAAAKBAAFOkuu6Gjdlrma/84l++nld7NSoVKGs+na+Sh1bXnbUny47du1RiWJFjtj7SO/17n18vN5csFiL547Mlf1Y8dMvurb3PbquVysN6HZNrrzG4T5pVt33H0gOnrpggaTDfYksPz4r+/Lr+j/UpONtuu/m7mp3TcMsP3duPPBInUNdhjwc7P7kYf8M/vOlme/o4acna+LTd+q8M2tl6a2Z7xBzDIsULpSlx5tYfHrDnjrvrFqa+NSdwTa58flIb7/Se+0s7TQPQgABBBBAAAEEEEAAAQQQyLZAvg9wO3buVv/bh+qr5T/pgnNP02UXnaNjKpTVxk1b9c6HS9XssvPVsumF2QZOhA1/37hFl7W7WUveHH1ERvVl9Hq5ERjifc3IpRHPv66rL6uvk0+o/rfTH477v5+cpLJlSmpIz2tzZb+zui+JEuCO5DmUNsCt+XWDXp3zvvp0ukolSxTL0vGYO3+RXprxTiziZWWjF2e8o0oVyujyi87JtQCX0X6lfe2s7C+PQQABBBBAAAEEEEAAAQQQyL5Avg9wwye+phETX9OArtdocM9rFQo52ddM0C3fmLdQdz48+ogFuIxeL7cDXKLxH457o7Y3q1Wzi3ItwGV1X450gDMjtMLh8F8O3ZE8h9IGuOycR+bcXrVm/WEFuLSvkxufj5zYr+x4sA0CCCCAAAIIIIAAAggggEBqgXwd4Lb9uVMNrhmiGtWP0ayJD6cbAuK51v62QVNmvqsPFi3TH5u36bIL66r1VZfo3DNPiT3s/U+/CoLeY/8aoEeHvSRzv1qVCmpyaT3d2KeNPv7s62C662dffh/8e/e2TdTp2stj25vrUZnrcJmRd0NHTtMX3/wYPK554ws0sNs1sX1csepX3fHwKN01pJPqnX1qbHvX89RhwAO69sqLguedNO1Nmci4a/denVCjSrC9Gel328AOwTarf/k9GLnz7kdLg/uXX1RX/bo0V/mypWLPOevthXpv4Rf6aPHXwb/VOvFYdWndWFdcct5fPk+ZvV40MIx+7FY9NXZ6YGDsL6x3hm4Z0P4v0y9feeM9vf3+Z8HoxLNOO0ktr7xQzRqdn+FneOOmbep/x1AN7tEyNqpo0J3/05WXnS/X9TTmxdn6+ZffA8+2V1+qnu2bxjyjx+1/DwzRE8+9HLzXQoUKqsG5p+uOIR1VplSJ4HVzyj36Jsw5df/QiVq09LvgunVVK1cIfvTk/YNVs/oxwX/PzMGMcDLvy4ycM+dj9Ga2eem1d3X39Z21/IefMz0H4kEzCnCfLPlWM+Z8EJzPx1WrFIwU7dvpqlR+o56fpaH3DdKTo6YFjzM3c9xuG9ReJ9WsFnuZLVv/1CPDX9InS5bL/Hcz1bt4scg1++qddaqqV6mQ4f4e7jmU9mSZ+X8f6vnpb8tMVzafh36dm2v6nPeVnOzG4pnZ96fGTNewh29Q1WPKB0+R0Wfg0gvO1gNDJ+q1Nz8KHhcdedm389XBuWrOv6aNzlfZ0iX02IgpwRT3OwZ3VLe2TYKfnXLisbqhT+tgW/PeFiz8Us8+eH3wHbHoi+WqUK508Nk3U+GjofL1tz7WxGlvatJTd6Yaobd8xRr989Gxuu+m7qp9So1D7lf8a5vX37N3nyZOfVMfLloWfOYuqX+mrrj0vFQjgI1NVo9zhh9UfoAAAggggAACCCCAAAII5EOBfB3gPl26XL1vfkz339JDbZtfmunh37p9hzoM/Le2btsRRDdze+u9z7Thjy2aNvp+nXZyjeDfoiN3TEw5+fjq+se5pwWhyfyfmWr2zodL1Pqqi1WqRDFNnbUgCGNjh96mf5xzWuyPcHOdNPPvl15wlmqfXENLlv0QBBqz3b9v6xU8zvyB3GnQg3rmoetThRczoqjOZb2D6XM39WurabMWBPHAhDwTBQoVLBBErysbna8/d+xS2/7369d1fwR/ZJcsXjSIE2fWPkETnrozeKzZ9q7/jFaD887QP86trd179umDT7/SVZfVDyJC2ltmr2cCw6tzPgg2Mc932ik19N4nXwYxxIz+evD23rGni16Hy+xrs8vq65PPvw3eg4kiDRucne6xisajB27rqTYHj5EZWXYgOTkIPSZIFilcUDPf/Ci4H/+46HEz00CPqVAm2L+Nm7fp9Tc/Crxen/CwkpLCOeIev/MmgM5662ONnvyGzj79JDU47/Tgx+Z8NBH0UA779h9Q2373aev2nZrz/H+DIPPb75t0RYdbg/cw6rGbg4CX0TmQFjK9APfN96vVfsADQSDs0KKRfv9ji+a886l6tG8aC7nxftUrVwii6rLvVgUxxwS2uZMfUeFCBYPrLV7T459BwO7cqrEqliutyTPmBWHUXGvRnJc//fxbhvt7OOdQ2vdm4vlDT7+g2icfp8YXnysTbKe89m7wMGMfvQZc9L3Mfv6/qnls5Uw/A+Y6eRNe/r8gdppbp4PXi2xQ73TVOfUEmfOvSqVywblrrvd26onHqtFFdYNry5mfnXvmyUGsN7f492bi12m1aurLb37Uws+/Ddzvualb8LjxL/+fho6cqg9fezYIe9Hb51/9oO43/FcjH705eK1D7Vf8a5twf/N9w4PvpxZNL1TlimWDz7mJeuZ1zevHf7+Zz0lmxzkf/i7lLSOAAAIIIIAAAggggAACmQrk6wBnVh2874kJmvT0XalGsaUn9s9HxgajXGaMe1CnHLy+mIlyJiYUSErS/FeeTPUH6vl1T9XYJ24PprSai7M3735XELrMaBczwszcoosGdG/XVLcPioxIi/4RHh83zB/HA24fGvwh/tZLjwcjuLIa4MxzmhF5ZhRc2mvAmZFXJs7MHP+QTj4+MkLp/+Yv0q3/fk6P/LNfMPLm5vuHB6PBPnljeKoRguZC7o6T/nTdjF4v+t5MuDOjgKI3E3dWr10fW5zBODXpdFswgujRfw2IGZrHbf9zV8w67XHKKMCZSDr+yTtkjom5mfD4j+aDg0A1+vFbUh03s/Lli8P+FcQ2cxv1wht6ZtyrMY+ccE+73yai1b2ib7AKZ/w14LLqEA1k0UA74I4ng/A1b+rQIP5kdg5kZBi/CEM0Ys6b8kTsGoIP/u95vfz6fL398hPBKLFotDLGYx6/NXau/G/0Kxr70pzA9KzTTwxGEF7b619BDL6xb5vg5aPhKH7xDNtzKO372rtvvy6+9nqVKV1Cr41/KLZYwtx3P9VtD47MNMBl5TOQ0TRWY2fOv+t6twqmucffMgpw8Z99z/ODz+C8Dz6PWWclwF10fp3gpTLbr/gAZ0bV3f3fMfrXDV3V8drIojPmtc25ZEbtHu5x5vcuAggggAACCCCAAAIIIIBAaoF8HeCif+RHR7pkdnKYIGRuJoDF3yZM/T898dxUvT/j6WDEUjREmCmETS5NmaJ5+0Mjg1FD00bdp9NOqRn7A7f+1QNl/lg2U/fMLRqp3pryuKodnI5o/t2M1HnoqRf0+L0DgzCVEyHoqq53BiPxXhpxT+wtmVh4duM+ikZBMyV22ISZwR/mZlRWNExlZnWoePLO1KGqfDAMmeeJvsZ7rz4VTLkz005vum94EHIuODgizDxu5POz9Oz4Gfp41jCVLln8L7uQUYAzo97mvPBIqsd3u/4/2rBpa+x4Ro9bNDxGHxyNpO2vaah7b+6eI+5pdzyjAHc4DmbKpJmKaiKcGWX4wK091ebqyEhNc8vomKTdl7Qj4MxItUtb3xjEIxORorfPvvpePW54JDYiMaPz3oz87HHjI8GUWvN5eG/hlxp891Ox89g8n5lyfVHL64IRiv+8oUum+xv9fBzqHEr7vsxILjNSMHocoz8/cCBZDVoMCUarZjQCLiufgcxClxmBOX/akyqQZoXbjAJcfDg1+2lGv/a6+dGYWW4EOPPdYr5j3p32pI6pWDbGt+y7n9Rx4IN66t9DglGDWT3OmX0/8DMEEEAAAQQQQAABBBBAID8K5OsAFx31kTb0pD0RzHTQes0GpJoCGn1MNChEp5FG/0B9+bl7dcapx8eeyqxyaaacLnt3XKqRZNf0uFs1q1fW0w9eFzw2GhjSPu7bFT+rXb/7g2ul9epwpXUIMiuGntO0X/CaZkRd/M2MvDJR0ExlM6P8rvvnM8EUOjPtrE/HZsEU3OLFimT4eTlUgEv73mbM/VD3PDYuNmIrujCGmbpYoEDKBfrN9F9zLKY8d08wvS/tLaMAV+uE6hrxyE2pHm6m1S764vu/jFyMjtSKPjg6pTfqkRPhM+1+ZxTgDsfBjPBq3efeYCqnGYU2bujtqUYoZjfARadpm+mnZvRY9GamIptpvLcObK+e7a+MhZmpI++TGUUYvZkptld3vVOP/rO/rm78j2DaZ8M2NwYx7vF7BgSfBRMMzXlvAqcJZOZmew6lNV7w8Rca8s+n9Z+7+qpFkwapfnxt73tUrEjhDANcVj4DmQW4E2tUjY20jH/hjAJc2s9HdEpx1Do3ApwZXfrH5u1/GV1qRpxecM3g2OjM6PfboY5zfvxlyntGAAEEEEAAAQQQQAABBDITyNcB7tsfVqtd/wd0x5BO6tbmigydoqOA4qfNRR+88LNv1Pe2J2LXYkt7/ajo40yAm/3OJ7FpltF/zzDAzR+vcCgU26d1GzarcftbdHO/turd6aoMA9zuPXt13pUDYteAyyhmbN76ZzAlz1z7KjpdLR7ATCs0wcTczBTYBR99oTEvzZaZ7mhC3NgnbotNxU0Ll1k8Mde3Wzx3ZKpN0ga4/z77oia/Oi9YTCG9FTJbNm0QXFcs7S2jABc/1S66TUYBzowGNNfASxtKohElowCXVff0TrKMAtzhOJiRi2363htc5D967bf4KcLZDXDvfLBEN9z7rK654gLVqF75L7t//tmnBlNLMzrv0wY48wT/eWayXpzxTnAelSlVPNhns3jBlOH3xKa42p5DaXc0OrV64tN3Btdfi7+ljWfpvZdDfQYyC3Bnn35ibIRr2vMqvWvAffvexFT7Z0ZqNmpzU3BNR3Ntx4wCXPS7yITzw52CakbDmqhuwlr8zSzMcG7T/sH1Hs208cM5zvzqRQABBBBAAAEEEEAAAQQQSBHI1wEuGk1McHnh2bszXAXVXO/s9IY9g6mfZgpo/M2MajNx7ZXRDwQXd8+pALdg+lOqWL507KWi18mKLkIQnRqWdsqkiRkm6kUXYTBPkFHMuOja69XwgrNiCztk5YNhVkE0qzfGXz8t7Xa28cSsVPmvR8cp7TTcQ+1fTgS4tFOHzRTFs+Km5OaEe9r3kVGAOxwHMzXXTNG96vL6wVTn+AUmMjsH0u5L2imoa37doGZd7ohdAy+jY3A4YSY6pdJMly1dqoROqllVTS+tl2qKpu05lHY/zQhOE8miU7jThjBzrbyMpqCmfa70PgM5GeA+nfOcSsSNMP36u1XBAjDPPny9GjWoq+i09+h12aL7Z67naK7rmJ0AZ0a5mlVX08bxH1f/qpY9/6U7h3RS1zZXEOAO9SXEzxFAAAEEEEAAAQQQQACBDATydYAzJtEpn2ZUmRldltGt321D9eW3P+qN5/+rSuXLBA8z0xM7DX4oWEDAXL+saJHCORbg4lceNK9lpmiakWKzX3hENasfo01btuuSVjf8ZVps9I/z+AAX/be017ozf3TP/3jpX1ZTPNSnxVyYffUv6/9yPbzodhm9nrHOygi4735cozZ97/vLdccOtV85EeDM1EgT4aK36CqwZvVZE4xywj3t+zCjq+o06hXEs+iKmOYxWXWIX4TBXPut/+2RC+fHB8yMjknafUkb4KL7ZkZKmkid0cIbhxPgzHTHYyqUjU27Tu+42p5DaZ8zOuLTrEQcne5tHrPy59/Uosc/M12EIb39S/sZMPfNNPH3X306WDQkejPTTA93BNwT9w4MVoON3p4cNU3jpsyNffbNggw33jssVRQ1/0+CwXc9JRMH4wNcZvsVP/rOPL95nfhtzetHXzs6NftwjvOhPq/8HAEEEEAAAQQQQAABBBDITwL5PsCZqXu9bno0uMbZOXVODqZu1Trx2GC1TTNFtWmj84MpidHpqub6Vt3bNlGxYkU0++2FmmtWDT14HSxz4uTUCDjzXGbUiVlx9ZMlyzV68htBoDHX0opGkOgKi9f3bq26Z5ykb35YHSwIYW7xAe6TJd+qzy2PB9t3bX1FEAjMQhAm8HS/4b/BwgdmumeVSuW1edufMlPZTIiqd/apenTYS6pQvozOOLWmChUsoK+/Wx1MITQLMtx/S490PysZvV5WA5xZfdEER7PqrFkM4uL6deTI0ao16/T9T2uDBQbSu+VEgDPPa17zovPP0M9rf9f/xrwS+Jhr+pUoXjR4WVv39Pa906AHgxj04O29VblSWR1btZJKFi92SIfotd/+3Llbc194JNjH9Rs26/L2t+i8s2pp3JO3B1OZMzomafclbYAzP49OEb6k/plq36KhihcrqnUbNslMT33w9l4qWaLYYY2MioZf81kzI73MNOPTTqmhSy84S9WrVAx2yfYcSs84uuqvuYZiwwZnB4s/PP7cy8HqxCYwZjQCLiufgegIRDNN9IJzT5e5Zt5x1SoF58rhBjiz7d3Xd1HNYyvr8y+/15OjX0n12Y+ujluj+jHq2eFKValYTu98uCS4xqS5xUe0zPYrPsCZ0cBNOt0ebD+oWwudUKOKFn/5fbBASvT6h5l9v6U31Tg//SLlvSKAAAIIIIAAAggggAAChxLI9wHOAJmLyb/02rv6dMnyIMRFb+Y6Y/97YHDsmmBm5cf7n5gYXOje3Mwfyjf1bav2LRrFRr3EAtzBkWrR53rwf88HkSLtFC8zXfT4Y6sEqwyam4lUCxZ+GSx28NiIl2OvY+LEv2/tFbtGlvmBCVI33jcsuIZWdH/MyDmzGqaZqnZj3zbBvycnu7rviQlB0DK3C849TWOeiKzq+uU3K/XU2Okyq1VGb+YP+8fvGRhMqY1OBYw/kUycu+u6zkGYSu+W0etlFOCiUy3jV7Y0owuHjnolGDG34Y8tsZfp3OryIE6kd4terD46Ws08xgSQemfVCkYLxd8yugacWe11zEtzYq9pItZ9N3cPYkj0lhPuafffHId+tz8RLDJhbtERR4dyiAaWtCOXps9+Pzjm0YUNMjsH4vclaph2FVWzUMLkGfNkVoWN3ozN8P/cGHwOMjrvo1NYzYILzS6rH5yzd/13THAtQXPdt4IFkrRz157YZ+rD155V2dIlMjxnD+ccSmtsrmdmrqtn3kv0Zka+7tmzTz/8tFbPP3N38M9p30tWPgPmOpGD7vqfzGqr5ha9XlvahRbi9yntuWneW7Lr6bSTa2jkC7OC7yVjm95n36yQ++BTLwSPMTdjaUbwmhFvox67RRfWOyP498z2K+3nwhz7B4ZOCkZPRm8dWjTSLQPaBaN707OJPi7tcU73A8o/IoAAAggggAACCCCAAAL5WIAAl+bgmz/St23fGfzha0b2pHfbsXO3DiS7QSjI6Vt8YDDxZdPWP1W+TMkMr09nXt8EDLMqZbmyJVMt3JB230zcMfterkzJVNfbMo8zIwE3b9mu4sWLprr+lPmZuQ7aH1u2KykcPuRrxL9mZq93OG4mMpipkGVKlVBSUsqqqIfzHId6bDS6zJr4Hx1/XOVgdFSRwgVj4SG97XPCPf55zci/P7ZsC6KUea9pbznhYHtMdphzbfcelSpRPFUMPpRv9Oc9bnxEu3bvCVZpjf98/fDTL2rV+57YKr/Rx9vub3r7ZWKkmUqc3ucgo/eR1c+AWTHVfJYqlC2daipqVn3iH2fimfmOSW8hkujjzHlqbof6Ljqc/TLXJNz2584ceQ/Zed9sgwACCCCAAAIIIIAAAgjkRQECXIId1YxG+CTYbua53YkGuNcnPiyz4im3nBfYu3e/zmnaTy2bXqiH7+yT6gXMyLjm3e/WoB4tg+nQ3BBAAAEEEEAAAQQQQAABBBDISwIEuAQ7mgS4v+eAEOCOjHvbfvcF0zTNdMnap9QIrme4es16jXj+9WAHZo57UOXLljoyO8OrIIAAAggggAACCCCAAAIIIHCEBAhwRwg6qy9DgMuqVM4+Ln4KqrkAPbfcEfh94xaZFU7N4iXR65eVLVNSjRqcrR7trwxW+OWGAAIIIIAAAggggAACCCCAQF4TIMAl2BE1q1q6rhdcg47bkRMw19vbvXe/ihUpbH3triO310fvK/m+Hyw4UbhQwVy7rt/Rq8OeI4AAAggggAACCCCAAAII5DUBAlxeO6K8HwQQQAABBBBAAAEEEEAAAQQQQACBhBIgwCXU4WBnEEAAAQQQQAABBBBAAAEEEEAAAQTymgABLq8dUd4PAggggAACCCCAAAIIIIAAAggggEBCCRDgEupwsDMIIIAAAggggAACCCCAAAIIIIAAAnlNgACX144o7wcBBBBAAAEEEEAAAQQQQAABBBBAIKEECHAJdTjYGQQQQAABBBBAAAEEEEAAAQQQQACBvCZAgMtrR5T3gwACCCCAAAIIIIAAAggggAACCCCQUAIEuIQ6HOwMAggggAACCCCAAAIIIIAAAggggEBeEyDA5bUjyvtBAAEEEEAAAQQQQAABBBBAAAEEEEgoAQJcQh0OdgYBBBBAAAEEEEAAAQQQQAABBBBAIK8JEODy2hHl/SCAAAIIIIAAAggggAACCCCAAAIIJJQAAS6hDgc7gwACCCCAAAIIIIAAAggggAACCCCQ1wQIcHntiPJ+EEAAAQQQQAABBBBAAAEEEEAAAQQSSoAAl1CHg51BAAEEEEAAAQQQQAABBBBAAAEEEMhrAgS4vHZEeT8IIIAAAggggAACCCCAAAIIIIAAAgklQIBLqMPBziCAAAIIIIAAAggggAACCCCAAAII5DUBAlxeO6K8HwQQQAABBBBAAAEEEEAAAQQQQACBhBIgwCXU4WBnEEAAAQQQQAABBBBAAAEEEEAAAQTymgABLq8dUd4PAggggAACCCCAAAIIIIAAAggggEBCCRDgEupwsDMIIIAAAggggAACCCCAAAIIIIAAAnlNgACX144o7wcBBBBAAAEEEEAAAQQQQAABBBBAIKEECHAJdTjYGQQQQAABBBBAAAEEEEAAAQQQQACBvCZAgMtrR5T3gwACCCCAAAIIIIAAAggggAACCCCQUAIEuIQ6HOwMAggggAACCCCAAAIIIIAAAggggEBeEyDA5bUjyvtBAAEEEEAAAQQQQAABBBBAAAEEEEgoAQJcQh0OdgYBBBBAAAEEEEAAAQQQQAABBBBAIK8JEODy2hHl/SCAAAKLAjseAAAgAElEQVQIIIAAAggggAACCCCAAAIIJJQAAS6hDgc7gwACCCCAAAIIIIAAAggggAACCCCQ1wQIcHntiPJ+EEAAAQQQQAABBBBAAAEEEEAAAQQSSoAAl1CHg51BAAEEEEAAAQQQQAABBBBAAAEEEMhrAgS4vHZEeT8IIIAAAggggAACCCCAAAIIIIAAAgklQIBLqMPBziCAAAIIIIAAAggggAACCCCAAAII5DUBAlxeO6K8HwQQQAABBBBAAAEEEEAAAQQQQACBhBIgwCXU4WBnEEAAAQQQQAABBBBAAAEEEEAAAQTymgABLq8dUd4PAggggAACCCCAAAIIIIAAAggggEBCCRDgEupwsDMIIIAAAggggAACCCCAAAIIIIAAAnlNgACX144o7wcBBBBAAAEEEEAAAQQQQAABBBBAIKEECHAJdTjYGQQQQAABBBBAAAEEEEAAAQQQQACBvCZAgMtrR5T3gwACCCCAAAIIIIAAAggggAACCCCQUAIEuIQ6HOwMAggggAACCCCAAAIIIIAAAggggEBeEyDA5bUjyvtBAAEEEEAAAQQQQAABBBBAAAEEEEgoAQJcQh0OdgYBBBBAAAEEEEAAAQQQQAABBBBAIK8JEODy2hHl/SCAAAIIIIAAAggggAACCCCAAAIIJJQAAS6hDgc7gwACCCCAAAIIIIAAAggggAACCCCQ1wQIcHntiPJ+EEAAAQQQQAABBBBAAAEEEEAAAQQSSoAAZ3k41m3eY/kMbI4AAggggAACCCCAAAIIIIAAAggktkCVckUSewcTfO8IcJYHiABnCcjmCCCAAAIIIIAAAggggAACCCCQ8AIEOLtDRICz8xMBzhKQzRFAAAEEEEAAAQQQQAABBBBAIOEFCHB2h4gAZ+dHgLP0Y3MEEEAAAQQQQAABBBBAAAEEEEh8AQKc3TEiwNn5EeAs/dgcAQQQQAABBBBAAAEEEEAAAQQSX4AAZ3eMCHB2fgQ4Sz82RwABBBBAAAEEEEAAAQQQQACBxBcgwNkdIwKcnR8BztKPzRFAAAEEEEAAAQQQQAABBBBAIPEFCHB2x4gAZ+dHgLP0Y3MEEEAAAQQQQAABBBBAAAEEEEh8AQKc3TEiwNn5EeAs/dgcAQQQQAABBBBAAAEEEEAAAQQSX4AAZ3eMCHB2fgS4bPjt3Olozpuh2JYtm7sqVCgbT8QmCCCAAAIIIIAAAggggAACCCBwRAQIcHbMBDg7PwJcNvxMgJsyNaRffnN04vG+2rclwGWDkU0QQAABBBBAAAEEEEAAAQQQOGICBDg7agKcnR8BLht+BLhsoLEJAggggAACCCCAAAIIIIAAAn+jAAHODp8AZ+dHgEvHb8cOJ9W/lijhp7pPgLM86dgcAQQQQAABBBBAAAEEEEAAgSMsQICzAyfA2fkR4NLx27xFmj4jHPykamXp6qtcApzlecbmCCCAAAIIIIAAAggggAACCPydAgQ4O30CnJ0fAS4dv23bpPGTkrRtu1TvHJ8AZ3mOsTkCCCCAAAIIIIAAAggggAACf7cAAc7uCBDg7PwIcJI2bXK08Y8UyGpVfY2dQICzPLXYHAEEEEAAAQQQQAABBBBAAIGEESDA2R0KApydX74IcLv3pL6mW9Eiqa/pZgLc2Alh7d4jNbzY0zl1vUwD3K6djl5iFVTLM4/NEUAAAQQQQAABBBBAAAEEEDhyAgQ4O2sCnJ1fvghw69c7+r+3Q4FUvXM8nX764QW4hpd62rQpBbpiRWnySyH98pujE4/31b6tq0KFLA8EmyOAAAIIIIAAAggggAACCCCAQK4JEODsaAlwdn75JsA9NyayqEK7Vm62AtzEF0LasNFR7Vq+WjT3CHCW5x2bI4AAAggggAACCCCAAAIIIHAkBQhwdtoEODs/AtzBa8BlNgXVjIAjwFmeaGyOAAIIIIAAAggggAACCCCAwN8oQICzwyfA2fkR4AhwlmcQmyOAAAIIIIAAAggggAACCCCQ+AIEOLtjRICz8yPASdq61dGosRkvwnCoEXDt2rjati1loYfixaXixVNfZ87yMLE5AggggAACCCCAAAIIIIAAAghYCBDgLPAkEeDs/PJlgKtSRVqzNgWu5nHSSMsAN216WCtXOape1VfH9h4BzvK8ZHMEEEAAAQQQQAABBBBAAAEEclKAAGenSYCz88u3Ae7Z58JyXenqZp5OPsHP0QDXpZOnIkUYAWd5arI5AggggAACCCCAAAIIIIAAAjkmQICzoyTA2fnliQD33feO1q6NTAE9rbavatVSx6/16x3Fr4JqRsDlZoDr2snT+x+mTEmtf76vUqUIcpanKpsjgAACCCCAAAIIIIAAAgggkG0BAly26YINCXB2fnkmwE2ZFg4kBvRxVaVK6ti1cYOjYaMiP2/Xyvw89wPca2+EtPx7R5Uq+urS0SPAWZ6nbI4AAggggAACCCCAAAIIIICAjQABzkaPAGenJ+XJALf/gPTNN6HApvapnooXEwHO+kzhCRBAAAEEEEAAAQQQQAABBBA4egUIcHbHjhFwdn55NsCNnxQZ8daji0uAszxH2BwBBBBAAAEEEEAAAQQQQACBo12AAGd3BAlwdn4EuFxYhMFcA44pqJYnJpsjgAACCCCAAAIIIIAAAgggkIMCBDg7TAKcnR8BjgBneQaxOQIIIIAAAggggAACCCCAAAKJL0CAsztGBDg7PwLcEQhwPbt6SnZTH6iSJVkV1fLUZXMEEEAAAQQQQAABBBBAAAEEsixAgMsyVboPJMDZ+RHgjlCAm/9eSL/8FjlY7dq4KlfW8sCxOQIIIIAAAggggAACCCCAAAIIZFmAAJdlKgKcHVX6W6/bvCc3nvaIPud33zuaMi2y6MKAPq7MKqiJtAiDGQFnAtziJY5Kl5K6d00mwB3RM4QXQwABBBBAAAEEEEAAAQQQyO8CBDi7M4ARcHZ+jIA7giPgCHCWJyubI4AAAggggAACCCCAAAIIIJBNAQJcNuEObkaAs/M7KgPcrl1O7F07jrRmrRgBZ3kesDkCCCCAAAIIIIAAAggggAACeVmAAGd3dAlwdn5HZYBbsjSkL7+KRLhrW3jasJEAZ3kasDkCCCCAAAIIIIAAAggggAACeVqAAGd3eAlwdn5HRYDbsiXlTYbD0sqfQnp9dkhm9NsNg10CnOU5wOYIIIAAAggggAACCCCAAAII5HUBApzdESbA2fkdFQHuw49C+nxpZMRbj66eVq12CHCWx53NEUAAAQQQQAABBBBAAAEEEMhPAgQ4u6NNgLPzO2oC3Lz5IRUqJA3q5xLgLI85myOAAAIIIIAAAggggAACCCCQ3wQIcHZHnABn50eAYxVUyzOIzRFAAAEEEEAAAQQQQAABBBBIfAECnN0xIsDZ+RHgCHCWZxCbI4AAAggggAACCCCAAAIIIJD4AgQ4u2NEgLPzS4gAt2NH5Ppu5paUJO3e46e6v2xZSHlpCmqfnskqUiT1gStQwPJAsjkCCCCAAAIIIIAAAggggAACCGQoQICzOzkIcHZ+CRHgpr8a1uatkTfSuYOrDz4O6fvvQ8H93j2StezrvBfgliwN6bf1kfDYtLGn8uVToqPlIWVzBBBAAAEEEEAAAQQQQAABBBBII0CAszsl8mWA27tvvwokhRUOh/+it2v3XhUrWjhd1fR+tm7zHrsjkANbmwC37FtH5cv56tU9EuA+XRRSyRJS3155N8At+CCkokWkPj1dAlwOnEc8BQIIIIAAAggggAACCCCAAAIZCRDg7M6NPBngtv+5S3c/MkYmmE186s6YkOu6+tej4/TuR0tVqFBBdWp5mQZ2bxH8fP2Gzbrrv2O0fMXPKlO6hO4c3EkNG5x9yJ8R4DydfIKvkWPD2r1Hanixp3Pqeho7IUnbtkv1zvHV8FJPE18IacNGR7Vr+WrR3NPkl0L65TdHJx7vq10bV9Omh7VylaPqVX117eTptTdCWv69o0oVffXs6mn+eyEtXuKodCkT3JJlRsBFA9yAvq48L/UIuLJl7T4YbI0AAggggAACCCCAAAIIIIAAAikCBDi7syHPBbgVq37VgDue1Ik1qmrvvn16/pm7Y0JTXntXc975VKMeu0VmFFzLXv/Sk/cP0nln1tLN9w9X5UrldHO/tlr23Sr1v32o3pryuMqUKpHpzwhwiRHgVqx09PEnkSmpXTp4qlCBKal2Xw1sjQACCCCAAAIIIIAAAggggAABLqfOgTwX4DZu2qaVq38NfEa+MCtVgOt76+Nq2/xSXXHJecHPR73whrb9uVO3DminOpf11nuvPqUK5UoHP+t186Pq0rqxLql/ZoY/a9SgbsJcAy4/T0E1I+BMgJs9NyQzq3hQP5cAl1PfEDwPAggggAACCCCAAAIIIIAAApIYAWd3GuS5ABflWPjZN38JcE063abH7xmgOqeeEDzsjXkL9fZ7n+uem7qpYZsb9c2CCXKcyCiqex8fr1NOOFaNLz43w591bnU5Aa5Z4oyAI8DZfRmwNQIIIIAAAggggAACCCCAAAIZCRDg7M6NfBXg6jUboCkj7tUJNaoEau9/8mUwCu6B23qq8+CHtHjuyJjm0JFTVbBgATVtWC/Dn13Xq5X2HfDsjoDl1vsPeJrwoqdl30QWYejfy9eCD6SFBxdhGNjX05fLpLfeCalQIem6AZ5+Wu1o5ixHpjXeNMTTxo3S5KmRVVMH9/e0f780ZsLBVVS7eSpeXHp6ROR+hzaeqlaRnhoekutK11zlq9ZJvoaNCgXXgGt0iad650ojx4Yi14A711eTy3yNnuDErgHX9lpf4593YteA69LB1+SXndg14Hp18/XKTCd2Dbi+PX29/a6jxZ9HrgE3oI+nxZ9L89+PLMJg9vmHHx3NmuMEI+DMezypZgFLWTZHAAEEEEAAAQQQQAABBBBAAIGoQKECkS7ALXsC+SrAXdPjbj14e2+dWTsyAm7W2ws1991P9Z+7+uqiltfp6/kTFApFRsDd89g41Ty2ilo2vTDDn/XqcKU2/7kve/I5tJVZfGDKK6FYgOvTw9P7Hzn65GCA69/b1VdfO3r73UiAG9LfDQKcWeTABLgbB7vasFF6aVpkRdiBfV0dOCCNnRi537Orq2LFpGEjI/fbt3ZVpYr0zIhwEOCamxFwJ/l6bnTKIgznneNr9PhwLMBd1tDT+EkpizC0auFp0uSURRg6tPX08iuhWIDr3sXTjNdTFmHo1d3TuwtCsQDXr5erz5Y4sUUYBvZzteJHR28cnII6uL+rqpUjx5EbAggggAACCCCAAAIIIIAAAgjYC5QrWcj+SfLxM+SrADf47qd0ZcPzdXXjfwSHfMTE17Rpy/ZgCurpDXtq3tShqlKpXPCzLkMeVqdWl+vKhvUy/FmzRuczBTUBp6BeN9BV4TTfC0WLsShDPv6e460jgAACCCCAAAIIIIAAAghYCjAF1Q4wXwW4ufMXadK0NzV26O3as2efWve9V/+5s48uOr+O/v3kJCUlhXX7oI5asmxFsAjDwlnDVapksUx/xiqoiXcNOBPg1q2TFn0eGR7brImnypUJcHZfFWyNAAIIIIAAAggggAACCCCQnwUIcHZHP18FON/39fDTkzXr7Y+1a/demSmkN/dvFyy8sHX7Dt3x0Gh9/NnXKla0sB64taeubHR+oJvZzwhwiRvgps2ITJs1U1IrVSLA2X1VsDUCCCCAAAIIIIAAAggggEB+FiDA2R39PBvgMmPZt/+AQo6jAgWS/vIwE+aKFikUWw01/gHp/YwAd3QEuF27JP9ggzMLNdSoQZCz++pgawQQQAABBBBAAAEEEEAAgfwkQICzO9r5MsDZkaXemgB39AS4iZMjI+J6dXMJcDn5IeC5EEAAAQQQQAABBBBAAAEE8rwAAc7uEBPg7PxYhCFBF2Ew14CLn4JqRsAR4CxPdjZHAAEEEEAAAQQQQAABBBDItwIEOLtDT4Cz8yPAEeAszyA2RwABBBBAAAEEEEAAAQQQQCDxBQhwdseIAGfnR4AjwFmeQWyOAAIIIIAAAggggAACCCCAQOILEODsjhEBzs6PAHcUBrg+3V0dexyLMFie+myOAAIIIIAAAggggAACCCCQjwQIcHYHmwBn53fEA9yB/dKfO1J2umhRR3PmhrTsW0fly/nq1d3VBx+H9OmikEqWkPr2Stayr0OaNz+kQoWkQf1crVrt6PXZITmOdMNgVxs2SlOmRRYoGNDH1f4D0vhJkfs9urgqXkwaNipyv10rV1WqSM8+F5brSlcfpQEuqYD0wwoneE/HHOPr1FoEOcuPApsjgAACCCCAAAIIIIAAAgjkYQECnN3BJcDZ+f0tAe7l6WFt2OCoRAlf3Tp7BLi+rlasdDR7bkjhsHTdQFeZLcJgRsCZADdybCQqdmznEuAsPwdsjgACCCCAAAIIIIAAAgggkLcFCHB2x5cAZ+f3twW4H1c6qlqFAFe0iDQgBwJcxQrStm0pJ8MJJzAizvKjweYIIIAAAggggAACCCCAAAJ5SIAAZ3cwCXB2fgS4o3gKavwIOBPgnh4eGRHXsrmnumd7lmcGmyOAAAIIIIAAAggggAACCCCQdwQIcHbHkgBn50eAI8BZnkFsjgACCCCAAAIIIIAAAggggEDiCxDg7I4RAc7OjwBHgLM8g9gcAQQQQAABBBBAAAEEEEAAgcQXIMDZHSMCnJ0fAS6PBriaNXwt/y6ySqq5NbiAKamWHxU2RwABBBBAAAEEEEAAAQQQOIoFCHB2B48AZ+dHgMvDAW7E6LD27ZMaN/J00YUEOMuPCpsjgAACCCCAAAIIIIAAAggcxQIEOLuDR4Cz8yPAEeCCM+jPP50g1kVvpUv7KlDA8uRicwQQQAABBBBAAAEEEEAAAQQSRIAAZ3cgCHB2fgQ4AlwswL00NaQNGx2dcLyv9m1cApzlZ4vNEUAAAQQQQAABBBBAAAEEEkeAAGd3LAhwdn4EOAJcqgC3br2jk08iwFl+rNgcAQQQQAABBBBAAAEEEEAgwQQIcHYHhABn50eAyycBrs4ZnvbvT1mUoUIFP9WZY6agmhFwBDjLDxSbI4AAAggggAACCCCAAAIIJKQAAc7usBDg7PwIcPkowI0el6Q9e6Xzz/XU5IrUizIQ4Cw/SGyOAAIIIIAAAggggAACCCCQ0AIEOLvDQ4Cz8yPA5bMAt2On1KA+Ac7yY8PmCCCAAAIIIIAAAggggAACR5kAAc7ugBHg7PwIcPk0wDW+zFP8JFQzPXXS5IynoCYnS1u3pkxhLVRIKlky9TRWy1ORzRFAAAEEEEAAAQQQQAABBBDINQECnB0tAc7OjwCXTwNcgws8zZoTDs6egknSVc28Qwa4qdPDWv2zo3JlfXXu4BHgLD97bI4AAggggAACCCCAAAIIIHDkBAhwdtYEODs/Alw+DnDjJ4W1abOjOqf5WQ5wP6xwVPkYApzlx47NEUAAAQQQQAABBBBAAAEEjrAAAc4OnABn50eAI8AR4Cw/Q2yOAAIIIIAAAggggAACCCCQ+AIEOLtjRICz8yPAEeAIcJafITZHAAEEEEAAAQQQQAABBBBIfAECnN0xIsDZ+RHgCHAEOMvPEJsjgAACCCCAAAIIIIAAAggkvgABzu4YEeDs/AhwBDgCnOVniM0RQAABBBBAAAEEEEAAAQQSX4AAZ3eMCHB2fgQ4AhwBzvIzxOYIIIAAAggggAACCCCAAAKJL0CAsztGBDg7PwIcAY4AZ/kZYnMEEEAAAQQQQAABBBBAAIHEFyDA2R0jApydHwGOAEeAs/wMsTkCCCCAAAIIIIAAAggggEDiCxDg7I4RAc7OjwBHgEs3wLW51tXGP5zY2VWhgjTjtZB+WOGo8jG+OnfwVLKkb3n2sTkCCCCAAAIIIIAAAggggAACR0aAAGfnTICz8zviAS75gDTllbB+XOmoahVf3Tp7mjM3pGXfOipfzlev7q4++DikTxeFVLKE1LdXspZ9HdK8+SEVKiQN6udq1WpHr88OyXGkGwa72rBRmjItHEgM6ONq/wFp/KTI/R5dXBUvJg0bFbnfrpWrKlWkZ58Ly3WlqwlwGQY4Y7r6Z0fHHeurUwcvVYDr0tFTiRIEOMuPH5sjgAACCCCAAAIIIIAAAggcIQECnB00Ac7OL9cD3O5djn74MWUnTz3F1yszCXBLloa04IOQihaRBvR1tWKlo9lzQwqHpesGulq3Tpo2IxINB/d3tWuXNHFy5H6f7q6SCkgjx0bud2znqmIF6enhkfstm3uqWcPXiNFh7dsnNW7kqc4ZnkaPS9KOnVKD+p4aXOAFkXLTZidbAa5HF0+/b0g5ruXL+1r8eSj2D3XP8lSmjOXJyeYIIIAAAggggAACCCCAAAII5JAAAc4OkgBn53dEAtyUV0Jas9YJolDHti4Brmey8kKAe3NeSF985ahsWV+9u7v6ZFFIHy0MqXhxqV+vZK1bHzeFtbxUoQIj5iw/rmyOAAIIIIAAAggggAACCCCQTQECXDbhDm5GgLPzI8AxBTXbI+AOFeCWfxeSeUyBApGpwQQ4yw8rmyOAAAIIIIAAAggggAACCGRbgACXbbpgQwKcnR8BjgBHgLP8DLE5AggggAACCCCAAAIIIIBA4gsQ4OyOEQHOzo8AR4AjwFl+htgcAQQQQAABBBBAAAEEEEAg8QUIcHbHiABn50eAI8AR4Cw/Q2yOAAIIIIAAAggggAACCCCQ+AIEOLtjRICz8yPAEeAIcJafITZHAAEEEEAAAQQQQAABBBBIfAECnN0xIsDZ+RHgCHAEOMvPEJsjgAACCCCAAAIIIIAAAggkvgABzu4YEeDs/AhwBLgjEuAG9nVVvrxvebayOQIIIIAAAggggAACCCCAAALZEyDAZc8tuhUBzs6PAEeAOyIBbkh/V7t2p5yshQtLoVDqIFe2bOqTecMGRwcOpPxbtWoEPMuPO5sjgAACCCCAAAIIIIAAAvlWgABnd+gJcHZ+BDgC3BELcD+vlWbOCgdn7PWDXG3ZIs15KxTcb93S07HVUwc2E+CGj4o8vnVLV2fWIcBZftzZHAEEEEAAAQQQQAABBBDItwIEOLtDT4Cz8yPAEeD+1gA3+eVIYOvT0yXAWX6W2RwBBBBAAAEEEEAAAQQQQCBjAQKc3dlBgLPzI8AR4Ahwlp8hNkcAAQQQQAABBBBAAAEEEEh8AQKc3TEiwNn5EeAIcAQ4y88QmyOAAAIIIIAAAggggAACCCS+AAHO7hgR4Oz8CHAEuIQIcP16uypW1JcXd5k3z3P07IiMrwFnriEXf1W4cmkWcbD8aLA5AggggAACCCCAAAIIIIBAHhIgwNkdTAKcnR8BjgCXMAHO96RXZkSC29XNXJUpo1QBrno1af/+lBO+cGFf4yclBf9wxumeLm7gy3VTfl60GIs2WH49sDkCCCCAAAIIIIAAAgggkGcECHB2h5IAZ+dHgCPAJVSAGzMhEuC6dEw/wA0bGVZystSsiadap3gaNS5Ju3ZJFzXwVL+ep2mvRrY3o+FaXhNX4yw/J2yOAAIIIIAAAggggAACCCBwdAsQ4OyOHwHOzi/HA9yf2x3tixulVKKE9OLLIa1Z66hmDV8d27p6ZWZYP650VLWKr26dPc2ZG9Kybx2VL+erV3dXH3wc0qeLQipZQurbK1nLvg5p3vyQChWSBvVztWq1o9dnh+Q40g2DXW3YKE2ZFgkvA/q42n9AGj8pcr9HF1fFi0nDRkXut2vlqkoV6dnnwsFoqasJcHkqwI2dGNbWrY7qnuUT4Cy/G9gcAQQQQAABBBBAAAEEEMhLAgQ4u6NJgLPzy5UAN3lqSFu2ODq+pq9WLTwCXFdP898LafESR6VLSX16JmvJ0pAWfBBS0SLSgL6uVqx0NHtuSOGwdN1AV+vWSdMOTscc3N8NRnlNnByJiH26u0oqII0cG7nfsZ2rihWkp4dH7rds7gWxc8TosPbtkxo38lTnDE+jxyVpx06pQX1PDS7wgki5abNDgLP8DLE5AggggAACCCCAAAIIIIBA4gsQ4OyOEQHOzi/XAtzvvzuqdQoBrlJFXz0JcBrS39XPa6WZsyKR8PpBrswiCpNfjtw3izCYa8DZTkFlBJzlFwKbI4AAAggggAACCCCAAAJ5VIAAZ3dgCXB2fgQ4pqAyAs7yM8TmCCCAAAIIIIAAAggggAACiS9AgLM7RgQ4Oz8CHAGOAGf5GWJzBBBAAAEEEEAAAQQQQACBxBcgwNkdIwKcnR8BjgCXbwLcnt1OsPBG9JZUwA8W9IjeqleTSpTwLT9RbI4AAggggAACCCCAAAIIIJCIAgQ4u6NCgLPzI8AR4PJsgLviMk/r1qd8QKpVjazI63pSwYJSB7Mi74yUFXk7tfcIcJbfJ2yOAAIIIIAAAggggAACCCSqAAHO7sgQ4NL47dq9V8WKFk5XNb2frdu8x+4IpNn6z+2OzCqoLMIQ0vLvHbEIQ0gFCuhvWYTBBLiJL8adi9ccXJH3l8gKvVkJcJs3pz7By5XL0Y8LT4YAAggggAACCCCAAAIIIHCEBAhwdtD5KsB9suRb9bnl8VRi86YOVZVK5bR+w2bd9d8xWr7iZ5UpXUJ3Du6khg3ODh6b2c8IcJ5OPsHXyLFh7d4jNbzY0zl1PY2dkKRt26V65/hqeKmniS+EtGGjo9q1fLVo7mnySyH98pujE4/31a6Nq2nTw1q5ylH1qr66dvL02hsEuOXfhfTmvKM7wM19K6Tly0PB56hnt2TZBjgvbgqsec5QZBFYbggggAACCCCAAAIIIIAAArksQICzA85XAW7u/EVa8NFS/eeuvjG1AgWSgv9+8/3DVblSOd3cr62WfbdK/W8fqremPK4ypUpk+jMCHAGuzmm+rmrmadLkkNatd3TySb7aXOtqyrSwVv/s6LhjfXXq4GnGayH9sMJR5WN89ejiBXHti68clS3rq3d3V58sCumjhSEVLy7162KWYz8AACAASURBVJWsvBLgPl0UUskSORPg1q1z9P6HkaBX53RPp53GNefsfgWwNQIIIIAAAggggAACCCCQNQECXNacMnpUvgpwU2a+q7XrNuqOwR1TebiuqzqX9dZ7rz6lCuVKBz/rdfOj6tK6sS6pf2aGP2vUoC7XgOMacHn6GnC2U1DNCLicDnBmtKW5tW/tEuDsvv/ZGgEEEEAAAQQQQAABBBDIsgABLstU6T4wXwW4ERNf00eLv9YZpx6viuXL6OL6dXRSzWrauGmbGra5Ud8smCDHiazqeO/j43XKCceq8cXnZvizzq0u14ate+2OQJqtt22TXng55bpbrVt4mvxySGvWOqpZw1endp6mzQjpx5WOqlbx1b2Lp9lzQ1r2jaPy5cxIKk/vf+zEoke/3q6+WuZo3vyQChWSBvd39dMqR6/PDsm81RsGu9qwUcFoLXMb2NfV/v3SuEmR+z26uipeTBo2MnK/XWtXVStLzzwXDlbEbN7M00kn+ho5JmUK6rnn+BozPhybgtqooacJz6dMQW3Z3NMLcVNQ27f1NPWVUMoU1M6eXpsVNwW1m6f5C0JavMRR6VJS356uPl/qaMEHIRUtIg3o6wYeb8wNKRyWrhvoBosHTHs1ss9DBrjauVOaODlyv08PV0kFFOyzuXVs56pSRempYZH7La/xVPM4XyNGh7Vvn9S4kaczz/A1alxYO3ZKDf7h6cILPI2bGNamzY7qnO7r6is9TYwbAdf2Wk8vTQvFRsB16eBpevwIuK6e3nw7ZQRcn+6ePlnk6MODI+D693b17XIn1RTUNb9IM16P7OMNg1xt3ipNnhK5bx7vedKYCZH7XTu6KlNGemZE5H7rlq6OrS49+1xYyclSsyaeTq0VmTq8a5d0cQNP9et5GjMxrK1bHdU9y1eTyz1NmJzmXJwS0pqD14Dr2Db1udi5g6dSJVNOaN+XZr+Z+lw051b8zbgfzu3XX6XnogGujas6px/O1jwWAQQQQAABBBBAAAEEEEAguwKVyqR/vfzsPl9+2y5fBbilX6/QkmUrVLxoES38/FvN/3ipXhpxj4oWKaTOgx/S4rkjY8d/6MipKliwgJo2rJfhz67r1Uqul7NT4H5dn6wxz/uxRRg6tvE1/gUnFuC6d5ZenKpYgOvbQ5oxS7EAN6C3r/nvSwsPTvsb3M/T0q8cvfWOEwS46wd6QYCbMcsJAtzN13lBgDORz9yG9PeCADd6QuS+CXomwD09InLfRJcqlaWnhoeCANfiKl+nnOxr2MhQcA24Rpf4qn+erxFjQpEAd66vppdLo8Yrdg24dq1M4FPsGnBdO0ovTFEswPXuLk2bodgiDP17Sm++Ky3+PBLgBvb1tOgzR/Pfd4IAN2SAF0ztfH2OEwS4m4Z4+m2dNOWVyD7fMMjTzl3mNSP3+/fygoUNho2K3DdxzISgoc9E7rdu4QeLDDzzXCgIcE0u93V2HV/DR4eCAHfhPzxdepE0cpwTC3CtmkujJyo2BbVzO2nii4oFuJ5dzf4oNgW1X09p1lzFpqAO7O3rw4XSBx9HpqAO6edp2beO5r7lBPt642BPq9dI02dG9tEct81bpEkvRu4P6uvJnIojx0bumymuZUpL/xsWud+ulRcEOHPcTIC7uqmv02obAycIcJdc6KnBP0zccoIAd87Zvq5uKo2aoJRzsfXBc/FggOveSZocdy726eaoSqXIlG5z23/A05RXk1Odi59/YSJjJHIP7uvp5OMLZvk71wS9b37YHztundp6urB+AYVDkefjhgACCCCAAAIIIIAAAgggkHsC/O1lZ5uvAlxaKnPdt/JlS2lAtxa6qOV1+nr+BIUO/jF/z2PjVPPYKmrZ9MIMf9arw5VMQWUKKlNQD47G7NTeU4kSqYN0/BRUc127L5aF9O6CkAoXjoy29E1Vi7uVLZv5F5q5BhxTUO2+9NkaAQQQQAABBBBAAAEEEMiOAFNQs6OWsk2+DnBjX5qjVWvX6+E7euv0hj0VXRHV8HQZ8rA6tbpcVzasl+HPmjU6nwBHgCPAWQS4VasdffBRZARbl46eKlTIfETp7xscjRjFNeDsvvbZGgEEEEAAAQQQQAABBBA4fAEC3OGbxW+RrwLcl9+sVO1TaqhggSRt2LRVvW56VH07Xx2Mcvv3k5OUlBTW7YM6BtNUzSIMC2cNV6mSxTL9Gaugsgoqq6BGrkfYrbOnIkUObwScCXDx1yMsUTz19r+td/T555FptHXP9lS0mAhwdt/5bI0AAggggAACCCCAAAIIZEuAAJcttthG+SrAmcg2ddYClS0TuVJ8xxaNNLB7i2Dhha3bd+iOh0br48++VrGihfXArT11ZaPzg8dl9jMCHAGOAHdwQZDOnt6ZH4ll5tbwElfvf5yyCmp6U1DTBrjfN0hLvog8x+WNvOAafOOjC4J0cf8S4CpXllb8GBlBFwqbaw56dt+IbI0AAggggAACCCCAAAIIIJCuAAHO7sTIVwHOUO0/kKzde/aqdMni6crt2r03WJQhuhpq/IPS+xkBjgBHgEsJcK/PCQWrt1Yo76tXt+wFuJdfObgibz83SwHOrOxqFgS5uplHgLP7fcDWCCCAAAIIIIAAAggggECGAgQ4u5Mj3wU4O66/bk2AI8AR4AhwOf29wvMhgAACCCCAAAIIIIAAAokmQICzOyIEODs/FmFgEQYWYTi4CEP3zp4YAWf5hcLmCCCAAAIIIIAAAggggECCChDg7A4MAc7OjwBHgCPAEeAsv0XYHAEEEEAAAQQQQAABBBBIfAECnN0xIsDZ+RHgCHAEuAQKcCed6Ov9DyKLOJQu7evSizNflGHnTifVwhFXNnFVqJDllwKbI4AAAggggAACCCCAAAJ5UIAAZ3dQCXB2fgQ4AhwBLsEC3MjRYe3ZKzW61FPdszzt2RtZJdXcKlX0U33iTYCbMjWkX35zdOLxvjq0c1WwoOWXApsjgAACCCCAAAIIIIAAAnlQgABnd1AJcHZ+1gHuzz9T4oDZlaQkaeLkkH7/3VGtU3y1auHpxZdDWrPWUc0avjq2dfXKzLB+PBg9unX2NGduSMu+dVS+nK9e3V198HFIny4KqWQJqW+vZC37OqR580PByJ5B/VytWu3o9dkhOY50w2BXGzZKU6ZFVp4c0MfV/gPS+EmR+z26uCpeTBo2KnK/XStXVapI8StPnnyCr5Fjw9q9R2p4sadz6noaOyFJ27ZL9c7x1fBSTxNfCGnDRke1a/lq0dzT5JdSoke7Nq6mTQ9r5SpH1av66trJ02tvhLT8eycIJj27epr/XkiLlzgqXUrq0zNZS5aGtOCDkIoWkQb0dbVipaPZc0MKh6XrBrpat06aNiOyz4P7u9q1y7hG7vfp7iqpgIJ9NreO7VxVrCA9PTxyv2VzL7AeMTocrMLZuJGnOmd4Gj0uSTt2Sg3qe2pwgRcYbdrsEOASPMDFn4tXX+VmGuDatY6cS9Hb8cdLxYuljnaWXxlsjgACCCCAAAIIIIAAAggclQIEOLvDRoCz87MOcFu2KohP5lapotSksUeAI8CpX69kLf8upDfnhVSggDSkv6uf10ozZ0XOlesHudqyRZr8cuR+v96ufE8aMyFyv0tHV2XKSM+OiNxv3dJV9WrSsJFhJSdLzZp4qnWKp1HjkoI4eVEDT/XreRo7MaytWx3VPcvXFZd5mvhiXAy+5mAM/sXR8TV9dTAxeEZKDE6ERRjMFNS0I+AON8BNnR7WT6sdHVvNV+dOnooUJsBZfk2yOQIIIIAAAggggAACCOQBAQKc3UEkwNn55UiAe/7FsLZscXT2mT4BjhFwKl5cBDhJA/u5wQjE+NGYRYtJIw6Oxmzf2lXlyqlHY+Z0gOvS0dOHC1NGxDWo7+v3jSlfGqVL+Spb1vJLhM0RQAABBBBAAAEEEEAAgaNAgABnd5AIcHZ+BDiuAccU1KNoCuqVTV35cQPaDhxwUk+Hbu0qfgScCXBpp0O/syCkz5c6KlPaV/cu7mEHODNyMf5GwLP8EmZzBBBAAAEEEEAAAQQQOCICBDg7ZgKcnR8BjgBHgDuKApy5HqEJauZmrhfY4uo01yM8zADXp4erEiUP70tk5UpHb8yN7MO113iqUYMprocnyKMRQAABBBBAAAEEEEDg7xAgwNmpE+Ds/AhwBDgC3FEW4CY8H9LGPxzVPtXPkQD3+dJITDO3s8/y9cMKRz+vjUxbNQt4lC2bOrD99JOjSS9Grs3Xq5tLgLP8DmZzBBBAAAEEEEAAAQQQODICBDg7ZwKcnR8BjgBHgCPApVqR1wS4OW+mrMhrVhmO3sqVUbCSLgHO8ouXzRFAAAEEEEAAAQQQQOCICxDg7MgJcHZ+BDgCHAGOAJdpgFu3Tpo2IzLizaxmS4Cz/NJlcwQQQAABBBBAAAEEEPhbBAhwduwEODs/AhwBjgBHgMt2gOvT3VXxkr58L+WLqFw5yy8lNkcAAQQQQAABBBBAAAEEckGAAGeHSoCz8yPAEeAIcAQ4qwCXVECaMi0yQq5ZU1en1mJRBsuvZTZHAAEEEEAAAQQQQACBXBAgwNmhEuDs/AhwBDgCHAHOOsCNHBsJcB3buapYQVr7S8oXk1nYIf62abO048/IIg/mVqGCrz17Ut+3/FpjcwQQQAABBBBAAAEEEEDgLwIEOLuTggBn50eAI8AR4AhwOR7gnh4eCXItm3uqU8eT4hrcrl3S6HFJwbXkGtT31OACT+MnhbV5i6Mzavu6qpmnpV+kBLl653kqUMDyi47NEUAAAQQQQAABBBBAIN8LEODsTgECnJ0fAY4AR4AjwOVqgKtZw9fct0LBN9Wx1XzVOcNLN8Bt2uykey62b+MeMsCtXJkS7MqW81W2jOUXI5sjgAACCCCAAAIIIIBAnhMgwNkdUgKcnR8BjgBHgCPA5XqAGzE6rH37pMaNvFwJcDNfD+uLrxyVLeurW2f3kAFu//7UX5wFC1p+kbI5AggggAACCCCAAAIIJLwAAc7uEBHg7PwIcAQ4AhwB7qgKcMnJ0sqfUka8HVddenNe6LAC3BdfOvrm28iovCsae6pUMfV16v74I+X5zWPMdeq4IYAAAggggAACCCCAwNEtQICzO34EODs/AhwBjgBHgDvqAtzU6WH9sMJR5WN89ejipQpwvbq7Klki8y9GE+Bmzopcp27wAPcvAW7NGkeTX478vF1rVyedSICz/FXD5ggggAACCCCAAAII/O0CBDi7Q0CAs/MjwBHgCHAEuIQOcG2udXXgQMqItKQC0ozXQhkGuN7dXS39MjK6zdzOPMOT66V8UYbD0urVKQHu+kGuSpVKHdh+/93RmAmRANe1k6tSJaUPP44850knmmm0mQe5LVuk9etT9vm00wh4lr+q2BwBBBBAAAEEEEAAAWsBApwdIQHOzo8AR4AjwBHgEj7ATZkWlrluW1KS1KmDd8gA98mikD5aGFLx4lK/Xsla/l1Iny6OBLSeXV39vFaxEXAmwJlgtnhJ5OeXXuzJ9/SXADdsZCTImSB4qAC3das0cXJYW7c6qnuWr5bXuJbf1GyOAAIIIIAAAggggAACtgIEODtBApydHwGOAEeAI8AdFQFu9c+OjjvWz3aAM9eJK1BAGtI//QAXnXLar7d72AFu0yZHO3emfBmXK+tr7CQCnOWvJzZHAAEEEEAAAQQQQCBHBQhwdpwEODs/AhwBjgBHgCPAbVHsmm/ZDXDjJoa1a7d0yUWe6p3jHVaAM6P7tm9PmbJapLBUvATTVi1/vbE5AggggAACCCCAAAKpBAhwdicEAc7OjwBHgCPAEeAIcJYBzkw1HT0u4wDX+HJPy79LCWznnu3JSblMnZIPSGaa7ZpfHFWs4KtTO48AZ/m7jc0RQAABBBBAAAEEEEgrQICzOycIcHZ+BDgCHAGOAEeAO8wAV62q9OtvKV++x1aXRo3NPMBNfCGkDRscnXqKr2tbePp0cUqQq3+ep1dmhPXjT46qVSXAWf5aY3MEEEAAAQQQQAABBNIVIMDZnRgEODu/ww5wmzZJvp/yh2Phwr7GTQpryxZHZ5/pq0ljTxMnh2RWEax1iq9WLTy9+HJIa9Y6qlnDV8e2rl6ZGdaPB6NHt86e5swNadm3jsqX89Wru6sPPg7p00UhlSwh9e2VrGVfhzRvfkiFCkmD+rlatdrR67NDchzphsGuNmyMjB4xtwF9XO0/II2fFLnfo4ur4sWkYaMi99u1clWlivTsc2G5rnQ1AY4AR4AjwGUjwJlFGZKTpWZNvOC77nAD3ItTQsGIt+Nr+urQxj1kgDPfidFb7VqeSpZK/eX/xx8p38tmpVfHST2FtUwZy18WbI4AAggggAACCCCAwFEuQICzO4AEODu/bAW4cZOSgj88653rqX49jwDXxtW06WGtXOWoelVfXTt5eu2NkJZ/76hSRV89u3qa/15Ii5c4Kl1K6tMzWUuWhlJFjxUrHc2eG5L5w/m6ga7WrZOmzYhEw8H9Xe3aFVlV0dz6dHeVVEAaOTZyv2M7VxUrSE8Pj9xv2dwLYueI0WHt2yc1buSpzhmeRo9L0o6dUoP6nhpc4AWRctNmhwBHgCPAJViA69bJ085dKQHNXBPuvQ9DWvRZSKVKSn17JuuLZaFgZVhzO7euH3z/vP1OJNIN7Ovq9w3SvHcj99u08lS1SubXlNu7N/Uvk8KFLX+5sDkCCCCAAAIIIIAAAgkmQICzOyAEODu/bAc4E4QuakCAO/F4X+0IcOrd3dUni0L6aGFIxYtL/Xola/l3IWV35ckuHV2ZETvPjohExdYtXVWvJqUedeRp1LikIE5Gz8WxE1NWnrziMk8TX4wbjXnNwdGY0VFHZjSmmfZHgCPAJWCAe31OSD+vcVS0iK9e3dx0A9y7C0IyocwENxPg3pgTUigkXT8oEuBefiXy+enfxz1kgDMj6Oa+GQl2tWv7Ou8cz/K3C5sjgAACCCCAAAIIIJBYAgQ4u+NBgLPzI8AxBZURcAQ4AlyCBrhvlzuqUP7IBLgtmx0981xYnic1v8ojwFn+bmVzBBBAAAEEEEAAgcQTIMDZHRMCnJ0fAY4AR4AjwBHg8niAG9jPVbGikuJmoe7eK313cGVWs/Jq5WN0WAFu2zZHa9am/AKqc4YfXJeTGwIIIIAAAggggAACiSpAgLM7MgQ4Oz8CHAGOAEeAI8DlgwBnrvH2f29HppheeYWnIkWkEQcXp2nf2s1WgJs8JaSNfziqfaqv9m3cVAFu/z5p+58pRa5EcWnplyn3T6vtq1SpzK9LZ/nrjc0RQAABBBBAAAEEEEglQICzOyEIcHZ+BDgCHAGOAEeAyycBbsLzkWvC9ezmHjLAmetbbtmS8gumWjU/mJ4avXmeownPpwS4Fs09LV8eF9hO9TR1eli//ObomIq+unT0NHNWSN/94KhSJV89u3javSfl+QoW9FWypOUvNDZHAAEEEEAAAQQQQCATAQKc3elBgLPzI8AR4AhwBDgCHAHuLyPgTIAbOSasPXulRpd6qnuWp1dfiwQ8M2X10ov9vwS4F14M6dffHJ10gq+2rdwgwP202tGx1dIPcO8sCOm77x2Z+Nanh6ulX0VG6JnbmWf4Kl2aEXKWv+LZHAEEEEAAAQQQQCBOgABndzoQ4Oz8CHAEOAIcAY4AR4DLUoAbMz5J2/+Uzj/Py7EA9/lSR2VKRwLc4iUhvf9hKLhenVm59YcVKSPqTjrRV6FCKb/wzPXm9u1LCXTmfunSmf9C9NL0vBDXrLP8XxBsjgACCCCAAAIIHF0CBDi740WAs/MjwBHgCHAEOAIcAS5hA9ycN0MKh6XrBrr69Tfps88jo+TMSq07dkiz/y9y/9prvOBxG/+I/FI017irVNGX66b8kgyHHb01L/L46tV8nX6apwMHUn5uAt/ig89v/vWyhnFzbi1/17I5AggggAACCCCAwN8vQICzOwYEODs/AhwBjgBHgCPAEeCOmgA3fWZkGuyQAW4Q4Ca9GLlvRtCZADdqXOR+p/auKpSXxk2K3L+8oaeaNXwNHxXW/v1Sk8u9IMCNHpcULA575umeLviHp/GTwtq8xQmmwLa+Nq7eWf6uZXMEEEAAAQQQQACBv1+AAGd3DAhwdn4EOAIcAY4AR4AjwOXZAPf08EiAa9k84wC3Y6fUoD4BzvJ/TrA5AggggAACCCCQ8AIEOLtDRICz8yPAEeAIcAQ4AhwBjgCXToBr1tTTxo0pv2QrVpI+/TTlwnHnn++raJHUF5Yzo+vibwULpr6/eXPq++XKWf4SZ3MEEEAAAQQQQACBLAsQ4LJMle4DCXB2fgQ4AhwBjgBHgCPAEeAyCHCTJoe0br2jk08yU1I9TZka0s9rHNU4zlenDp4KF0od4F6dGdbu3ZFfzC2auypZMvUv6Y8XhvTJosh16Hp3d1UgbmEJsyjE3riFJcxj/r+9+46XojrYOP7MXHrvXUURQUEQCCoiKk0EpRdpShGwoMYYNcZEo2+iifHV1xgLIgqoiDSR3qSJYEEQUVBBFBVBeu93Z97Pmdm9W24Z2MVE2d/8o8vO7N3z3TMzZ589pUzpFG/yHI4AAggggAACCCCQJUAAl1plIIBLzY8AjgCOAI4AjgCOAI4ALpkA7npHa9ZGe8RdUNvVzDm2Pv3MUtkyrhewfbXeD9vMVuMcs7+tOe/YMj3jhg4JaeP30oqV/j6dOjrauUOaFV4oonsXx3sdb5K68LZvv+XNfRfZKlSQnJi1IkqWjA8E9+2T1n8dfQ+1a7tauiz6ns3ceLY/SpcNAQQQQAABBBA47QUI4FL7iAngUvMjgCOAI4AjgCOAI4AjgEsygJv0tq2v1lmqXMlV/75OtgBu2Ye23ltmq1gxacjAzBwDuMlT/QTszqEhL4AbM85/fPOgkJyQNH+RH6A1beKoZAnp2WH+8906h1StqjR2vP98owauatdyvQAwsjWs72jE6Azt3m2p4UWuWrdyNOo1W1u3Wjq/lqvru4XiAjgzhHbajGgiZxarKFY8PtRLsdnB4QgggAACCCCAwH9NgAAuNXoCuNT8COAI4AjgCOAI4AjgCOB+wQHcSyP9QOyG3qEcAzgTyGVmSu3aOF4A9+KIDB08JF3ZzNHFjU4+gBs3IUPrN1iqVtVV7x7ZA7gtW6IBX4ECrlKdx85NyPes6Mun2MLhcAQQQAABBBBAIF6AAC61GkEAl5ofARwBHAEcARwBHAEcAVyaBnCdOzo6djTakDCB2oS38g7gZsyy9eFy2wsD+9+QGRjAHY15ffOXCsbMe2ce/7jZ0pKlfi++enUdXXA+Pe5SbNpxOAIIIIAAAgjkIkAAl1rVIIBLzY8AjgCOAI4AjgCOAI4ALo0DuDFjbR09LhUpLPXsFooL4G7s7Sh/gWggZnqnzZoTDeAG9c9UyVLxDZEDB6Jd2Gxb2vid9PEKP2Br2cJR1SrxAZsJ4EyvPbP17B4igEuxXcfhCCCAAAIIIJC7AAFcarWDAC41PwI4AjgCOAI4AjgCOAK4NA/gvvvB0jlnuzkGcFNm2AqF/MZGx2tDWrQkGsANHpCpr2IWeTj3HFdff2Np1So/hDMrx/60VXpzgh+w3Tok5AV9kWGnJtA7dFh6YfipC+AO7LeUGX6/5m8WKeJ6i178nNvhw/GvXrjwz/nXeG0EEEAAAQQQSFaAAC5ZOf84ArjU/AjgCOAI4AjgCOAI4AjgCODyDODMaq/ly7kaeGP2AO6T1bbmL7RVqJB06+CQF8BNm2HL9H6787ZQtgDuyBHJDGM127VtHe+42ACuUgVp0+Zo46behfE95nbu9IetRrbE5w8ftvTaG7bMghJmmGzPHiHlz59aY2n79viJ6cqXj39P69ZbWvq+X6YWVzo66yyG0aYmztEIIIAAAgj8PAIEcKm5EsCl5kcARwBHAEcARwBHAEcARwD3Hw3gRr7q93gbcGMoxwDumRcy5DhS+2sdmV51ZpGJyFawgKuXRubT3n3SJY0db7GJRYujK7e2auno1TG2Nv1oqWYNV927hLRqtR+Ome2i+q4KFco7IPvyq2jgVqmiZB7PeceW6bF3+y2hrB6B5vVM0Lhrt/TaG/57uKlfiAAuxbYphyOAAAIIIPBzCRDApSZLAJeaX2AAl/irb/78rl58OZ8OHpSaNXV06cWOXh6doV27LDWo76pNa0ejXrf100+Wtxpbl46Oxrxp67vvLZ1d3VWv7iFNmJyh9eHQ48Y+jmbMtLV6jaVyZV0N7BfSu0ttffChrRLFpcEDM7X6M1vzFtjexM23DQnpm28tTZnuN4R/OzSkrdukseP9hu8tg0I6dlx6ZbT/uH/fkIoVlZ590X/co0tIVapI/34hw2tAX0cARwBHAEcARwBHAEcA94sO4F54KcMbtnr5ZY4a1HOyBXAm0Nu+w1KdC1x1vC57APfmxAyv7XDWGa769HS0ZFk0YGt6qasv10Uf16zh6KMVthYvsVW0iHTzoJAXwM2cYytfPj+A2/SjNG2m364YMjCkPXvzDuC2brO8dlNkM8N9Y7fdu6Xde6LvIfH5ffusrGG75riiRV3vvbAhgAACCCCAwMkJEMCdnFfi3gRwqfmdUAA3bESGjh+XrmltVidzCODaO3r9DVs//Gh5v8z36BbS+IkZ3rCbM6q6uqG3o7en2Vr7paWKFVwNuMHRgkW2PlphqVRJadCATK1YaceFHuu+tjR9pq2MDOmOW0PavFka/5bfuB96c8hruI963X88qF9I+fJL5nMxW68eIVUoL/3rOf9xp/aOF3Y+PzxDZvW51i0c1bvQ0fCX82n/AanppY6aXuZ4IeWOnRYBHAEcARwBHAEcAdwvPoAzQ1dbNj81Adzkqba++MpSxYquBvR1NHe+rZWrLJUu7Xr32BMJ4CZO9u+55p4dG8ANHhBS6dLRee7MPkePSc+E79GdO5gectKWmGG2Vau53j36wAE/ZLy6lRPXujt00NLoCqJmDAAAIABJREFUMbbXK7BUKalrJ0fbd0R3KVdOOrA/+tj88Pjxymig1+AiR8WKpdhgTDh827bosNsa55h2BsNuT60wr4YAAggg8HMIEMClpkoAl5ofARw94AjgCOAI4AjgCOAI4AjgTmEAZ4alTg/Pc2eGyJqALDGAe/7FDG+eujatHNWp4/9IFgngmlxieulFh802b+Z6owu2/GSp1nmuF8C9Mc7Wxu8sVT/LVa/rHU2abHu9/CqUd9Wvj+P12Pv0M0tly7i6qX9IS5fZCoUzsssudbwfBGO3yMIYkX8zowxit40bLW+EgdkybKl4cenZYX4I2a1z6BcZwAWVKcUmNIcjgAACCPwKBQjgUvvQCOBS8yOAI4AjgCOAI4AjgCOAI4AjgDvFAdyLL/vhVO/rQ0kFcKaX+s5dlupf6KpdG396j6AAziwGUaVy7gHc0g9sFS8mDb4pU2vW+AtVmM3Mi/ftRkumN77Zrm7hxA1xNWHc7j3SiFF+mfr1CQUGcAcPWHFz5clyvelKIlv5CtL2bdFGbJUqbtwwW/OMmXrkZLYdO6N758uQ1m+wteGbcJlaOipThl56J+PJvggggMDpKEAAl9qnSgCXmh8BHAEcARwBHAEcARwBHAEcAVwaBnBmYYkCBfypLkwAZ6bPMNtdQ0PatkNasNh/bObVC2XmHcBVqyq9+56/f+VKrtdT743x/uNaNV01buTo5VEZ3lx3v2noqmULR6Nes7V1q6Xza7nq3MHR+EnRXn/Xdw/Fh4CSN9Q3shUsYOn7TdHHVSu7WvmpreUf+68xaGBIX2+IX5HXzBkc2cwKuSb0i90OHIjv9lesWN6BnZlLOHYz04iwIYAAAgj8sgUI4FL7fAjgTsLv4KEjKlqkUNwRm3cezvMVzCIMzAEXbiRus3RBbVcdmQNO/fs6mj3P1iefWt4vymbVt/c/tPXeMtubZ2bIwEyt/cL29smfX7r95pA2fi9Nnuq3Tu+8LaRdeYQefXv5c+j8+3l//66dQjqjmj/cxayGZ3oD1K6VfT5C8+v87t2WGl7k6uqWjkaNiVkQpEN4QZAfLP+LplkQ5K3ogiBmyM6UGbbWrLVUvpyrgTeGtDhmQRBTpk9W25q/0PZW7bt1cPYFQX7aKr05wX/Ptw4JeXPwxS4IUqSoZIYdme36riFVrhy/IEjNc10NG56hw0ekFlc5aniRoxEj83lfOi5u5Kr5VY5Gvmpr23ZLF5zvTzYeNx9h15DGTczQhm8tnVnNVd9e2ecjfGeh7c0NVLqUq0H9Q/o4YT7Cr9ZZmjE75/kIzedo5hEcPSZ95iO8oXdI5ota7FAr80Uzvi66enFEhg4ekrci48WNHI0YHa2LrVslfNE0i9OMtfVdpC52C9fFDZaqVXV1Y+/sdXHRElsfLre99zJ4QPa6aOagnDbD9lZkNOdXYl0082fFrjxZuHBCXawkJa48Oeyl+Lr40ivRlSevusKNr4vtHb2WsPJkYl1MnHcrsS4mzruVWBfNxPeRebfMRPj798fUxf4hbw7N2F5H5ctlnxvzuZhhf3XDw/4ic2Ne1sSfGzOr19E1jka/bmvzFkvn1XTVtbOjsTHD/nqbYX9v2zLv0wQO5roYN+yvX0jLEq6La9ba3mqaXugxJOG6ODSknTukMeP888tM/u+EpJdG+o9P17porqcvDPfLaK7LlSpkr4tmEYZf0xxw5jz8NfSACwrg3oipiycSwEUWuLr2GscL4GKviycSwL0+1tb3myzVONuVCeDemhJNtLp0cPT2dNMLUMqfT978uouWWHHXRRPAmTl3CxeSbhmSPYDbskUaN8l/TbOol7kORoapml5+hw5L02f4AZ6ZK9fcZ/PaTDtm9jz/9UqWcHVt2/i5+xKPPXJY3uIeke3KK4JX5D2JZj67IoAAAgicgAAB3Akg5bELAdwJ+G3ZulN//PtLWrtuo0qXKq77h/ZW86YNvCMJ4BydV8P1QkbT8Gp+haNGDbOHHt6vtARwcV80CeAI4NJhQZDTNfQggHNEAOeq8y8gDCaAy3kOuP/EENRfegA3YVKG1sf8MGECuLVf+PPcnYoAzvzYNSM8V58JzxLr4plnyFv4IrKZHm8msI9spUq42Vbk3bU72ovOLJBlfiiIbMWLuUpckfeD5TGLZdR3VbJk3qHf559H969YUSpfPn5/88N5ZDOhYrlyJzfs1qy4G7uVKHFyx5/A1xJ2QQABBP6rAgRwqfETwJ2A390PP6fKFcvq7iHdtfqLb3TzfU9qztgnVLpkcQI4hqAyBJUhqAxBZQgqQ1AZgsoQVIagZhuC+t/uAfefCOBiewbnFAaPf8vvsdaooeutfJ9Mb0wzd9851V117xLKFsAl9gzeuy/asC9W1PVW5D18yA/FLm/q6MuvLK+nbb58kukJbFnRgMz0vDQ95COfm+nJb9nSqlV+GWrWdFS2jPTBh/7jqlUdVT9L3siCyJY/v5vVk9+MFrjicjduLj/bih8KbAJA817YEEAAgV+LAAFcap8UAVyAXygUUr2WN2nRpKdVvmwpb++Bdz+uvl1bq0XThgRwBHAEcARwBHAEcARwBHAEcARwBHC/0uHQC8Nz9Zlh8WbKitfe8IfFDh7gB3DDwwuC9OkZ8gK4Z8LTe3TuEFL1M6UXRvj7X9XMDLt1NPyV+BV5x0/0ny9TRrqmdcKCIB0dHQ0v5mH2KVgwvsecWTE3NlQ0Iee69dFhuDXOMV0M43vdJfYC3LEj+mXH9OorWzb+y8+2bZYOHoz+W8mS8lYIjmwmSNy9O/p82bJu1gIk5l/N1A6hmJ6OZvGP2FWAjx+X9sbMP1i0qKXChePLufKTmDLVcLzXjN327o2+HxOUHj0aH5wWKRK/v3FiQwCBn0eAAC41VwK4AL9tO/aoebe79PnCkbLCd5OHnnhFtWqcqT5dWmUL4Mx8FvGbJTNnjrn5mJuuuTG/+HI+70bXrKmjSy929PLoDG9lqwb1XbUJ35h/+slS7VquupjhLW/a+u57S2dXd9XLzLs1OTrv1o19HM2YaWv1Gkvlyroa2C+kd2Pm3Ro8MFOrP7M1b4HtrYZl5uz45ltLU6bb3s3xt0NDMpPqjh3vNw5uGRTSsePx824VKyo9G553q0eXkKpUiZ93iyGorq5tFz/XUbfOIc/UTMp81pmuevd09FbCXEcMQWUIKkNQI/MRMgecmRuTOeCYA87MjXmy8xEyBJUhqJFFGBLngPsl9IBLnBszmR5wm360VLPGifWAmzvf1spTGAafSABn2six7fzEAC62nZ9TADdmnK0jR6UihaVePULeXJ1mzkCz9ejqeMN8v/nOUqGCfjt/6TJbkRV5h9zkt/PN9wCz9e7heHP8RTYTVn33gzRtpt/O79sz5PXYWxEOvOrVdeJW5E1s50fmIzRzmsZONWMWBDmeaan2ea5aNnc0MdzT0XzX6NTe0ay50UCt7dUhjZ+UoZ+2WSpd0tUNvR1vLt3I1uAiVwsX2fpohaVSJaVBAzK1+nNbCmdsdeq4Wv+1peUr/GN6dXdk5iOcMccv0429Qzp0SFqy1P+bZi7ZgoWiPRVrned4qxvHDoc23+k2b4k6nVNd2VYdXvVptAym92Tsduyo9FF4wRLz76YMRYvGh4qx3wnNfM5WTFBqPpciCfsHfaXfucOSE/MnEodPBx0f21PT7Gu+B0bmcIw8ZiGU7IqJbvRYlQjggs62vJ8ngAvwW//tJvUZ+jd9NHNY1p5PDhunAgXy646BXfTDlmNZv/qY28LBw64Wv+fvekFtqVJFaeZc/4Zx1hlSvTrStNn+8+XKSM0ukyZP9x+bSaU7tpUmTIm+qes7S+MmRx/36CyNj33cSZo0NfrLU+f20oJFrvbu9/9mh3au1xDZtNl/jWvbuN6qVl997T++ppXrzc32yWr/cfNmrhfALf3AP75JY3k3lHcW+Y/r1XFVtYo0a57/+NxzpNo1XU2f4z+uWEG6tLGrKTP8x0WLmL/hv8fIlliGoDJ26yDNekfeBO1m69jO1QcfW15waLbr2rj6cr2lr7/xH7dt7erHzcpqjLS6ytXBg5beX+4/f3kT12ucLFziv8cG9cz7djX7Hf9x7fOkGtVdzQh/btWqSA3ru5o6y3/eNB6aN7P0VvhzM79Odu0gjX87WsagMnXvKE2ZpaxfEDtfJ727VNoZ/oWxfVtXqz+3vEaT2dpdbX6NdLX2K/89tGnpehOdf/yJ//yVTV3vJvruMv/5xg3lLRIwd4H/uE5t16t/M8Of29lnSXXPj6+LxuXt8OdWqKDU/pq862K2MnaKN+jSXpqfUBc//iTa4Mm5LkqfrPbfc8srXa9BGlsXixRxNX+x/3z9uq6qVM69Llau6C+8MGVm7nUxsQxBj01dnDnPn2jabJ2udfX+8vi6aD6jbzZG6qL042Y3ri6aVeI++Dh96uLFjfzJtect9D+Huue7OrNaYl10NW22/7yZ8+eyi+Pr4nXXSBPzuC4GfW6mLs5b6Gp/eIU+cw1ZnlAX131taf0G/3Pxr4vxdfHwEUvLPvSfv+wSqXChhLpYyVyn/DLUrCHVOjd6XUysi2Yeo6tbWPHXxYTzJ6hM3Tqae0t8XVz2kaVt2/332P4aV2u+jNbFdq2l7ze5+vwL/z22bu5q//7c62Kj+v7cSLHXRTMELHI/M59h/QtdTYu5Ll7VzMq6n+XLkIx7XtfFxDKa66K5H2aGV0bM6br46WfRlRuvvVr6NuG6uGOnpRWrfANzPzNzTkWui6drXTRfyhe8G7mfud4iDLF18bxzXc0I36PNNbNxg+h10dTF1s0tvTXNNzNbUN1LfN7Uxemz5V2vI9fFxLpo6t233/nPm/vZ9z/E18W9+yx9tMJ/vlkT11sQZNF7fplMXTTzcM2Z7z++oJbrDfvLrS6WLS1d0TTatjJ10bSNJuRxj87pfmZMYuvioiWudod74XRo62pVXF10tWGjpS/X+WUw1xAzl9iKT6N10XyJW/K+X4ZLfyMVLx5/XTQLJUXaViYMMPft3K6LJqgxjrHXxZNtW3VtL81NuC6aAGTLVv89m7bVVwnXRbOAw6fhOdTMPfrwYUvLPvL3N9fF060uXnGZ64UUi5f6n9tvGkhly+ReF712fl1p2izfJLEueu38dvF1MfBzy6Gdv+jd+Lq48tP4dr4JlsxnZzZThsR2vqmL74Xr4iUJdTGxnW/qollAbXr4Hm3a+U0aR+/Rpi62bR3fzjfnU+x3le4Jj83zk6a53iI5Zut8naXZ8+Pb+StWmfainzaZuh7Xzm/lanNCXTx0KNrOb3qJWZzDrELsG1xUz78uLlzi/71aNSWzGNTscJvY/L+5n0W+61Qs76pBPUtvT/f/vrkede1ovme4XiZohhHXqG5p/ORoGta9k6UDh6KPS5awtNBcM8LtevNd6PMvpM0/hdu4V5jPUN6iYWarVtnS3n2u9od7Ilau4M+XuDF83Ty3hh8Qmmur2RrUc1WmtLT2C/94syiZ6Z35+Rr/cblyUo2zLR2MeU8F8lt6d5n/Pc8ce3FDS4ve89vaxYuZuhIto6n3Nc+29PW3blboZx5vjelNWb6s+cyiZTbf+SLf1cx7MHVj6/bov1WpJC9UjYSI5nw4dsy0Y/wymetHhbIZCf05/fJEtj37Q/oh/J3WfJc76wxLBw5G30PxovHv0ThuiVm9uVJ5acUq11vkzYSijRrEH1+iuKUN37pZ3+2rn2Fp7ZeuNm2RzPe9yy81x/nv12zmNYoUjAa15p1s3hrSrj3hz6GMVKaUJdeNHuO4rhfYRzbjFApFn88MuVnfB82/Viwv7TsQLWOpEpb27Is+Llvalh2jZt5TLGKB/LaOHY8GyPnz2TqeGX2cYVsKxSS7JhyODavN+w0dj74/875Ll2TcfHzNPLlHBHABXrv27FezTnfoswUjZZsrrqQH//myzj6zigb2bHty2uyNAAIIIIAAAggggAACCCCAAAIIIJB2AgRwAR+567qq23yA5o17UlUq+pMm9L39UfXu0krtWlySdhWGAiOAAAIIIIAAAggggAACCCCAAAIInJwAAdwJeP3PU6OVL1+G7rutl1asXuctwrBs6nMqWaLoCRzNLggggAACCCCAAAIIIIAAAggggAAC6SxAAHcCn/7uvfv1h78N19Lln6lokUJ65J4BakvvtxOQY5d0Fwg5jo4fy1ShQgXSnYLyI5CjwMFDR7z7SuLGuUOFQeDEBY4cPab8+TKUwQziJ47Gnr96gX37D3r3j5zqfV7nRG73nV89CAVAIBcBx3F14OAhlSh+8p1nOF+oVqdagADuJETNCVikcMGs1VBP4lB2ReC0Ezhy5JgaXTMkrlyP/+lmXde6ifdvo8fP1oixM3X06DFdfvGF+vsDQ1SwgJkZlA2B9BGYu3i5/vz4y3rusbvU+KLaWQV/f8Ua/e3p17R95x6dW72qHv3jYJ19hpmhmHMnfWoHJY0VCIVCen70FA17dapWzRuh/OGlHPO615hjzPk1/72VKliwgHp3aqlb+3UEFoHTWmDWgg/1xAvjvEDBfDfpf/01uvvmHsqwbeV1TmzZulN//PtLWrtuo0qXKq77h/ZW86YNTmsrCpfeAuZ8ePG1aRo1PrwCoqSH7xmQNY3UsyMn64XR0VW+KpYvowUTnvLQ8mqnpbcqpU9VgAAuVUGORyBNBbZu36X2/R7Q0inPZgmYX2HNYiVfbfhBN9zxqN56+a8qV6ak7v2fYapTq7puubFDmmpR7HQUePy5sV7P6d17D+jJh27VxQ3O9xgOHzmqq3vdq7/8rp9aXN5QI8fN0pIPV2vU0/dz7qRjRaHM2n/gkO748zNeb55Fy1bpk3kjVCAcwOV1rxn79nzNeOcDvfjP38v0+Ok08M966uHb1Lh+NOyGF4HTTWDmgg91RuXyuvD8c7Rpy3a16XWvxjz7Z11U91zldU7c/fBzqlyxrO4e0l2rv/hGN9/3pOaMfUKlSxY/3YgoDwKegOn59uqEOWrb8hJVLFdacxYtlzkPVs59yesUYKaZqnXumerStpm3v2VZ3rRTebXToEUgVQECuFQFOR6BNBVYt+EH3fPXFzR11GPZBEa8MUNbt+/Wn37b13vOzJ34yFOjctw3TfkodhoImIae6f1p5g39/c09sgK4VZ9/rT89PkIzXvuHp2CCg0Zthui9Kf/WpBnvcu6kQd2giPECppeCCRWaX9ZAl1x7a1wAl9e9ZvA9T6h7+6t09ZWNvRc0PR327DugPwztBTECaSNw/S2PaGDPdmpzVWPldk7cc0sP1Wt5kxZNelrly5bybMy9qW/X1mrRtGHaWFHQ9BY4dPiIGre9RQsnPq0K5UrproeeVYc2l2U7B/JqpxFYp3cdOhWlJ4A7FYq8BgJpKPDhyi+8AO66Vk1UrGhhNbywppo0quNJmKF1VSuX04Dr23qPf/xph67ueY/WLBqVhlIUOd0FzJej2ADOBHOTZy3RsMfvzqJp0f1uPffYb70AjnMn3WtM+pY/8uUotgdcXveaNr3v1RMP3qJ659fw0KbNW6a5iz7Wvx+9M30RKXlaCZhpDK7qepfmvPGEqlUpr9zOiQd/d6Oad7tLny8cmTWVzkNPvKJaNc5Uny6t0sqMwqavwOL3V+mRp17NGmba9/ZHvSDO9I4764xKuvqK36hM6RJeT7nc2mnn1zwrfQEp+SkRIIA7JYy8CALpJ7B1x25Nmr7Y+yX1sy+/0eyFH+muwd3Uu3Mr/f6R53Vpwwu8nglmMxMFN2k/VCtmD2dBhvSrKmlf4sQAbtzUhfp41Zd64qFbs2w63/Sg7rutpyZOX8y5k/Y1Jn0Bcgrg8rrXXNzuFo19/iHVqF7FQzNfrkwvuDeefzB9ESl52giYxXru/PMzOrNKBf3h9t5euXM7Jx65d4D6DP2bPpo5LMvnyWHjVKBAft0xsEvamFHQ9BXYtWe/ug3+ix64s49aNWvkQbw9+z1vCoRjxzM1f8kK7dyzT+OHPazZiz7KtZ0W6WyQvpKUPFUBArhUBTkeAQQ8gTenLNBrE+d6w+rM3Fdm7reberXzntu0ebv3q2zsL6+wIZAuAokBnJkwftyUhRr+xO+zCJp1vlPPPvpbL8jm3EmXmkE5EwVyCuAS94m913To/4D+et9Nqn+B3wNu6txlmjn/g7jepSgjcLoKPPbM61r3zSYNf+KerDkTczsnHvvjYDXrdIc+WzDSm6vXbA/+82WdfWYVDezpj1ZgQ+B0FTBzuvW/6x+6vPGFuuOmnAPnzMyQLuswVI/eP0i2befaTovcb05XK8r18wsQwP38xvwFBNJCwMyXcMeDz2jJ5Gf06sS52rDxRz1yzwCv7GYI0UP/+4o3RIINgXQTSAzg1qzb6E0CPHvMP72hQJHQYf74pzT33Y85d9KtglDeLIETCeBi7zVDH3habZtfkrX69vOj3taOXXv10N39UEXgtBYwKzcuWLpSrzz1BxUvViSrrLmdE2YIat3mAzRv3JOqUrGst78Zfte7S6usFSFPazAKl7YCpnfb7Q/8S1UqldVf7u6XNQQ7JxAzh+K1rZqo5jnVcm2nVapQJm0tKfipESCAOzWOvAoCaSdgfnU18yaUKlFMR48d1wN/f0mFChbwfjn6YfM2dR30kCYMf8SbV8GEDeeam9mQ7mnnRIERSAzgjh/P9FZrHDqgszdp9ktjpntDH8z5wrlDfUlngZwCuLzuNWbhhtHjZ2vEk/fp8OGj6jr4IT12/yA1u6ReOjNS9tNcYMxb7+jViXP02jN/UumSxbzSml5tZiX6vM4Js+KjWeHxvtt6eYtjmUUYlk19TiVLFD3NxSheugqYBX7u/as/7Pqx+wcrI8P2zxfzX9fVp2s3qEHdml4o98nn671Qeubrj3shdW7ttHS1pNynToAA7tRZ8koIpJWAmTfhT/8Y4U1WevToMe8Lj+nxZhZkMNvEGYv1rxGTtGv3PjVtfKGefPg2FQ8/l1ZQFDbtBXrf9lf9bkh3Nb6odpaF6cXzyP+Nllnh0Uyc/dxjd+nc6lU5d9K+tqQ3gBkm9JtrbtaqeSOUP38+DyOve43runr0X69r6tylOnjoiDeU7u6be+TZwyG9hSn96SBQ56r+2Yph7i+jnr5feZ0Tu/fu1x/+NlxLl3+mokUKeW22ti0uOR1IKAMCOQqYEQc9hjyc7TkzDPWmnu28H202bNzsfZcpUrigt4J2ZFXgvNppcCOQigABXCp6HItAmguYX5b2HTikEsWLKsP2f1WK3RzH1ZGjR1WkcKE0l6L4COQssP/g4RyDac4dagwCUYGge43phW1bVlZohx0C6S6Q1zlhwmoTNpheP2wIpLuA6XkdctxcOwnk1k5LdzfKn7wAAVzydhyJAAIIIIAAAggggAACCCCAAAIIIIBAoAABXCAROyCAAAIIIIAAAggggAACCCCAAAIIIJC8AAFc8nYciQACCCCAAAIIIIAAAggggAACCCCAQKAAAVwgETsggAACCCCAAAIIIIAAAggggAACCCCQvAABXPJ2HIkAAggggAACCCCAAAIIIIAAAggggECgAAFcIBE7IIAAAggggAACCCCAAAIIIIAAAgggkLwAAVzydhyJAAIIIIAAAggggAACCCCAAAIIIIBAoAABXCAROyCAAAIIIIAAAggggAACCCCAAAIIIJC8AAFc8nYciQACCCCAAAIIIIAAAggggAACCCCAQKAAAVwgETsggAACCCCAAAIIIIAAAggggAACCCCQvAABXPJ2HIkAAggggAACCCCAAAIIIIAAAggggECgAAFcIBE7IIAAAggggAACCCCAAAIIIIAAAgggkLwAAVzydhyJAAIIIIAAAggggAACCCCAAAIIIIBAoAABXCAROyCAAAIIIIAAAggggAACCCCAAAIIIJC8AAFc8nYciQACCCCAAAIIIIAAAggggAACCCCAQKAAAVwgETsggAACCCCAAAIIIIAAAggggAACCCCQvAABXPJ2HIkAAggggAACCCCAAAIIIIAAAggggECgAAFcIBE7IIAAAggggAACCCCAAAIIIIAAAgggkLwAAVzydhyJAAIIIIAAAggggAACCCCAAAIIIIBAoAABXCAROyCAAAIIIIAAAggggAACCCCAAAIIIJC8AAFc8nYciQACCCCAAAIIIIAAAggggAACCCCAQKAAAVwgETsggAACCCCAAAIIIIAAAggggAACCCCQvAABXPJ2HIkAAggggAACCCCAAAIIIIAAAggggECgAAFcIBE7IIAAAggggAACCCCAAAIIIIAAAgggkLwAAVzydhyJAAIIIIAAAggggAACCCCAAAIIIIBAoAABXCAROyCAAAIIIIAAAggggAACCCCAAAIIIJC8AAFc8nYciQACCCCAAAIIIIAAAggggAACCCCAQKAAAVwgETsggAACCCCAAAIIIIAAAggggAACCCCQvAABXPJ2HIkAAggggAACCCCAAAIIIIAAAggggECgAAFcIBE7IIAAAggggAACCCCAAAIIIIAAAgggkLwAAVzydhyJAAIIIIAAAggggAACCCCAAAIIIIBAoAABXCAROyCAAAIIIIAAAggggAACCCCAAAIIIJC8AAFc8nYciQACCCCAAAIIIIAAAggggAACCCCAQKAAAVwgETsggAACCCCAAAIIIIAAAggggAACCCCQvAABXPJ2HIkAAggggAACCCCAAAIIIIAAAggggECgAAFcIBE7IIAAAggggAACCCCAAAIIIIAAAgggkLwAAVzydhyJAAIIIIAAAggggAACCCCAAAIIIIBAoAABXCAROyCAAAIIIIAAAggggAACCCCAAAIIIJC8AAFc8nYciQACCCCAAAIIIIAAAggggAACCCCAQKAAAVwgETsggAACCCCAAAIIIIAAAggggAACCCCQvAABXPJ2HIkAAggggAACCCCAAAIIIIAAAghaVXXAAAAC4ElEQVQggECgAAFcIBE7IIAAAggggAACCCCAAAIIIIAAAgggkLwAAVzydhyJAAIIIIAAAggggAACCCCAAAIIIIBAoAABXCAROyCAAAIIIIAAAggggAACCCCAAAIIIJC8AAFc8nYciQACCCCAAAIIIIAAAggggAACCCCAQKAAAVwgETsggAACCCCAAAIIIIAAAggggAACCCCQvAABXPJ2HIkAAggggAACCCCAAAIIIIAAAggggECgAAFcIBE7IIAAAggggAACCCCAAAIIIIAAAgggkLwAAVzydhyJAAIIIIAAAggggAACCCCAAAIIIIBAoAABXCAROyCAAAIIIIAAAggggAACCCCAAAIIIJC8AAFc8nYciQACCCCAAAIIIIAAAggggAACCCCAQKAAAVwgETsggAACCCCAAAIIIIAAAggggAACCCCQvAABXPJ2HIkAAggggAACCCCAAAIIIIAAAggggECgAAFcIBE7IIAAAggggAACCCCAAAIIIIAAAgggkLwAAVzydhyJAAIIIIAAAggggAACCCCAAAIIIIBAoAABXCAROyCAAAIIIIAAAggggAACCCCAAAIIIJC8AAFc8nYciQACCCCAAAIIIIAAAggggAACCCCAQKAAAVwgETsggAACCCCAAAIIIIAAAggggAACCCCQvAABXPJ2HIkAAggggAACCCCAAAIIIIAAAggggECgAAFcIBE7IIAAAggggAACCCCAAAIIIIAAAgggkLwAAVzydhyJAAIIIIAAAggggAACCCCAAAIIIIBAoAABXCAROyCAAAIIIIAAAggggAACCCCAAAIIIJC8AAFc8nYciQACCCCAAAIIIIAAAggggAACCCCAQKAAAVwgETsggAACCCCAAAIIIIAAAggggAACCCCQvAABXPJ2HIkAAggggAACCCCAAAIIIIAAAggggECgAAFcIBE7IIAAAggggAACCCCAAAIIIIAAAgggkLzA/wMHbp1EtpYezgAAAABJRU5ErkJggg==",
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"text_length(\"sst2\", query=\"predicted:ok\").visualize()"
]
},
{
"cell_type": "code",
"execution_count": 108,
"id": "64fcea9a-8a0e-4c54-98fe-498f1722a32e",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"type": "bar",
"x": [
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176,
177,
178,
179,
180,
181,
182,
183,
184,
185,
186,
187,
188,
189,
190,
191,
192,
193,
194,
195,
196,
197,
198,
199,
200,
201,
202,
203,
204,
205,
206,
207,
208,
209,
210,
211,
212,
213,
214,
215,
216,
217,
218,
219,
220,
221,
222,
223,
224,
225,
226,
227,
228,
229,
230,
231,
232,
233,
234,
235,
236,
237,
238,
239,
240,
241,
242,
243,
244,
245,
246,
247,
248,
249,
250,
251,
252,
253,
254,
255,
256,
257,
258,
259,
260,
261,
262,
263,
264,
265,
266,
267,
268
],
"y": [
3,
10,
80,
256,
416,
595,
731,
928,
1070,
1074,
1107,
1123,
1198,
1187,
1257,
1212,
1270,
1290,
1252,
1316,
1225,
1203,
1148,
1066,
1039,
995,
974,
930,
921,
886,
850,
819,
868,
743,
826,
727,
735,
719,
657,
655,
622,
657,
613,
619,
607,
554,
555,
559,
478,
541,
511,
496,
480,
485,
531,
478,
440,
431,
394,
439,
422,
410,
403,
382,
382,
375,
392,
357,
345,
332,
342,
343,
336,
295,
316,
329,
300,
297,
322,
294,
309,
299,
259,
280,
295,
266,
263,
272,
242,
254,
247,
250,
249,
216,
220,
238,
205,
202,
221,
208,
210,
215,
202,
199,
192,
187,
189,
182,
180,
184,
181,
184,
157,
160,
145,
154,
144,
158,
147,
150,
139,
144,
141,
139,
144,
146,
116,
141,
108,
127,
106,
108,
116,
102,
123,
97,
88,
98,
91,
104,
91,
83,
83,
91,
95,
88,
100,
72,
81,
74,
82,
68,
80,
74,
72,
76,
68,
61,
62,
55,
66,
77,
53,
55,
59,
59,
54,
47,
49,
52,
56,
61,
51,
40,
48,
34,
35,
46,
37,
34,
45,
38,
27,
30,
37,
26,
34,
31,
30,
26,
33,
24,
27,
17,
17,
18,
21,
18,
9,
18,
15,
20,
21,
20,
18,
17,
15,
18,
14,
21,
15,
17,
18,
16,
15,
11,
13,
9,
14,
6,
14,
4,
10,
9,
6,
6,
8,
11,
7,
8,
4,
8,
8,
6,
6,
5,
4,
4,
6,
4,
5,
1,
1,
6,
5,
5,
5,
7,
4,
6,
8,
3,
1,
6,
2,
3,
2,
5,
4,
4,
1,
0,
0,
0,
0,
0,
1
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Computes the input text length distribution"
},
"xaxis": {
"autorange": true,
"range": [
1.5,
268.5
],
"title": {
"text": ""
},
"type": "linear"
},
"yaxis": {
"autorange": true,
"range": [
0,
1385.2631578947369
],
"title": {
"text": ""
},
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAFoCAYAAABNITkUAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Xd4VFX+x/HPzASkSgcFQRARFZQiCIIooSMgRVroxV52Xfvqquuqq66r6/7WTkkgkBBBRUQUUOxdLCiiSLEgKpDQBZS59/ece5lJJiSQcBKckPf9Rzkz586Z17n3zvN87sn3BlzXdcWGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACVgIBAncrPzojgAACCCCAAAIIIIAAAggggAACCCCAAAIIIOAJELhzICCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUAQCBO5FgMguEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAgcOcYQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgCAQI3IsAkV0ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIEDgzjGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEARCBC4FwEiu0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgMCdYwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSIQIHAvAkR2gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAgTvHAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACRSBA4F4EiOwCAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAECd44BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSKQIDAvQgQ2QUCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgTuHAMIIIAAAggggAACCCCAAAIIIIAAAggggAACCBSBAIF7ESCyCwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECNw5BhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKAIBAvciQGQXCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQuHMMIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQBAIE7kWAyC4QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECBw5xhAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAIBAjciwCRXSCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQODOMYAAAggggAACCCCAAAIIIIAAAggggAACCCCAQBEIELgXASK7QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAwJ1jAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIhAgcC8CRHaBAAIIIIAAAggggAACCCCAAAIIIIAAAggggACBO8cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJFIEDgXgSI7AIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQJ3jgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIpAgMC9CBDZBQIIIIAAAggggAACCCCAAAIIIIAAAggggAACBO4cAwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIFIEAgXsRILILBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQI3DkGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoAgEC9yJAZBcIIIAAAggggAACCCCAAAIIIIAAAggggAACCBC4cwwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAEAgTuRYDILhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIHAvgmNg89btcl2pytEVFQoGi2CP7CIicM//ZqrhcccoaWDXYkHZmLlFm7fu0EknHFcs+y8NO50z/3V9ufJb3XbN2Lj7ullbtuveh2fqgvPOVbvWpxTJ+MLhsG65d4q6nN1KPc5t6+1zzXfrVaF8OR1Tu3qRfEZeO9m9+zd9veYHNT+5kXedKY7vlt/gXdfV51+tUePj66lihXLF9h3ZMQIIIIAAAggggAACCCCAAAIIIFDSBQjcD3EGV65ZpwefeEoff75SO3/dHd1L5w4tdevVY4o1eDvEIReq22+/7/XeX7ZMQqH6Heqb8/u8LkOuUZsWJ+lff7v0UHd9wH5/vvV/evnNpVr60pMqV65ssXxGYXZaGPftO3epcsXyhdl9od5b0LHcdv9UvfTqB/pgweOF2n9Rvzmv8a77aaN6Jl2vO64fr8F9zi2Sj9zz2+9q3eMiXTFugC4fN0AmjG6eOF5tW56slIduKvBn7Nq9xzu/QqFQgfqkPfuy7v7vDKX89ya1bXGyiuO7mYHk5bhy9Q8aOPFWXTVhkC4dc36BxsubEEAAAQQQQAABBBBAAAEEEEAAgdIoQOB+CLP+/OJ3dNPdT3orPUcP7qGTTqjv7cWs8n3v4y818+G/KSGhYCHaIXz8YenyjwenqXq1o3Xl+IF/6OcVd+D+zodfaPnKb3XRyL6H5Xse7EMK6v7zhix1HXpNsd4oKOhY4iVwz2u8xRFK5w7czZzOfOZl1alVTd06nXGwKY6+3nPE9fr7teN01hnNCtTnu3W/6OkXXteFI/ro6MoViy1wz8vRrK5/dPpz6tu1vU5q7F/v2BBAAAEEEEAAAQQQQAABBBBAAAEE9hcgcC/kUbFl2w51PP9K1alVXVMevEGN6h9TyD2UjLeboHvQeZ0OW+Ce3+cVd+Aeb7NRUPfITZ/iXJlf0LEczsA97Dj5lm3Ka7yHK3Av7HH048+b1GP4dZr8wPUFDtxzf0ZxfDfzGQWd98J+Z96PAAIIIIAAAggggAACCCCAAAIIlAYBAvdCzvL/pjyjx1Pn6d+3XabeXdodtPf7H6/Q3Jfe1CtvfaxqVSurS4dWGjmou46rWyva97Fpz8kE+aYcjSlT8+XK77w6zeZ95/fooGlPvaS5C9+WKetw6knH67pLh8fUo778pv+oR+e2CocdTZ21QN/+8LP3vvHDz9N5OcZoylFkbt6qB/9+Rcy457zwurdCN/2RW7Uhc7P+/kCKzLjNCv56x/rjNH0iNxdmP/+aFr3+oT77crVaNmuiAb3PjvkcsxL32Rff1OvvfeaN2XzXs9uepisnDFS1KpVjPvv7H3854OdFAvcObZp73231t+s9mwE9z96vrvvaH35W2jMve9Zm69aptS4e1U81q1fJd56M/YeffaWpD97ovceM+Ynp8/TA7Zd7c2H+bTbzPa+/fJiaNMqu9V5Q9+cWvq2Up17StIdu8lYmRzYzz7fcN1m3/2WsqlerfFD3SD9zPDySMtcrZdS4YV2vJEmHNs10/WXDvbfs2LlL02cv1OI3l+rHnzZ6x9XoC3rotFNO8F7/16Oz9OGnK/SfO67Ucfvm17Tf/u9kfbXqe936lzHedz/QMZATNK/A/WBjMP2N/bbtO9Wz85l68MmntHTZSu+vKhI7tNS1lwzznokQ2YxhxnNLvGPObOZ7R7ZrLx3mnSN5jbdMQsgrKXPzn0bJ1Ouft+gd7dj5qzefE5POO2hdd1Ne5eHkZ7XwtQ+0bv1Gr2zM1RcO1sgr74qWlDHjMMdC0xMb6M8XXuANy8xNxrxX9dYHy7xxme/VunkTrxzL5i3bdff/zfDOU3PjznzPiuXLacbDt3jH26Mpc73j8V+PpuvFJe97+1q2ZKre+uBzPTRpjh6++8+qd0zN6Ap3s0p+/S+ZeuWtpTJ/+WC+23WXDYt5LoHtuW/Gd8mND3jfOecq/oJe3wo6zwe9oPIGBBBAAAEEEEAAAQQQQAABBBBAIM4FCNwLOUGjrrxb3/34i157+qGDPiDVhIMjLr9TDesfo16JZ+qnDVl6+Y2PVKtGVaU/ems0fI0EliZY69m5rU44vq7MCmYT8Jl/m6Bt+ICuyszaqrkvveWN+O15D6vq0ZW8/zeh9O979ypr8zb173W26tSs5gXiJtC795aL1a97B+99l974oNb/sknzUv4Z863NDQRzI+H9Fx7TxqytmrfwbT0543m1at5EHds29947pF9nL7iO1JE23+m8ru317kfL9ckX33ghYGLHVvr9973qMvQa7dnzmwb37axjalXTN2vX6e0Pl+vFmffpqLJlYj7bhOQH+jzz3X7ZmOX16dOtvWdnQlPzXe+5+WLvhoTZTKA35JK/e2YDep2toytV0PQ5i9Ti1MZKfuim/T43MojcYXFk5bgJSOsfW0tnn3malq1YozffX+aFowtm3KtyR/m13gvqPnXWi3rg8Qy9Ofd/ql41+4bDR599rbF/vkeP33eNjqtb+4AOOdGemveqZ2DcTSkcY2rmw9wAMvXE/3L7I1r8xkdeCH/6KY01/5V3vZD3mcl3ejc/zE2O3iNvVMe2p+mJf12jQCDgvf/q2x7WXy4eoq6dzijwWMy4chsWZAw5+0WO+xMb1vNuEpibNGauI3X7Teh83T8e88Lu83t01LIVq2Vu+pj5+NPEQTqxYV298tYneR6zu/f85gXuZjNz2vPcttrz2296ZsGbXtvz0/7pnW/5bcbE2HTp2FotmjXWZ8tXa8nb/g2dSA33yLGQ81kDt/5rivcZF/Q5Ryc2Os4Lwk2d+//ddZW2btvpzZ851sz3bFT/WK8ElZnLyPFnvqspUWXm1BzL5qZC5LX50+9RowbHRgN3c2OsUsUK3g0mcyyYoN+YmvOtQb06RXLuRxxz1sI/1OtbfvNcyEsxb0cAAQQQQAABBBBAAAEEEEAAAQTiUoDAvZDTcuZ5l+rUkxoW6OGInQb+SWUSEvRcyt3Rh1uaVbxj/vRPL8A2K1MjwePTL7zhlW+5bGx/r82sEj9vlL/qOvV/N6v1aSd5/5/+7Cu667+p0YA7EvaZUPqRf17trWY2mwn1ug+/1ltVv2DGfd7NgYIE7pUqllekRrUZS84a7t4NgBHXe6vZ7/vbpQoGA94DFoddeof3eUtmP6hV3/6o/uNu0S1/HqURA7tFdU0Ia4LdvLb8Pi/nd/u/u/6krme39rqbcP2sfld4NzHMSnSzmVX5JoR9dupd0ZW9kaA2502H3J+fX+DervUpmnT/ddEHWv7nydmanPaCV5+/ZfMTvd1EbgYczL0ggXundqfn656XmVkFbVa55y4ps+CV93T9nY/rtmvGatj5iV7XH9ZvUK8RN3jh7z+un+AfU3MW6d6H07wbMue2b6E+Y/7q3RyZ9dht3nc+0JwczLCgYzD25rjPGVybfZvj6Yuv1mrZK1O8sVzz90e08LUP9e7zj0RvUo27+l59+OlX+njRJC9kzveY3ffQVBNKm2PDrAw3m7mBYs6HnE65v9eKb77T4Itujwn/cx5rBwrczXXC1Gb/751X5XkOmJXhE665b7+SMjlv+Dw96R+qXbNqtH9+gbt5wytPPRh9UHNk3Gb+zfczm/W5n8fDZwt7fTvYPOd5caARAQQQQAABBBBAAAEEEEAAAQQQKGECBO6FmLBIqJdz9W1+3Tds2qLEwVd7oWck9Iq814RfJgR9IfVerykSPL4656GYgM2Edl45iX3Bo3lvJNDOGRSa4NdsJvDOuUWCykgYZxu6mVXzZvW0CaI77Fv5bj7v8enz9L+pz3ir7k342abXJV7Zl3tvuaRANe4PFrjn9d3MTYvMzduihn1G36QqlSsq7dFbowTmZkCr7hdq7NBeuuFyv9xK7i2/wN2U0DF/XRDZTLhrQt6c7QV1P5yBuykdYv4KIWc4bb6DGfvW7Tv17JQ7va9kaqGP/dM9WrnmBy8YfvnNpTE3K2wC94KOIb/j3pSaMWVcIufDwIm36tddu7Uw7f7ofNz3SLpXNscc82al+8EC95w3uMxOzENAz+h1sXdTyNwcymuL3JS4/7bLYkomLf96rYZecscBV7ib49OU53nojitjzpXI5xwscP/b1aOVNKBrzLDyC9wH9z1Xd1w3Pua95i9xNmZtiZrZnvu568UXxfUt9zwX4lLMWxFAAAEEEEAAAQQQQAABBBBAAIG4FSBwL+TUmFWddevUUMbjtx+w5zsffqGLrv93TEmXSIf7H5ullIyX9NFLT6h8uaOigfvnS5K9VeORzawmN+UmTMmRyGZKqZgx/O3Po6M1zE3wa8o0PHn/tTFjMiVV7ns4zQuhTWkV29DNrKg2K6tNwFmmTCj6WaZcibkxkP7YrV4JE1Nv++Z7Jnmvm3rPE5LO8z4/v+1ggXte3+2v/3xS73/ylRe4RsJTs/+ctfHNv82qfLN6PKdhznHkF7ib+TU3DSKbKX3Td/RNuu+WS9S3+1lec0HdD2fgboJWU2omLwcz5i9eTY7+pUHkO5n2qyYO0qWjz49+X5vAvaBjiATuOcdkBmBKsZiSLIszHvDOtbseSlX63Fc0Z9IdOqXJ8d58959wi1dSKXIeHixwv+aSoV7N9pybOY+6dGy1X1gdeY+pdW9qw7+U9i/Vr1s72jXy4OQDrXA39flNzXNzvprnKVw4oq9X8sWs2DfbwQL3yDmbc7z5Be6mbrx5VkHu49r89UDkmmJ77ucO3A/l+naweT7gBZUXEUAAAQQQQAABBBBAAAEEEEAAgRIiQOBeyIm64uaH9No7n0aDrPy6R1aDP/Gva7064Dm3yINXIzW983ropHm/CdybN20ULZti2vIL3E864bj9QuX5i9/VjXc/ES2Dkl/o9t/JT3v1r00N9wOVlLnnfzM14+nF3sreSHCY83sN6NXRC+PNZmpWpz69yLuxYDazkvimq0bkWff+YIF7ztrYkc/LGbible7nDPyTV3PehOu5N1NGJBKS534tv8A9Uic78v78AveCuOcXuEdCS3MzoKhKypiV/tt2/KpRg7rv52Aq+uQMZiO13M0bTe32C0f0ifaxCdwLOob8jvvcgbv5q47xf7nPO/bNTRBTbsZsETfz/wcL3HPWHo98yYMF7nf+Z7pmPbck5i9MTN/IDZ4DBe7mfeYmlHnmgnlGghm7OT5N+SHzkNSDBe6mDJW50ZRzyy9wv+nKERo9uEfMe3OP3fbczx24F8X1Lfc8F/JSzNsRQAABBBBAAAEEEEAAAQQQQACBuBQgcC/ktETC6ZxhX167MCtch1x8u1en3ZSzyLlde8ej3gMUIys+iyJwL1+ubLS8SuSzIg9DjTxg1YRuK9es26/0zPX/eEwLlrx/0MD92Rff1N/um6KF6ffruGNrFUjO1Ha/48EUrwZ3Xqt2DxSWmtfMKvKDBe7mfSY8TezQMlqjvECDy+OBn7lDzch+8gvcC+KenPGi/v1YhhbN+ne0hrjZr6k5b2rPF2XgnvNGxIEMTEmZ8Vff65U9aXN6U73+3mdFVlKmoGMoaOBuSgNd8df/6JdNm9WxTXPVrFFV57Q/XU0aHRf9isURuE+aOV8PTZqjJXP+4z2IOLKt/yVT3Ydde8CSMjntzYOEp81eKPMcgMhK+6IM3CeO6KNrLh4SM92X3/Qfrft5Y/QBybbnfu7AvSiubwTuBb1K8T4EEEAAAQQQQAABBBBAAAEEEChJAgTuhZyt1d+u1/njbpZ5CONzyXfr2Do18tyDqTnd+YKrvVWq5qGnkRXh5uGm/cbe7JVYmfTv672+RRG4m/2a+twnNa7v7dMEkIMm3qqNmVv0wYLHvbZ//t8MzXzm5ZjA3DyA1Dww06zAjaxwN2Hs6V0m7PewyMjDGE3pEVOCpKDbZ1+u1ojL71TuWtiR/vl9nnm9oIH7Vbf8n5a8/bEifzVQ0LHZrnAviPviNz7S1bc9HFNeyDxE9oq/PuQF3ZHA/UAOub9PJMTPvRLfzK+Z59x19nP3z/nQ1HPatVDfsX9VzepV9NTjt6tMmQSvxntex0BerrkNCzqGggbukQecPjPlTjXdd3znHkd+480dFOfsd7AV7q++/YmuvOW/MeWbTP/IjZKDrXDP+Vl794bVotvE6DMdlq1YraTL7lTulfeRGz6FWeHesP4xen7aPdFyVFlbtqvTgKvUr3sH75grinM/t2NRXN8I3At6leJ9CCCAAAIIIIAAAggggAACCCBQkgQI3A9htl5/91Nd/teHvNC9V+KZan9GM5U/qqz3INRNWVu9Vaxmi9RQNw9ZNeHX9h2/eitdTUmMnKu9iypwb9ywriYm9VGNakdrzvzXZYLe268Zq6HnJ3rjiYR5Hdo08+q/h8OOVxvbrLY1WyRwN/9vAnJTyuPOGybq2DrV1aBeHR1dqaJXW9uUyTAPIjWrjAMKaM136/XV6u+9Wthfr/5BU9JfUI9z2qresTW90jLmIZ7vfLRcL2c8kO8Nirw+z9ToLmjgbm4GjP3zPapVo6q38rhunZrK3LJNpmyLefjpma1OyXOmiyJwP5i7qSNvygOZYHT88N6qW7uG95DSjHmvemPK+dcS+TnkHvy7S5frwmvv926KjL6ghxe2NmvaSOYGytir79XK1T/IlBpp1rShV9rk8xVrVKlSBY0Z3EOR1fqdO7T0SpyYzdysMDctcobIBR1LbsOCjMF8ZkED9+Urv9XQi//u1aU3JZZCoaCqVK7kHX9mXs2DevM7Znfs3KWeSdfvF2yb9x8scA+Hwzp/3C369oefvfPopBPqew+Z/ffjGZ7pgQL3i667X+d1bS9zbJgSNIvfWOqdB/ffeqnXvmv3Hu/hwqa++/WXDVcgGPD+0mD+y+/qprufVGECd/NdzuvSzvtLGhPs/3fK0941JlLzvijO/bwcba9vBO6H8ONDFwQQQAABBBBAAAEEEEAAAQQQiHsBAvdDnCITUC5+/SO99eEX3urwyDag19m6+6YLvX+aVcwmVH3wiae8gM5sJnS97S9j1a51dgB8oMD99JNP8FaGR7bI6tXcD01t2ayx9wBWE4abrXq1ozViQFddNrZ/tK8Zz38mzdGUtBeibSZ0TezQSrf/O9lbCW9uIpjt0y9W6eIb/h0d98yH/6aWzU+UCSEfeGK2VxLHrO6ObCMHddPNfxrl3XQwde7NXwJENlPX3ZS8yK+O+oE+zwTuZ7Y8ObpSN7LPvMqWmDE/NHmOPvz0q+hnG+/7b73MCzbz2vIN3FPvVaP6x0S7fLfuF5036sZoYGpeMGMriLt5r6l5fedDqdFjxfwlgjExpT5y1vnPzz332E2wauYsMt/mJkrkLyZMTfu7/5uqtz74PDp/Zl5v+fNo9e/ZUeahpiY4nj/9XtWuWTW66xvuelwvvPxe9C8lCjqWvI7fg43BfGh+x32kdJG5QWOOnXmL3tYt9072jmnzEFXHcWTmw5xTOcup5DXeWjWrqsfw67xSQxf0OSeG0QTuXc9u7ZV9ym8zK7vNA4CXLlvpvcU4mvebck29E9tFz6/cx6kJ3M1Npshm+pka+ebBrZG/djE3u8wDYSPbslemeKWdTOD+/LR/6oTj68YMK1ruaN+x+ePPm7zvNvXBG/XY9Oeix705tq6aMFBdOrYusnM/L0fb61vOec7vL4XynRheQAABBBBAAAEEEEAAAQQQQAABBOJUgMC9CCbG1JYOBgIyK7JNOY68NhNAmpW45qGkRb2ZsO+M05p4wbxZTWsempkzSM39eY7jamPWFlWqUD4asOc1psj7ypZJULUqlfd7i7nRYEp5mNcSEkIxr2/ZtkNmVax5LRLiH+x7H+zzDtY/8rqp+Z2ZtdVb0V25GLwjn1NYd9PP3DAxW/Wq+3tG9lsYBxM6m7+cMH/VkPvY8/aTuVlly5bxVoSbVfCF3QozlnyPIYsxfPjZVxr353t1z80X6/weHaIfYW783HDXEzLlZt545v9UrlxZ7zXb8ebnY0qo7Ni52yu7U1BHs4rdnPcVypfLd75NfXfzVzHmQarmfTabOfd3//abdx3Kbyuqcz/3/ovz+mZjQl8EEEAAAQQQQAABBBBAAAEEEEDgcAsQuB9u8WL4PBP8tmp+oh64/fJi2Du7zE8A9+I/Nh5OflaPTXtOC9Pu90rK5NwiK/KXvvRkNHAv/hHxCQgggAACCCCAAAIIIIAAAggggAACCOQvQOB+BBwdBL9/zCTiXvzu5qGyl9/0H68E0+A+53rPAMjM2qZFb3zolb/584UX6OJR/Yp/IHwCAggggAACCCCAAAIIIIAAAggggAACBRAgcC8AUry/JWdpk3gf65E0PtwPz2ya2uXzFr4dUxO9+cmNNKRvZw0675wCl3g5PKPlUxBAAAEEEEAAAQQQQAABBBBAAAEESrMAgfsRMPumvnQwGFS5o/w61myHRwD3w+Mc+ZTde37zHkRsHg7MhgACCCCAAAIIIIAAAggggAACCCCAQDwKELjH46wwJgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESJ0DgXuKmjAEjgAACCCCAAAIIIIAAAggggAACCCCAAAIIxKMAgXs8zgpjQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChxAgTuJW7KGDACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAPAoQuMfjrDAmBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRInQOBe4qaMASOAAAIIIIAAAggggAACCCCAAAIIIIAAAgjEowCBezzOCmNCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKHECBO4lbsoYMAIIIIAAAggggAACCCCAAAIIIIAAAggggEA8ChC4x+OsMCYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEidA4F7ipowBI4AAAggggAACCCCAAAIIIIAAAggggAACCMSjAIF7PM4KY0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAocQIE7iVuyhgwAggggAACCCCAAAIIIIAAAggggAACCCCAQDwKELjH46wwJgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESJ0DgXuKmjAEjgAACCCCAAAIIIIAAAggggAACCCCAAAIIxKMAgXs8zgpjQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChxAgTuJW7KGDACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAPAoQuMfjrDAmBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRInQOBe4qbiSbkyAAAgAElEQVSMASOAAAIIIIAAAggggAACCCCAAAIIIIAAAgjEowCBezzOCmNCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKHECBO4lbsoYMAIIIIAAAggggAACCCCAAAIIIIAAAggggEA8ChC4x+OsMCYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEidA4F7ipowBI4AAAggggAACCCCAAAIIIIAAAggggAACCMSjAIF7PM4KY0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAocQIE7iVuyhgwAggggAACCCCAAAIIIIAAAggggAACCCCAQDwKELjH46wwJgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESJ0DgXuKmjAEjgAACCCCAAAIIIIAAAggggAACCCCAAAIIxKMAgXs8zgpjQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChxAgTuJW7KGDACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAPAoQuMfjrDAmBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRInQOBe4qaMASOAAAIIIIAAAggggAACCCCAAAIIIIAAAgjEowCBezzOCmNCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKHECBO4lbsoYMAIIIIAAAggggAACCCCAAAIIIIAAAggggEA8ChC4x+OsMCYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEidA4F7ipowBI4AAAggggAACCCCAAAIIIIAAAggggAACCMSjAIF7PM4KY0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAocQIE7iVuyhgwAggggAACCCCAAAIIIIAAAggggAACCCCAQDwKELjH46wwJgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESJ0DgXuKmjAEjgAACCCCAAAIIIIAAAggggAACCCCAAAIIxKMAgXs8zgpjQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChxAgTuJW7KGDACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAPAoQuMfjrDAmBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRInQOBe4qaMASOAAAIIIIAAAggggAACCCCAAAIIIIAAAgjEowCBezzOCmNCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKHECBO4lbsoYMAIIIIAAAggggAACCCCAAAIIIIAAAggggEA8ChC4x+OsMCYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEidA4G45Zeszd1nuge4IIIAAAggggAACCCCAAAIIIIAAAggggEB8CNStUT4+BlJCR0HgbjlxBO6WgHRHAAEEEEAAAQQQQAABBBBAAAEEEEAAgbgRIHC3mwoCdzs/EbhbAtIdAQQQQAABBBBAAAEEEEAAAQQQQAABBOJGgMDdbioI3O38CNwt/eiOAAIIIIAAAggggAACCCCAAAIIIIAAAvEjQOBuNxcE7nZ+BO6WfnRHAAEEEEAAAQQQQAABBBBAAAEEEEAAgfgRIHC3mwsCdzs/AndLP7ojgAACCCCAAAIIIIAAAggggAACCCCAQPwIELjbzQWBu50fgbulH90RQAABBBBAAAEEEEAAAQQQQAABBBBAIH4ECNzt5oLA3c6PwN3Sj+4IIIAAAggggAACCCCAAAIIIIAAAgggED8CBO52c0HgbudH4G7pR3cEEEAAAQQQQAABBBBAAAEEEEAAAQQQiB8BAne7uSBwt/MjcLf0s+n+686Ann8xGN1F7ZquEjs7NrukLwIIIIAAAggggAACCCCAAAIIIIAAAqVagMDdbvoJ3O38CNwt/Wy6m8A9fXZQ330f8HaTeI5D4G4DSl8EEEAAAQQQQAABBBBAAAEEEEAAgVIvQOBudwgQuNv5Ebhb+tl0J3C30aMvAggggAACCCCAAAIIIIAAAggggAAC+wsQuNsdFQTudn4E7pZ+eXXfsT2gjZtiX2nUyN3vrQTuxYDPLhFAAAEEEEAAAQQQQAABBBBAAAEESrUAgbvd9BO42/kRuFv65Re4pz0V1Lof/VIx3bs46nT2/rXZCdyLAZ9dIoAAAggggAACCCCAAAIIIIAAAgiUagECd7vpJ3C38yNwt/Rz9l+4rt27ApqRTuBuSUt3BBBAAAEEEEAAAQQQQAABBBBAAAEECi1A4F5ospgOBO52fgTuln7btgW04KVgdC8N6rtq2cIlcLd0pTsCCCCAAAIIIIAAAggggAACCCCAAAKHIkDgfihq2X0I3O38CNzz8du6NaC9e2OXr9eosf+bTeCelhHU+p/88jG9ujsFDtx37fL7fve93zfxHEeJnfcvPWM5xXRHAAEEEEAAAQQQQAABBBBAAAEEEECg1AgQuNtNNYG7nR+B+wECd1MWZvduPww/p5OjtmfsH4YXNHBvc4ar776P/bCGx0szZxG4Wx7CdEcAAQQQQAABBBBAAAEEEEAAAQQQQCAqQOBudzAQuNv5EbgfJHD/ZYMfuPfrYx+4z0wP6vt1/v66Jjpq19YlcLc8fumOAAIIIIAAAggggAACCCCAAAIIIIBATgECd7vjgcDdzo/AncDd8giiOwIIIIAAAggggAACCCCAAAIIIIAAAvEjQOBuNxcE7nZ+BO5xFrh3OMvR77/5q+AjW6XKsbXkLaec7ggggAACCCCAAAIIIIAAAggggAACCByxAgTudlNL4G7nR+Aeh4F7WkZIv//uD6xRQ1fdu/IgVcvDnO4IIIAAAggggAACCCCAAAIIIIAAAqVEgMDdbqIJ3O38CNwLEbif0tTVrl2xHSpUkFLTglr/k78qvVd3Ry1buDIPXF33o9/WvYsj89DUgtRwNyvcTeC+9lu/b6eODoG75TFOdwQQQAABBBBAAAEEEEAAAQQQQACB0iNA4G431wTudn4E7oUM3KenBfXLL34Yfl5PR82bucUeuHfu5GjbjtiB1qhuOfF0RwABBBBAAAEEEEAAAQQQQAABBBBA4AgUIHC3m1QCdzu/Uhe4b94sbdgYWyO96Un710jfujXgrVL/ZYP/3n59HJkV7iZw//lnv61Pr8MXuJtV75lZ/uc2O8VRzx6UmbE89OmOAAIIIIAAAggggAACCCCAAAIIIHAEChC4200qgbudX6kM3FPTQtqU6YfXFwwI64RGkpMrvw4Gpekz4ytwX73WH3PH9gTuloc93RFAAAEEEEAAAQQQQAABBBBAAAEEjlABAne7iSVwt/MjcN8XuJtwPbKd1c5VkxNdAnfLY4vuCCCAAAIIIIAAAggggAACCCCAAAIIHG4BAnc7cQJ3Oz8C932B+7QZwWipmQH9HAJ3y+OK7ggggAACCCCAAAIIIIAAAggggAACCPwRAgTuduoE7nZ+BO4E7pZHEN0RQAABBBBAAAEEEEAAAQQQQAABBBCIHwECd7u5IHC38yNwJ3C3PILojgACCCCAAAIIIIAAAggggAACCCCAQPwIELjbzQWBu50fgXsJDdy7JDras8d/iGpkq1TJtTwa6I4AAggggAACCCCAAAIIIIAAAggggEDJFiBwt5s/Anc7PwL3Ehy4p2eEtGePfwDUreuqT2/H8migOwIIIIAAAggggAACCCCAAAIIIIAAAiVbgMDdbv4I3O38CNxLeOC+ao2/yr1dW4fA3fJcoDsCCCCAAAIIIIAAAggggAACCCCAQMkXIHC3m0MCdzu/Uhe4b9smpaSGtCnTD6ovIHC3PILojgACCCCAAAIIIIAAAggggAACCCCAQPwIELjbzQWBu53fER24Z22W3vsgGBVqUM9VgwYugbvlMUN3BBBAAAEEEEAAAQQQQAABBBBAAAEE4lWAwN1uZgjc7fyO6MB961YpOTWkrCx/NfvQQWECd8vjhe4IIIAAAggggAACCCCAAAIIIIAAAgjEswCBu93sELjb+R0xgXtWlrT8y+zV7DVquKpX1yVwtzw+6I4AAggggAACCCCAAAIIIIAAAggggEBJEiBwt5stAnc7vyMqcJ82I6TNW/zV7MOHhAncLY8NuiOAAAIIIIAAAggggAACCCCAAAIIIFDSBAjc7WaMwN3Oj8Cdh6ZaHkF0RwABBBBAAAEEEEAAAQQQQAABBBBAIH4ECNzt5oLA3c6PwJ3A3fIIojsCCCCAAAIIIIAAAggggAACCCCAAALxI0DgbjcXBO52fnEfuDvh/b/g1u3Srl/90jGRrUIFV8nTKSljeTjQHQEEEEAAAQQQQAABBBBAAAEEEEAAgRItQOBuN30E7nZ+cR+4b8qUFr8cin7L1q0c1a7tampKgrZu85uThoZ17DEE7j27OcrMir0RUaeOa3mE0B0BBBBAAAEEEEAAAQQQQAABBBBAAIGSI0DgbjdXBO52fiUicE+elqDtO/wvOnJ4mMC9vaMuiY7SM0JatcYP2Nu1dWQC9/TZIX2zym9r09rV+X3z+BMBy2OG7ggggAACCCCAAAIIIIAAAggggAACCMSrAIG73cwQuNv5EbgfQTXcCdwtTwa6I4AAAggggAACCCCAAAIIIIAAAgiUeAECd7spLJWB++49v6lMQkihUHaplQjjzl93q2KFcnmq5vXa+sxddjNQzL1NSRlWuDtKywhp9Vp/5XrHwqxw7xNW7qIygdiqM8U8g+weAQQQQAABBBBAAAEEEEAAAQQQQACBwydA4G5nfUQG7lu37dTN906SCchTHropKhQOh/W3+6bolbc+1lFHldWIAV112dj+3us//ZKpv94zSV+u/FbVqlbWTVeMUGLHVgd9jcA9rBMaSdNmBLVho59ED+jnqMmJrqbPDOqXDX5bvz6OTmnqanpaUD//7Lf16eWoeTNXqWlBrf/Jb+vV3VHLFq5mpAe17ke/rXsXR23OcDUzPajv1/ltXRMdtWvrauasoL773m9LPMdRh7P8cH3tt35bp46OOnc69MC9T++wZj+TfWPmqLLSwP6UmbG77NAbAQQQQAABBBBAAAEEEEAAAQQQQCBeBQjc7WbmiAvcV65Zp0tvfFAnNqyn3Xv2aPr/3RwVSp/7il54+T098a9rZVa5D5jwNz3498vVtsXJuubvj+jYOjV0zcVDtGzFGl1ywwNamH6/qlWpfMDXCNyP/MB91uyQvl7pB/itWrgE7nbXHHojgAACCCCAAAIIIIAAAggggAACCMSxAIG73eQccYH7hk1btGrtOk/l8dR5MYH7RdfdryH9OqvHuW29159IfV5btu3QdZcO1eldJ+q1px9SrRpVvdcmXHOfRl3QXee2b5Hva106tqaG+xFew92scCdwt7vI0BsBBBBAAAEEEEAAAQQQQAABBBBAoOQIELjbzdURF7hHON758Iv9AveeI67X/bdeqtNPaey97fnF72jRax/p1r+MUeLgq/XFq8kK7CvQfdv9U9W0cQN1P6dNvq+NHNSNwJ3A3e4MpDcCCCCAAAIIIIAAAggggAACCCCAAAJxJEDgbjcZpSpwP/O8S5X+6G1q3LCup/b6u596q9zvuH68Rl5xlz5Y8HhU84HHM1S2bBn1Sjwz39eumjBIW3f+bjcDxdx73U+OJicHtX2H/0GjkxzVqS1NSg5q6za/beQwR3WPdTU5JajNW/zSKUlDHdWv52rytKCysvy2YYMdNWzgasq0oDZl+m2DBzo68QRXU6dn13AfeL6jk0+Spk4PRGu49+/jqNmp0tTUQLSGe9/ejlqcJiWnBqI13Hv3cHRGKyllRiBaw71HV1Ov3dSJD0RruHfr4qhDO2nazEBMDfdzz5ampQWiNdzPOdtR13Ol6WmB7IemnuWoZ1e/bdUa/3u0b+uoTy9penpA36zy20zd+AF9XKXOCsSUlEkaLIVCPDm1mA9ddo8AAggggAACCCCAAAIIIIAAAggg8AcIVKlY5g/41CPnI0tV4H7+uJt15w0T1eJUf4X7vEXvaMEr7+mff71InQZcpc+XJCsY9IPUW/81RY0a1NWAXmfn+9qE4b21c/feuD4avv8xrCenZgfuY0zgXkdeW87AvV5dE8IHooH7CBO4HydNSglEA/fhgx01Ot5viwTuQ0zg3liaMi0QfWjqoP5+4G7aIg9N7d/XUfNTpCm5AveWp/vBfOShqb17OmrTyg/hIw9N7dHN0Vlt/bbIQ1PNg1Q7tpeSZ2QH7l3OdWQC95SZ2YH7uSZwT/TD+tVr/bnteJajXt38sD4auJ/pqF8vKSUtNnAf1M/1AvycNdyHDnKVtTl22uvUCqhMQjCujwUGhwACCCCAAAIIIIAAAggggAACCCCAwMEEKpZLONhbeP0AAqUqcL/i5ofUO7Gd+nY/yyN5NGWuNmVt9UrKNE8cr8UZD6hunRrea6OuvFsjBnVT78Qz833tvC7tKClTCkvK9O8XVsbskH7Z6J9Zxx0rDb4gzIUGAQQQQAABBBBAAAEEEEAAAQQQQACBEi9ASRm7KSxVgfuCJe9r2lMvafIDN2jXrj264KLb9M+bLlSndqfrHw9OU0JCSDdcnqSly1Z6D019Z94jqnJ0xQO+tj5zl90MFHPvTZlS8rSEaEmZkcPDql3b1dSUhOgK96ShYR17jKvk6aHoCvfhQ8KqV9dVcmoousJ96KCwGjRwlZIaiq5wv6AUB+4rvvZXzJ/ezCVwL+bjmN0jgAACCCCAAAIIIIAAAggggAACCBweAQJ3O+dSFbi7rqu7/ztD8xa9rZ2/7pYpCXPNJUO9B6Vu3rpdN971pN7+8HNVrFBOd1w3Xr27tPN0D/QagXtYJzQyJVuya7gP6OeoyYmups8MRkvK9Ovj6JSmrqanBaM13Pv0ctS8mavUtGC0pEyv7o5atnA1Iz0YLSljyseYeuoz04PRkjJdE01dd1czZwVjarh3OMtRWkYoWsO9U0dHnTv5bdGSMu0ddUl0lJ4RipaUadfWUc9ujtJnh7JruLd21ad3WLNmh2JKykRWuMcE7oPC+vGn2Lru5oYFGwIIIIAAAggggAACCCCAAAIIIIAAAiVJgMDdbraO2MD9QCx7fvtdwUBAZcrsX4/IBPEVyh/lhfC5t7xeI3AncPdWuA8Ka9ackL5c4R83zU51NWwwZWbsLk/0RgABBBBAAAEEEEAAAQQQQAABBBA43AIE7nbipTJwtyOL7U3gTuBO4F6UZxT7QgABBBBAAAEEEEAAAQQQQAABBBD4IwUI3O30Cdzt/HhoKjXc/RrurHC3PJPojgACCCCAAAIIIIAAAggggAACCCAQDwIE7nazQOBu50fgTuBO4G55DtEdAQQQQAABBBBAAAEEEEAAAQQQQCB+BAjc7eaCwN3OL+4D98wsaWpKgrbv8L/oyOFh1a7tem1bt/ltSUPDOvYYV8nTQ9q8xa9BPnxIWOahn8mpIWVl+W1DB4XVoIGrlNSQNmX6bRcQuBO4W55DdEcAAQQQQAABBBBAAAEEEEAAAQQQiB8BAne7uSBwt/OLq8B90yZp1+7Yh71WquBqMoG70jJCWr3Wt+nY3lGXREfpGSGtWuO3tWvrqGc3R+mzQ/pmld/WprWrPr3DmjU7pK9X+m2tWrjq3y+sjNkhrfjabztQSZk33wrGHGEdOzoK7v88XsujkO4IIIAAAggggAACCCCAAAIIIIAAAggUjQCBu50jgbudX9wF7lOmJWjnTv9LjRkRVo3qBO6dOzl/WOA+5+mQli33E/ZTT3Y1bEhYK7+JTdxPbOwqFLI8EOmOAAIIIIAAAggggAACCCCAAAIIIIBAEQgQuNshErjb+RG4U1LmgCvc8wrc584L6ZPP/ND95Kauhg0OE7hbnod0RwABBBBAAAEEEEAAAQQQQAABBBAoGgECdztHAnc7PwJ3AncCd8tziO4IIIAAAggggAACCCCAAAIIIIAAAvEjQOBuNxcE7nZ+BO4E7gTulucQ3RFAAAEEEEAAAQQQQAABBBBAAAEE4keAwN1uLgjc7fwI3AncrQP34UPC2r0ntq57mQRXZcpYHpx0RwABBBBAAAEEEEAAAQQQQAABBBBAoJACBO6FBMv1dgJ3Oz8CdwL3Ignc580PKWuzfzCWLSuvrjuBu+XJSXcEEEAAAQQQQAABBBBAAAEEEEAAgUILELgXmiymA4G7nR+BO4F7kQXuH3/qr3I/qYn/IFUCd8uTk+4IIIAAAggggAACCCCAAAIIIIAAAoUWIHAvNBmBux1ZbO/1mbuKcndW+9q0SZoyLUE7d/q7GTMirBrVXU1OSdD2HX7byOFh1a7tampKgrZu89uShoZ17DGukqeHtHmLH/qaMif16rpKTg0pK8tvGzoorAYNXKWkhrQp02+7gMD9Dw/cP/goGHPcnNbMUfnyVocSnRFAAAEEEEAAAQQQQAABBBBAAAEESqkAgbvdxLPC3c6PFe4E7n944L7o5aDeescP3Rs1dL2bJQTulic23RFAAAEEEEAAAQQQQAABBBBAAIFSKkDgbjfxBO52fgTuBO7FErgnDQkra3Psg1SrVHG9+u65NwJ3y5OY7ggggAACCCCAAAIIIIAAAggggAACUQECd7uDgcDdzo/AncC92AL3FxeG9PFnfuje6HhXw4aECdwtz1e6I4AAAggggAACCCCAAAIIIIAAAggcWIDA3e4IIXC38yNwJ3Av1sD9g6V+4N6kMYG75alKdwQQQAABBBBAAAEEEEAAAQQQQACBAggQuBcA6QBvIXC38yNwJ3AvMYF7ZmbswV6uXEAVK7qWZwDdEUAAAQQQQAABBBBAAAEEEEAAAQSOJAECd7vZJHC38yNwJ3A/bIF70rCwNudR1/21Nwr20FTzvqUf+w9XrVrF1fChDoG75flPdwQQQAABBBBAAAEEEEAAAQQQQOBIEyBwt5tRAnc7PwJ3AvfDGrgveiWoTz71Q/Pj6royIXxhAvclr/l9j69P4G556tMdAQQQQAABBBBAAAEEEEAAAQQQOCIFCNztppXA3c6PwJ3A/bAH7u+974fmjRsRuFuevnRHAAEEEEAAAQQQQAABBBBAAAEEEMglQOBud0gQuNv5EbgTuBO4W55DdEcAAQQQQAABBBBAAAEEEEAAAQQQiB8BAne7uSBwt/MjcCdwJ3C3PIfojgACCCCAAAIIIIAAAggggAACCCAQPwIE7nZzQeBu50fgTuBO4G55DtEdAQQQQAABBBBAAAEEEEAAAQQQQCB+BAjc7eaCwN3Oj8CdwJ3A3fIcojsCCCCAAAIIIIAAAggggAACCCCAQPwIELjbzQWBu50fgTuBO4G75TlEdwQQQAABBBBAAAEEEEAAAQQQQACB+BEgcLebCwJ3Oz8CdwJ3AnfLc4juCCCAAAIIIIAAAggggAACCCCAAALxI0DgbjcXBO52fgTuBO4E7pbnEN0RQAABBBBAAAEEEEAAAQQQQAABBOJHgMDdbi4I3O38CNwJ3OMucB8xLKysrEDMkV29uvTu+wEteS3otR9f39XwoY4qVnQtzwC6I4AAAggggAACCCCAAAIIIIAAAggcSQIE7nazSeBu5xdXgXtWljQpOUE7d/pfasyIsGpUdzU5JUHbd/htI4eHVbu2q6kpCdq6zW9LGhrWsce4Sp4e0uYtflA7fEhY9eq6Sk4NRcPboYPCatDAVUpqSJsy/fddQOAel4H7W+8E9fqbfrje8HhXI4c7BQ7cf9kQG9ZXKC9Vrkwwb3mpoDsCCCCAAAIIIIAAAggggAACCCBQIgQI3O2micDdzu8PC9w3bQrotdf9QNVsrVs7qlrFJXA/y1FaRkhrv/VD404dHXXu5LetXuu3dWzvqEuio/SMkFat8dvatXXUs5uj9NkhfbPKb2vT2lWf3mHNmh3S1yv9tlYtXPXvF1bG7JBWfO23nd7M1eBBYc2aE9KXK/y2Zqe6GjY4rDlPh7Rsud926smuhg0Ja+68kD75zG87uanr3dyYNz+kjz/1205q4ippSFgvLgzpg6V+W5PGrpKGhbXolaDee9+f98aN/LbX3gjKBOxma9TQlVnhXpDA3YTwkRsxkeOoUkV5Y3tpsb8/c9NlxDCHwD0CxH8RQAABBBBAAAEEEEAAAQQQQACBI1yAwN1uggnc7fz+0MB9cnJIv+7yv8C40WEC93McdSBwL1Tg/uHSgJbsu3FT9xhXo5Kc/QL30SOc6F9NRE6Xo46Sjj6aVe+Wlw+6I4AAAggggAACCCCAAAIIIIAAAnEnQOBuNyUE7nZ+BO6UlCnRK9xN4L54ib+avX69/AP3ZZ8H9PKr/vtMmSKzOp7A3fLiQXcEEEAAAQQQQAABBBBAAAEEEEAgDgUI3O0mhcDdzo/AncC91ATuCxb6gbup90/gbnnhoDsCCCCAAAIIIIAAAggggAACCCAQpwIE7nYTQ+Bu50fgTuBO4G55DtEdAQQQQAABBBBAAAEEEEAAAQQQQCB+BAjc7eaCwN3Oj8CdwJ3A3fIcojsCCCCAAAIIIIAAAggggAACCCCAQPwIELjbzQWBu50fgTuBO4G75TlEdwQQQAABBBBAAAEEEEAAAQQQQACB+BEgcLebCwJ3Oz8CdwJ3AnfLc4juCCCAAAIIIIAAAggggAACCCCAAALxI0DgbjcXBO52fgTuBO4E7pbnEN0RQAABBBBAAAEEEEAAAQQQQAABBOJHgMDdbi4I3O38CNwJ3Etl4D5mpKNdu9yYs6dcuYASQrFt5g3lyu9/km3aFNsWCknVqlmejHRHAAEEEEAAAQQQQAABBBBAAAEEELAWIHC3IyRwt/MjcCdwL7WB+/IVAb36etA7gypVcjV2pKOvVwb0+fJA9Kwa0M9R1ar7h/DLPg/oxUUh733ljnI1ZmSYwN3yWkR3BBBAAAEEEEAAAQQQQAABBBBAoCgECNztFAnc7fwI3AncS3XgPn+BH7jXqZMduD8332+rXcvVqKT8A/c5z/qBe43qBO6WlyG6I4AAAggggAACCCCAAAIIIIAAAkUmQOBuR0ngbudH4Eke24gAACAASURBVE7gTuBO4G55FaE7AggggAACCCCAAAIIIIAAAgggED8CBO52c0HgbudH4E7gTuB+gMB97ChHlSvnXVKGFe6WFx+6I4AAAggggAACCCCAAAIIIIAAAsUgQOBuh0rgbudH4E7gTuB+kMB91Wpp167suu7Nmzn69ruAcgbu40aHVaXK/ifjxo3Z/cyrwZCrGtUtT1q6I4AAAggggAACCCCAAAIIIIAAAgjkK0DgbndwELjb+RG4E7gTuBcgcH92nl+vvWYNVyZczytwzx2u16zp6qefA3p6rt+3Qnlp/Ni9qlbV8qSlOwIIIIAAAggggAACCCCAAAIIIIAAgXsxHQME7paw6zN3We7h0Lpv2hTQ5OSQft338SbErFrF1aTkBO3c6e9zzIiw90DKySkJ2r7Dbxs5PKzatV1NTUnQ1m1+W9LQsI49xlXy9JA2b/FXFA8fEla9uq6SU0PKyvLbhg4Kq0EDVympIW3K9NsuIHAncC+iwH3duoAynvbD9WrVXI0fHfYC9/Sn/LaqVfzAfcOGgNavz175fvppjmrUOLTziF4IIIAAAggggAACCCCAAAIIIIAAArECrHC3OyII3O38DssK96ys/QfpugFNmkrgPnNWUN9974eviec46nCWo7SMkNZ+67d16uiocye/bfVav61je0ddEh2lZ4S0ao3f1q6to57dHKXPDumbVX5bm9au+vQOa9bskL5e6be1auGqf7+wMmaHtOJrv+30Zq4GDwpr1pyQvlzhtzU71dWwwWHNeTqkZcv9tlNPdjVsSFhz54X0yWd+28lNXe/mxrz5IX38qd92UhNXSUPCenFhSB8s9duaNHaVNCysRa8E9d77Qa+tcSO/7bU3gnrrHb+tUUNXI4aFvX+//qbf1vB4VyOHO3r3/YCWvOa3HV/fb/twaUCLl/ht9eu5GpXkeGN7abHfZm66jB7haNnnAS1Y6LeZmzNjRjpaviKg+Qv8tjp1XI0d6XhOz83322rXcmVquJuSMgVZ4V6YwH3mLD+EP7qyNH7MXgJ3T4MNAQQQQAABBBBAAAEEEEAAAQQQsBcgcLczJHC38zssgfvGTQHNSPNDTLMNPN88iFIE7m1dEbgTuBO4W17E6I4AAggggAACCCCAAAIIIIAAAgjkECBwtzscCNzt/A5b4D55aki7dvuDnTAmTOCe6KgdgTsr3FnhbnkFozsCCCCAAAIIIIAAAggggAACCCAQK0DgbndEELjb+RG4U8OdkjKUlLG8itAdAQQQQAABBBBAAAEEEEAAAQQQiB8BAne7uSBwt/MjcCdwJ3AncLe8itAdAQQQQAABBBBAAAEEEEAAAQQQiB8BAne7uSBwt/MjcCdwJ3D/gwP3ieP2qlq1/U/kXbti2wIB6aefAnKc7Pajq0i1arqWVwG6I4AAAggggAACCCCAAAIIIIAAAkeOAIG73VwSuNv5EbgTuBO4x0Hgbh4svGxZ9oOFuySGtXlzQG+8nd3Wv6+jrVul5NSQd9aXLyddOCFM4G55DaQ7AggggAACCCCAAAIIIIAAAggcWQIE7nbzSeCey2/nr7tVsUK5PFXzem19Zq5ltHbzkWdvEyby0FRXM9OD+n5dwDPqykNT1biRy0NTK0tmhbs5R2ak+0F6pUrSheP2eoH7tJl+W8UK0kUTwgUO3LOy9j8Vq1cvhpObXSKAAAIIIIAAAggggAACCCCAAAJxJkDgbjchpSpwf3fpcl147f0xYoszHlDdOjX00y+Z+us9k/Tlym9VrWpl3XTFCCV2bOW990CvEbiHdUIjadqMoDZs9MPwAf0cNTnR1fSZQf2ywW/r18fRKU1dTU8L6uef/bY+vRw1b+YqNS2o9T/5bb26O2rZwtWM9KDW/ei3de/iqM0ZBO5Jw8Ja9EpQ773vr9omcJeOLqbA/Yd1Ac15Nnt1/KjhjmrVovSM3c8NvRFAAAEEEEAAAQQQQAABBBBAoCQIELjbzVKpCtwXLHlfr771sf7514uiamXKJHj/f83fH9GxdWromouHaNmKNbrkhge0MP1+VatS+YCvEbgTuJ/ezNXgQWHNmhPSlyv8mwTNTnU1bHBYc54Oadlyv+3Uk10NGxLW3HkhffKZ33ZyU1fDh4Q1b35IH3/qt53UxFXSkLBeXBjSB0v9tiaN/dXsBO57tWFDQDNn+SvXizNwnzTV/4yyZaVLJoaLPHDfuDGgJa9nh/rnnu3omGMI9e1+0uiNAAIIIIAAAggggAACCCCAAAK2AgTudoKlKnBPf/YVfb9+g268IilGLRwO6/SuE/Xa0w+pVo2q3msTrrlPoy7ornPbt8j3tS4dW1PDnRru1HCPkxruRVlSxqxwPxyB+8OPh+Tuy9gvvzhM4G73e0ZvBBBAAAEEEEAAAQQQQAABBBAoAgECdzvEUhW4P5oyV2998LlOO+UE1a5ZTee0P11NGh2nDZu2KHHw1fri1WQFAv6K4tvun6qmjRuo+zlt8n1t5KBuBO4E7gTupSBwv/TCsPJae16r5qGvSDcr3Anc7X7A6I0AAggggAACCCCAAAIIIIAAAkUvQOBuZ1qqAvePP1+ppctWqlKF8nrno+Va8vbHSnv0VlUof5RGXnGXPljweFTzgcczVLZsGfVKPDPf166aMEjbfv3dbgYK0Pv7Hx09MTmoXbv9N184zvFKaTw+Oahf9z2zdcIYR9WqSo9PCWrnTv9940Y5qllDemJKUNt3+G2jkxzVqSNNmhrU1m1+28hhjuoe62pySlCbt/g3HEYMdXRcPVeTpwWVleW3DRvsqNHx/vs2Zfptgwc6anKCqynTs2u4Dzzf0cknSVOnB6I13Pv3ddTsFGlqaiBaw71vb0ctTpOSUwPRGu69ezg6o5WUMiMQreHeo5uj9m38tshDU7t1cdSxnZQyM6DvvvfHkniOo3M7SdNmBrT2W7/NlOnoeq40LS2g1Wv9to5nOerZTZo+M6BVa/y29m0d9ektTU8L6JtVfpupGz+wj6vpswL6eqXf1qqFqyEDXaWmB7Tia7/t9OamBIyr1FmBmJIyo4e7SnsqoGVfZJeUGZXkavYzgZiSMuZ9zzwX0NIcJWXGJLmatyCgDz7KLikzZoSjBYsCejdHDfcxIx29/GpAb77tlyZp1NDV2JGuXntDeu1Nv63h8a7GjXT15jvSK6/5bcfXdzV2lKv3PpQWvey31a/natxoVx99LL24yG+rV9fV+NGuPvlMeuElv+3YY1xNGOPq8y+keQv8tjp1XE0Y7WrF19Lc5/222rVcTRzjauVq6em5flvNGq4uHOdq9Vpp9jN+W43qftt3P0izZvtt1aq5umicqx/XSzMz/LaqVaSLxjv6+RcpNd1vM+fBxRMcbdhk5tNvMw9NvXSio8wsc2z5beahqZdMdLxjfso0v618OemSCx01qJdd1sW0mwh95SrHO2/MZkrKXHGxo917XKWk+mVmzHbxxLCOPy7739EXCvg/3/0Q1v89lr3C/cpLwjqh4aHvr4Afy9sQQAABBBBAAAEEEEAAAQQQQACBAwocXaEMQhYCpSpwz+1k6rbXrF5Fl47pr04DrtLnS5IVDPoB563/mqJGDepqQK+z831twvDe2rFrrwV/wbp+ty7shetFFbgfU0d6MlfgXq+uNCk5EBO41z9OmpQSyBW4S5NTAtHAfchARyc2NiFmIPrQVBO4n9LUb4s8NDW/wL3laX4IH3loqgnc27T2Q/jIQ1O9wL2tlJIaG7if3V5KnpEduHc519G5Z/shfEzg3tkP4XMG7r26+W3RwP1MR317+cF8TODe19X09NjAfehAv+1QAvfRSa6eyhW4m3D96bmxgfvYEa6eeyE2cDdtLyxSTOBuwvXFryomcDfh+qsFCNzHjXL1bgECdxOkf5wrcDdB+rLl0rwXsgN30/blV7kC97GuVq7aP3Bfs1Z6KkfgbsJ1E7in5wjcLx7nal2uwP3i8Y5+yhW4myB9w0Yzn4UP3C+90NkvNDclXr5eFfZuXpktErjv2ePq0Ul+IJ6QIF15iZPnCdywfsFC87UmcH80GC0pc+WlYZ3Y0H+mBBsCCCCAAAIIIIAAAggggAACCCDwRwlUKk8+YWNfqgP3yWkvaM33P+nuGyeqeeJ4Lc54QHXr1PA8R115t0YM6qbeiWfm+9p5XdpRUoaSMpSUKSUlZfb8Jj0xOTtwNzXXf//d3KjKDtgvuyjvh6s6eVSeydxESRmbHy/6IoAAAggggAACCCCAAAIIIIBA8QhQUsbOtVQF7p9+sUqnNm2osmUS9MumzZrwl/t00ci+3ir2fzw4TQkJId1weZJXdsY8NPWdeY+oytEVD/ja+sx9NV3s5uGAvTduCmjy1FB0hfuEMWFVrmzKwoSiJWXGjQ6rahVXk5IToiVlxowIe+U6JqckREvKjBweVu3arqamJERLyiQNDXtlQpKnh6Ir3IcPCXvlRJJTQ9EV7kMHhdWggV9WI1JS5gICdwL3Ehy4XzQxrEoV9k/DN2bGPjTV1HDPL3B/bN+q91BIMiF8ILD//sJOQK/uK+djTvbEzo7MH9PkruFuzuHcW7nyxXhxYdcIIIAAAggggAACCCCAAAIIIIBALgECd7tDolQF7iZUz5j3qqpXO9pTS+rfRZeN7e89KHXz1u268a4n9faHn6tihXK647rx6t2lnfe+A71G4B7WCY2kaTOya7gP6OeoyYmuV1M7UlKmXx9TZsbV9LRgtIZ7n16OmjdzlZoWjJaU6dXdUcsWrmakB6MlZbp3cbx66jPTg9Ea7l0THbVr62rmrGBMDfcOZzlKywhFS8p06uiocye/LVpSpr2jLomO0jNC0ZIy7dqauu6O0meHskvKtHbVp3dYs2aHYmq49+8XVsbsUHZJmWauBg8Ka9acUEwN92GDw5rzdEjLlmfXcB82JKy580IxNdzNzY1580P6OEcN96QhYb24MKQPlmbXcE8aFtaiV4J6L0cNd9P22htBvfVOdg33EcPC3r9fz1HDfeRwR+++H9CSHDXcTduHSwNavCS7hvuoJMcb20uLs2u4jx7haNnnAS1YmF3D3dSOX74ioPk5ariPHel4Ts/Nz67hPnaUo1WrpWfn+avATQ13c3Po2+8CmvOs32ZuCpm2desCynjabzM13MePDuunnwNKf8pvMzXcx4/dqw0bApo5y28zNdwnjtsrc1NqRrrfZmq4XzhurzZvDmjaTL/N1HC/aEJYW7eackV+m6nhbgL3nTukV9/IruNuni1gyjeZG1pmMyVlChO4O4553kD2qndzg8yscH/k8ey2Ky4N5xm4m9A+UivffHaPro7q1j30B7Pa/TzQGwEEEEAAAQQQQAABBBBAAAEESqMAgbvdrJeqwN1Q/fb7Xv26a7eqHl0pT7mdv+72HqJqQvjcW16vEbgTuJ9O4O49NLUkB+5Tpvlh+FFHmYerhq0D90ee8PdnLiOmNnthAvdHnwwpHPavPiboJ3C3+5GjNwIIIIAAAggggAACCCCAAAIIFE6AwL1wXrnfXeoCdzuu/XsTuBO4E7iLwF1SpKSMWeFO4F7UV1r2hwACCCCAAAIIIIAAAggggAACh0uAwN1OmsDdzo+HplLDnRruJbyGuykpwwp3ywsh3RFAAAEEEEAAAQQQQAABBBBA4IgRIHC3m0oCdzs/AncCdwJ3AnfvKlJcK9yrHC3lruJeqVLB6rpHStPkvMyZcbIhgAACCCCAAAIIIIAAAggggAAC+QkQuNsdGwTudn4E7gTuBO4E7sUauJctYx46m/1Q1949HR13XMEC902bAt6DdiPbWWc6atSoYH0tL410RwABBBBAAAEEEEAAAQQQQACBEipA4G43cQTudn4E7gTuBO4E7sUeuD86KaS9e/2L1cUTwipXTnrltewgvUN7R/XzCOFN4D45OaRfd/l9x48OE7hbXvPpjgACCCCAAAIIIIAAAggggMCRLkDgbjfDBO52fkUeuEdCtZzD2ro1oCenhLRrt986YUxYlStLk6ZmB2njRodVtYqrSckJ2rnTf9+YEWHVqO5qckqCtu/w20YOD6t2bVdTUxK0dZvfljQ0rGOPcZU8PaTNWwJe2/AhYdWr6yo5NaSsLL9t6KCwGjRwlZIa0qZMv+0CAncCdwJ371worpIyZoV7XoH745ND+u03/xy+aEK4wIF7lSquVnyVHdYfU8dV48aserf8KaA7AggggAACCCCAAAIIIIAAAkeMAIG73VQSuNv5FXngvnFjbAmITh0dVawgAvczXM1MD+r7dX7Q3zXRUbu2rmbOCuq77/22xHMcdTjLUVpGSGu/9duMX+dOftvqtX5bx/aOuiQ6Ss8IadUav61dW0c9uzlKnx3SN6v8tjatXfXpHdas2SF9vdJva9XCVf9+YWXMDmnF137b6c1cDR4U1qw5IX25wm9rdqqrYYPDmvN0SMuW+22nnuxq2JCw5s4L6ZPP/LaTm7rezY1580P6+FO/7aQmrpKGhPXiwpA+WOq3NWnsKmlY2CsP8t77fljauJHf9tobQb31jt/WqKGrEcPC3r9ff9Nva3i8q5HDHb37fkBL9q2KPr6+3/bh0oAWL/HfV7+eq1FJjje2lxb7beamy+gRjpZ9HtCChX6buTkzZqSj5SsCmr/Ab6tTx9XYkY7n9Nx8v612LVdjRzlatdqURPELh9es4crcHPr2u4DmPOu3mZtCpm3duoAynvbbqlVzvdXYP/0cUPpTflvVKtL4sXu1YUNAM2f5bUdXliaO26uNmwKake63VaokXThurzZvDmjaTL/NnEMmlN66Vd5NJLOVLyddNDGseH9oanEE7jlvzI0dGVaNGq7cXJl7tWoeExsCCCCAAAIIIIAAAggggAACCJQyAQJ3uwkncLfzK5bA/cmpIe3Z4w/swvFhAvcujtoQuBO4E7h714RISRmbFe65A3dzgyM1LftpqqZOfK2arnI/dLVmTcsLJt0RQAABBBBAAAEEEEAAAQQQQCDuBQjc7aaIwN3Oj8CdkjKscGeFu3cV+aNLypi/AMi9Sv3332NLT5m/GjAlZfIK3E3pqR37Sk+NSgp7gfuUlASFHf8i2b9v2PuLDDYEEEAAAQQQQAABBBBAAAEEEDiyBQjc7eaXwN3Oj8CdwJ3AncA9LgL3CuWk2c9m12bv3cPxyuvkfNbDoQTu27b7F0lTqsgmcN+yRXrr7exV9PXqOWrVkgDf8ieI7ggggAACCCCAAAIIIIAAAggUuQCBux0pgbudH4E7gTuBO4F73ATuT0wNafe+hytPHBsu8sDdPGA1c98DkyOXTlP/PXdbXg9h3bZNmjYj5NXbN9vA88ME7pa/P3RHAAEEEEAAAQQQQAABBBBAoDgECNztVAnc7fwI3AncCdwJ3EtV4D51WoK2bPUvnOaBv3WPdb0H0ZqH1Jpt6KCw6td3ow8zjlxizcN7Cdwtf3DojgACCCCAAAIIIIAAAggggMBhECBwt0MmcLfzI3AncCdwJ3AncM8jcE9JDSkzyw/hBw8Mi8Dd8seG7ggggAACCCCAAAIIIIAAAggcJgECdztoAnc7PwJ3AncCdwJ3AvdDDNxPbCzt2RN7Ea5Zk7rulj9LdEcAAQQQQAABBBBAAAEEEEDASoDA3YpPBO52fgTuBO4E7gTuBO4Wgfv0mUFt3+6vhO/e1dEZrR3LqzLdEUAAAQQQQAABBBBAAAEEEEDARoDA3UZPBO52fCJwJ3AncCdwJ3C3DNx/2eAH7v37Omp6kqvPlvn/NluZstKZbfYP4U1IH3lAbOS9lSpKmVmxV/XjjmPFvO3vHP0RQAABBBBAAAEEEEAAAQRKlwCBu918s8Ldzo/AncCdwJ3AncC9iAP36WlB/fyzH7r3Pc/xzjEnV+buBqQZaUFt2Oi/r8u5jlq3dDUjPagffvTbuiY6atfG1ffrYi/0JzUhhLf86aM7AggggAACCCCAAAIIIIDAESxA4G43uQTudn4E7gTuBO4E7gTuxRy4NzvZ1aw5wejVutkprk47zfUC9x/X++F6z275B+4zZwX13Q/++xLPcZTYuWBla0x9+S9XZK+2N/1btSSst/zZpDsCCCCAAAIIIIAAAggggECcCxC4200QgbudH4E7gTuBO4E7gfthCNzNqvef9q16P6+nU+SB+++/5/1jkJ4R0qo1fujevp0j89kF2cJh6Z13s28SmD6dzi5Y34Lsn/cggAACCCCAAAIIIIAAAgggUFwCBO52sgTudn4E7gTuBO4E7gTuR0DgvnuXNGduKPqLULuWq8RzHdkE7hlzQvrqaz+sb3GaqwsGhvP8xdm5M3YVfYUKrgKxTZa/VHRHAAEEEEAAAQQQQAABBBBAoOACBO4Ft8rrnQTudn4E7gTuBO4E7gTuR0jgPmtOSGvW+kn32R2cwxa4m2B+x3b/x6hiJWnY4DCBu+VvM90RQAABBBBAAAEEEEAAAQQOXYDA/dDtTE8Cdzs/AncCdwJ3AncC9xIWuHc4y9WOHbG12CtXktKeOnjg3qOLo+fmZ6+EP6qs1KtXWOv31ZKP/KQcV9fUnY9d4T5oQFjbt8cuXT/6aFcmcF/+pd9+6imuF7i/8VaucjQdHAWzP/aAv1yZmbEvV6okHXWU5Y8d3RFAAAEEEEAAAQQQQAABBEqNAIG73VQTuNv5EbgTuBO4E7gTuJfAwN08SHXzZj/kbtnCUacOToED9/TZIX2zyu975hmuF7jPeiqkld/4ba1bujq/TzjPwD1jdkhbtvo/PNWq+avZ8wrcn5kb0mef+/s7pakfwhc0cH/hxaC++toP7GvVdDVsSJjA3fK3nu4IIIAAAggggAAC/9/efcdLUd/7H3/P7qH3KtKbghSxgNgVBFGKAtJBELBFk3sTU365KSYmMfcaY25yEw1Kl66giIgUaRYUFVABBUVAQJTe+9md3+Mzs3u2HeDgou5yXvNP4peZPbPP7+53v/Oe73y/CCCAQGESIHBPr7YJ3NPzI3AncCdwJ3AncM/SwH3jF36gfcN1323g/vEa/+82beIH6ekE7jt3Jo6Yr1De1ex5AS19zw/cG9YncE/zZ57DEUAAAQQQQAABBBBAAIFCJ0Dgnl6VE7in50fgTuBO4E7gTuBO4H5GI9zPZuA+85WgVn/ih+7Vq7vq1yuUVuCePB1N8eKOSpVKnH4nzZ9NDkcAAQQQQAABBBBAAAEEEMhwAQL39CqIwD09PwJ3AncCdwJ3AncC9+81cH93mR+4X9Aw/8C9b++Qtu9IHAlfpZKr4ycSy4oUkZa87WjZCn90vI2W79MrTOCeZj+BwxFAAAEEEEAAAQQQQACBbBMgcE+vxgjc0/NLK3Dfuzf1j+fmOnp6ZFDHjvn/dvfgkEqVlJ4ZGdSRo37ZkIEhlSkjDR8V1OEjftldd4ZUvpyr4aNzdOiQXzawX0iVKroaMSZHBw76Zf37hFS1qqtRY3K0b79f1rdXSOdXczX62aD27PUDmD49Q6pR3dXocUHt3u2X9eoeUu3arsaMC2rnLr/sDgJ3AncCd++7EAxKD9wbUjgsPfm0v7ql40g/vD+ksCs9OSy24uWD94cUcKR/DQvKjQwetmPtNZ56JqhQyP9u3n93SEWLSE8NDyo31y+7d0hIxYtLw0YEdfy4X3bPkJBKFpeeHhXU0Ug7MXRQSLZYZnw7MfjOkMoltROD+odUoYLfThyMtBMD+oa8ub9HjsnR/gP+3+jXO6Rq57kaNTYnbw5yayeqn++3E9H50K2dqFXLbyd2RdqOHt1CqlvH1djxQe2ITIHS7baQGjaQnp0Q0Lbtfntye+ewGl3o6tmJAX39tV/WuWNYTRv7ZV9Fyjp2CKt5c1fjJwb0ZWSx0g7twt7c6eMnBbT5S//Ym9qE1bqlK5uv/YvNflmb68OyRVOtLJumlDHrz9cnBuT16rl6dXZQBQncFywM6K13/CC9fj0/mF/8ZkAbN/qvGcyx34ewF7gvfN3fr04tAnf/08+GAAIIIIAAAggggAACCBQuAQL39OqbwD09v7QC9x07HE1+3g82bOt2W9gL0gjc/dBsSyQ0a982rJaXu5owKaBNW+KCtFaRIG1TfJAW1sQpQW2IhEjXXRPWjdf5ZZ9v8Pe75sqw2rYJa9KUoNZFAqzWrcKywC5+McSWl7nqdGtIk58Pau2n/rGXtnB1e5eQbOHDT9b6ZRc3ddWju79A4seRqR2iczNPnRbUR6v9/Zo09udSnj4jqBUf+mWNG7nezY0ZM4Na/oFfduEFrvr2DOnVOXFBWgNXNkp17vyA3lnqf2Ya1PPLFr0e0JtL/LJ6dV0vGLX/XvyGX2ZBpwVpby91tGBRLEizsveWOZq3wC+rVcPVgL5h79xsDmjb7KbLnf3C+milo1lz/DK7OTOwf9ibxmLmLL/svPNcDeof9pxemumXVa3iatCAsNZ9Lr04ww+bK1dyvZtDFnROfdEvs5tCVrZli6Mp0/wyC4AtHLaAddJzfln5ctLgQbnavt3RhMl+Wdky0tC7cr0Qd/wkv8xC5rvvyvUC4LET/DK7aWWh9L598sJh20oUl+4ZGtKhg9LIsX5ZsWLSfUND3s0tC6ptK1rUD76PHZeeHuGX5eT44fqJE9K/h/tlBO6xG3ME7qdeNPWbTClj7cRLce2E3ZiwsnQD9zfeSmwnChq4v7UkoC2Rmx32+b+tY1iBYOLUM3bDad++xJsEJUtIR44l7lckx/FuBLEhgAACCCCAAAIIIIAAAghkhgCBe3r1QOCenl/agbuNUrXQzrboyFUCdwJ3AncCd2sTGOHOCHf7HFwUuTH3fQTudmMu+oRU9OfSbmotX+Fozmt+WF+zhqs7+4b14UpHn34WC9jv6ObfmJs1O3ITrqqrQf3C+nito0WL/bKSJf0bfQTuaXZGOBwBBBBAAAEEEEAAAQQQOIsCBO7pYRK4p+dH4M6UMoxwZ4S714owwp0R7tGw2aa2NdO67QAAIABJREFUua2T/9TLmsiTMC2au+re1X86JptGuFvgvvR9J++JmerVXPXvGz5p4B59EsamGrKnY+KfhKlWLRa4v/xK5OmYqmcWuK9a5eRND2Tfu6tah1WxYpo/5ByOAAIIIIAAAggggAACCCCQIEDgnt4HgsA9PT8CdwJ3AncCdwJ35nD/1hdN/b6mlIkG7vMX+gF57Zrff+D+3AuxqadsDQIC9zQ7MhyOAAIIIIAAAggggAACCCQJELin95EgcE/Pj8CdwJ3AncCdwJ3AncA9MqXMNxnhbms9FCuaOv/71sgiudGf6fJlXW3a7OibBu72BMLxyILk9prVzndVuVKanQAORwABBBBAAAEEEEAAAQTOQQEC9/QqlcA9PT8CdwJ3AncCdwJ3AncC9zQDdwvDbfqZ6Na1c0jrNzqaNj22uLItpJwcuFtZ+fIF+yG3vxFdXLlMaWno4FyVL5t67N79iWXe4q97Ha1aHVvkvPUVYVWpwkKvBZNnLwQQQAABBBBAAAEEEMg2AQL39GqMwD09PwJ3AncCdwJ3AncCdwL3sxC4T3/ZD7SrVHZ114CCB+67dsWCeju+UiULwhPLAgHp621KCdz37Hb07vuxIL1D+5D27nM0IzLHvL2eLQh74IA06lk//C9e3F/kPCcnNZhn8dc0O1UcjgACCCCAAAIIIIAAAhkhQOCeXjUQuKfnR+BO4E7gTuBO4E7gTuD+PQbuW79yNPn5yLzu5V0NHhjS19scvbYgFqT37xPSjp2pI9wtcB87wT+2VCnpnsG5XuA+ZpxfVrKEdM+QUL6B++Ej0oyZsb/Rp2dYR49K69bHwv5mTVxVrsxI+DS7WhyOAAIIIIAAAggggAAC37EAgXt64ATu6fkRuBO4E7gTuBO4E7gTuGdg4D5xih+alysrDRmU+60E7iNG+3+jaFHp/rtDXuD+zCi/zEbAP3BvSMePS+8vjwXzV7UOKxhMDeFP5DrKzY11SooWEdPWpNlH43AEEEAAAQQQQAABBBD4ZgIE7t/MLXoUgXt6fgTuBO4E7gTuBO4E7gTuBO6nDNyHjfBD+GDQD+FDIWnS87EQfkCfsMKu9OQwfz/bfvSDkPe/+/bFOiplyvivkby5rrR8RdzI+mauihWV93fiNzt22fLYfo0buapThxH4aXYFORwBBBBAAAEEEEAAgXNOgMA9vSolcE/Pj8CdwJ3AncCdwJ3AncCdwP2MA/ennvGTc5tf/sH7QicN3P81LCgL1G2z/Wz/kWNiqfugAf588vZ60YD9vrtDXuD+7+FBnTjhH2tT45QoLj09Mqhjx/yyoYNCBO5p9gM5HAEEEEAAAQQQQACBc1GAwD29WiVwT8+PwJ3AncCdwJ3AncCdwJ3A/TsN3J98Oqhw2O/A/OAeAvc0u3IcjgACCCCAAAIIIIAAAkkCBO7pfSQI3NPzI3AncCdwJ3AncCdwJ3AncM/awL10aXmj6+O3oCOt2xCbeqZyJVf166VOPRMdeR9/rBM7LK94927p+PHEf6hWjals0uyCcjgCCCCAAAIIIIAAAt+aAIF7erQE7un5EbgTuBO4E7gTuBO4E7gTuGd14P7MyNgUNX17hVS2jDR8dFCHDvudpLvuDOUbuO/ZI815LXbspS3CanRhapC+d680+tmg9uz1Q/fed4R0QUM3Jei3BWaPHUsM5qtUIZhPs6vK4QgggAACCCCAAAIInLEAgfsZkyUcQOCenh+BO4E7gTuBO4E7gTuBO4F71gfuR476HaIhA/MP3MuXc7X649hCr+dXc1WpkquRY3K0/4B/bP8+IVWt6mrrl7HQPBCUbN/kwL1mTVfTZ8SF9ZeEVbeOqzHjgtq12z++a5eQmjdz8+awj3bZjh51tGlTYgeubh3p6PHEcL5cWaUce+KEow0bEo+tX1+aPTf23ipUcHXj9ZE5e+J2PXJEOnwk8dhKFdPsSHI4AggggAACCCCAAAIZKEDgnl6lELin50fgTuBO4E7gTuBO4E7gTuBeKAL3EWNydPCg33Ea2C900sB91Jgc7dvv72cj5k8WuI8eF9TuSLjeo1soL3DfucsP3LvdFlLDBtJLM2NheJPGrjc6/tmJAW3b5u/XpVNYTRr5ZUeO+GXXXBVWs2auXnwpdmz9uq4uaeFq/KSAtkRuCrRvG1bLy11NmBTQpi3+sW1vDJ80cJ/8fFB79vj7NWsa1s3tUoP5NLuWHI4AAggggAACCCCAwPcuQOCeXhUQuKfnR+BO4E7gTuBO4E7gTuBO4E7gHjfC/WwH7mPHB7R9R3TUe/iUgftXX/v7dbrFD9zHTwzoy61+2S3tw2clcN+w0X+9a6/OP3C3qXH27WNqnDS72ByOAAIIIIAAAggg8D0KELinh0/gnp4fgTuBO4E7gTuBO4E7gTuBO4H7ORa4X3tVOGU6GltcduKUoAoSuE95PqjPPvdD99atwup0a8FGwodDUiiU2DktUjT/zuq0F2NT8tge9kSATeHDhgACCCCAAAIIIIBAugIE7ukJErin50fgTuBO4E7gTuBO4E7gTuBO4H6OBe5XXuHq+Rdi09FUP9/1RrQnB+7t2oalpHVdLZifNOX0gXvYMvjkNWEdycL63EjoXqKY1OOOpAQ+0nedOi2oj1b7of5FjVz17kHgnma3nsMRQAABBBBAAAEEIgIE7ul9FAjc0/MjcCdwJ3AncCdwJ3AncCdwJ3A/BwP3CZMD+mKTH2jfcF0438C9zfVhTY0baV6xgqub2oZTAvcON4f14YexAN9e89IWYU2ZGhuSXry4dHuXkBe4f7LW/7sXN3XVo3tIe5OmqClXztW0F779wH3b9sSpccqWcVWiRJqdZw5HAAEEEEAAAQQQyHgBAvf0qojAPT0/AncCdwJ3AncCdwJ3AncCdwL3Qhy426j3zzdEFmu9MnzSwH3yc0F9+pm/X8vLXHW+NaTJU4NaEwnXL23hnjRwt/127vQ7rZUryxvNnhy49+kZ0qbNiQF5zZqugvlMM/PRysT9LmrsqkiR1E7x3NcCenOJf6OgXl1X/XqHVKxYmp3npMN37UosKFLEUdmyyUP/peUrAlq/Pnbe7W4Kq3z51P3O7tnxaggggAACCCCAQOEUIHBPr94J3NPzI3AncCdwJ3AncCdwJ3AncCdwJ3D3fguu+RYD948/8cPmJhf508fkF7hPfzmoFR/6+zVu5MpC+F27EsN1G4U/e15AS9/zg/QLGrjq2zukdyP/He0at7w8rEWvpwbuy5YnjtS/7BJXxUsULPhe8nbisZe0cLVylaM33vLLS5VyNbB/WIcPJ3bQbVS93ayY/rK/X9Uqrgb0JXBP8zKGwxFAAAEEEEAAgZMKELin9+EgcE/Pr8CB+46diRc79met5N/Dgzpxwj+Je4eEZI8TPz0yqGPH/LK7B4dUqqT0zMigjhz1y4YMDKlMGWn4qKAOH/HL7rozpPLlXA0fnaNDh/yygf1CqlTR1YgxOTpw0C/r3yekqlVdjRqTo337/bK+vUI6v5qr0c8GtWevf552gVajuqvR44Lavdsv69U9pNq1XY0ZF9TOyMXbHQTuBO4E7t73w0YQPnBvSDYn75NP+8MJHUf64f0h2Xy+Tw6LDTF88P6QAo70r2HBvEX57Fh7jaeeCeYtmHf/3SEVLSI9NTyo3NzEdmLYiKCOH/fL7hkSUklrO0YFdTTSTgwdFFLp0ontxOA7Q7JpCOLbiUH9Q6pQwW8nDkbaiQF9Q6pS2dXIMTnaf8D/Gzaqsdp5rkaNzdHefX6ZtRM2r7G1E3v2xNqJWrX8dmJXpO3o0S2kunVcjR0fVLQttMX9GjaQnp0QUHTKgts7h9XoQlfPTgzo66/91+vcMaymjf2yryJlHTuE1by5q/ETA/pyq79fh3ZhWegzflJAm7/0y25qE1brlq68aSEioz5t+oerr/LLNn4RmyriOpub+bmg1kdGqdpczW1u8KeFWBcZUXll67ButqkibDHEdf6xV1zu6pZbQgTuBO4E7mfQx+h9R0g28jq+jxFtJ+L7GNF2Yuz4gLbv8L9zXbuEdUFDv03Yts0v69IprCaNEtuJTreE1axZYjtxS/uwLOC1dmJLpJ1o3zaslpe7mjApoE1b/Ndre2NYNod7QaeU+a5GuH/TwH3mrKA+WuW/N2uL+/YM5Ru4z18Q0Fvv+IF2g3p+CJ9f4G4j3he/4e9Xp7arAX3CeXPJ+78OUrMmrlZ9nNj3bXaR690MsLDfNutn3tkv7AXur8z2y6w/aoH7x2sczYnsZ79Rg/qHCxy4R38/oudSrLirCuWj/xX73+jTBtES6zNXqpS6X3IfPhhwVbFi6n6ZVOLmc//D+iRsCCCAAAIIIIBAQQUI3Asqlf9+BO7p+RU8cN/haMToWOA2aEBIRYsSuDdr6mrcxIC2fuVfBRT0YtgL0lolXgz7QVrigmbXXRPWjdf5ZfGPe7dtkxiktW4V9gK7+CDNHvfuZI97Px/U2k/98zvd497Ri+GmTfzRZ/ELmjVp7Kp3z5Cmz0gdfTZjZlDLP/D/xoUX+BfDr84J6t1lfll09Nnc+QG9s/TMLobt4rp/n7DeXupowaLIBXItv+y9ZY7mLfDLatXwR4vldzFsj57PmpN4Mbz6E0czZ/ll553nXwyb00szY6PPBg0Ia93n0osz/M9+5Uqud3PIgs7onLd2gWtlW7Y4mjLN388uri0ctoB10nN+Wfly0uBBudq+3dGEyX5Z2TLS0LtyvRB3/CS/zELmu+/K9QLgsRP8MrtpZaH0vn3yAh7bShSX7hka0qGD0sixfpk9Jn/f0JB3c8tuaNlm31MLvo8dl54e4Zfl5Pjhut0ss5tmthG4E7hHwxsL/m/rlDhVRIvmrrp39edmtiDJtmg7YXM4r44EU9GRqy9MD+rDyJQPthii3dx4Ka6dsBsTVvbq7Lh2oqGrfr0Sg7SG9f3QbMHCWJBWv56/3+I3A3mjSqPtxJK3HS18PbGdWPq+o/kL/bLaNV317xvW8hWO5rzml9Ws4epOAncCdwJ37/uQiSPcLXB/f3liHyO/Ee7pBO5vvxvrY0Tbiffj+hjRduJMAveXX0nsYySPcLc+xrFjicmy/WbH9zEqVvT7E9HBI14lRfoZ8X2McmWlIYNyVaFCdI/Y/65b5+j5FyK/9Tl+H2Nf0pz6ZctKblLKbQH3wYNO3k1be0X7LahcuWBPA6SeScFLduxwND/S57OjrC9crdq3/3cLfobsiQACCCCAAAKZLkDgnl4NEbin53dGgXvKyFUCdxG4+6EZgTuBOyPcJUa4x6aKIHAPaf1GR9Om+yGX3Ziz0Mzmp34uEnxFb8zZDVu7MeqFaOVdDR4Y0tfbHO9Gq23RIC3+xlyZ0tLQwbnaszvuxlwp6Z7Bud7ilDbK2raSJfybdQcOSKOe9cvsSTR7Is2eMIveSI/emLMnTJ6J3KyL3pizJ1HsiRTbojfmQiH/aRbbAgHpwftSn4T50Q9C3r/HPwlj+9n+9hSNPU1j2w/uCXk3AeP7GPfdHVKxpD6GvQ+70Rj/FF30SZjkp+jsZubw0UEdikzrEX2KLv5JGO8pukqJT8IU9Ck6Rrh/sznc0xnhfq4G7nZTf96CyHezWOpN/WjgnnBTP9JO5Be425MUdmM/ujVrGvam5Hl2YuJN/fh2wm7q2xOp1k5E2yc7fsigk9/U37gx9jds/vz8QvjoE7Dxlyr5zbNv4frRyJOxtq+1R/YUXXw7YX0MAvc0L/o4HAEEEEAAgUImQOCeXoUTuKfnR+DOlDJMKcMI94QgjSllQmJKGUa421RDNlVE/JMwFvYM6hfWx2sd5Y1crerKRqnGj1y16YzuGkDgTuAuMaWM8u1jnOkc7ufyCPfTPUX3TQL35KfoziRwj96YK+hTdBag200ze4rug8jc+9apsKc4LXCPH6VuT2KWLJl64WLz3f/z36nT1hUkcD982Mmb2i76ykeOSLt2x/6OzZ9fqoS0M67MbujVrpM6Yt6C/m+62VOI0RuJ0dewpwTeipv3v04t15sqig0BBBBAAAEEvn0BAvf0jAnc0/MjcCdwJ3AncCdwZw535nBnShmmlGFKGe+3gCllYlNPfRdTypxLgXt02jp7EsaeZomfti7vSZiw8qbzs8/bbZ39R10KErjb637wUSwRb3qR660TE50K0F6nQ/uw9xRP/Dox3npSJRLXiYmuJzVvfmwR3Ctahb11XZSUh9vTQMlBup3Lho2xY0uWdL11Ymytl+jW/ib/9fJbJya6Rkx0X5sqLXlLnvbH/t3WsWFDAAEEEEAAgYIJELgXzOlkexG4n4HfocNHVcpWJozbtu6KrFp6mtexxz2ZUiZxMURvQTPmcGdKGeZw91oPppRhShn7HDCHu7wFexnhLjHCnRHu1iZc3NRVj+7+mhBMKeNo+stntk5MNo1wL2jgnrww+5kE7t9kYfZTBe623o0F6rZFp56a8UosNLcFyW36L1uE3RaQt82eXLF23hZh37ffL4suzD762aD27PVvChR0YfY7uobUoIEU9mfhyttsdLwtzB7drmjlqtXlkbm4TnPdZnPvRxfttV3tZsA1Vxfs2MNHHL33fuJQ/xuuK9ixZ3BZyq4IIIAAAgh86wIE7ukRE7gXwO+rbbv0X/89XB9/ulEVypfRLx/spzbXXOodSeAeUv160tjxAdm8l7Z17RLWBQ1dr5O7LTIPZpdOYdnCf89ODOjrr/39CNylxpHFEJnDnTncCdwJ3K1dJHAncI92SwjcCdzts0DgHluYPb9FUwvjCPdMD9yHj87RoUN+SzaofygvcD9w0C8b0PfsB+716rp563bY37iipXvSaxGbMid+s2l6bDqb+K18eWn8pIC2fOlfs9h0Ppdd6urDuCcErPySi11F31f0eFtAd8LkgLd4r23XXROWBe5z58VuRBQp4qrDzQUL4W3Nj/fej904sNe8snXqsbZm786diUF/lSpu6o2IgGQ3Iwqy7d6TuFeZUlKRogU5kn0QQAABBM4FAQL39GqRwL0Afg/9/kmdf14lPXRvT330yXrd94snNGfS46pQrgyBO1PKMKUMU8p4rUh0MUTmcGcO98suYQ535nCXt5Cp3Uhj0dSQzq/mKn7kKoumsmiq/W7WqO6v9bBylaNXZvuBon1WBvYP6+M1cWs9nOdqUP/EtR6qVvHXfyBw94d1F3RKme9ihPv3FbjbdDS2OLZtpxv8s2ePv59NW2NT64ybGJAtwG1bxw5hXdzczTdwnzApoE1b/P1uahNW65auF65/HRlgdHXrsK6+yi9LDtxtIe/1G/xjbeqptm3C2h05j+jlaKUKrhYsTgzX7e/YwuBrP/WP9foYnUPavTsxNa9cyfWehPl8vV/esIGr3j1CmjI1mBe6W9Deu2dI8VMB2b7t2oZTXs8WIX91TlDrNvhnV6mi1K9XSMdPJF48229d8vsoV8ZV8RIFuMhmFwQQQACBjBYgcE+vegjcT+MXCoV08U1DtWja31WlUnlv7yEPPaYBd7RX22suI3AncCdwJ3D32gUCd/8Cr1d3AncCd3nz7rJoKoG7tQl9exG4t24V9kazTn4u6C0QbFvLy1x1vtWfKmbNWr/s0haubu8S0pTng/okUsYId0a422cjfg53Rri7GjMuqOg87jaljI1wP5PAPfq0beeOZydw/2Kz/x1uc/2ZBe6TpgS1LhKQe+1Eu7AmPR/UZ+v817vicle33hLKN3C3dmJT5O9auG4O8VNPNW0SC9xXf+y/XpPGrhe4vzA9qA9X+mXxT9tGQ/0aNVz17RnyAvd3l/n72dPLFrjPmR/Qtm1+WTAg9e0d0sLFAb25xL9RYPPp235HjyXeEChWTDp2LPHC29YQOHQ4cV79kiUdfbYucb+GDaQjRxL3K1LEUdmyqXPy79qVeGyxoo5Kl0nd74vIEwjRve0Gg3lGpz6y8tq1XCWvBVC2XOpTA/b9DAYT36/d3CiTz99NPj/br2LF1EBi8xZHe+KeMKh+vlS5cur72L8/9XGFEydS9ytTJvVvFOVphVQUShBAIEGAwD29DwSB+2n8tu/cqzY9fqxVC0fLiTx/9/Djo9SoQW31794u38B99+7UFw2FmMOdKWX8Tu70GUGt+DC1k7v8A7/swgvy6eQ2cL0O7dz5Ab2z1O/QNqjnly16PdbJtQsOmwfTOr2L3/D3q1vHVf8+Yb291NGCRX5ZnVp+2XvLHM1b4JfVquFqQN+wd26z5/ll0dFnH610NGtO4uiz1Z84eQt3nRcZfWYd9ejiWwUdfVaJOdw9a6aUYUoZ+xwwpQxTykR7EEwpw5Qy9lkgcCdwt88BgfvJb+oX5sA9emOuRfOzE7if8lokLnCPXos0rO9fi+QXuL+xJJB3g9HCdrvuWPK2ozWRkfoWtlvZ0vdtznv/GsMWtbVrkWUrHM19LfVaJBrqlyrlPwlj0+jEb/Y9+WSN452PbSVK+E/HrFuvvJsTVm43RjZ84Wjqi/40P3YtMvjOkLfPcy/4Zbb2gJXZkw/2hIFt5ctJgwflejccZs6KTRE09K5c7+mK+QtjTyfY0wX2JIVdL0W3a68OewH+tOmxYwcPDHlTMG3ZGtvvwoaujhyVbI0E2ywYv//ukI4elaJ1ZOVXX+l6T9HFL3zco1tYNg3R+EmxvzFoQMi7kTA3cn1nx97cPqyAI+/6MLq1buUqYIcludoeO+NuZNi0SeXKpuzmnd+nkZtF9po1q7uqXTs1/N+9y9GayM1n269aVVf166fut2d36t8oXizxpogdX7p0wRZDtnUekvc8fNjxzjt+s6mYkrf8jrXBVsmb2Sdv5pf8ivkdm3okJWcqkJ8/1meqmLg/gXt6fgTup/H7bMMW9X/wT3p31rC8PZ8YNkVFixbRj4Z015fbTuhEbqwJtcfq9u93tfit2I/XNVe6yslxNGd+7I+1uc6V3XGfHVd2wzWuSpZw9Oprsf2uu8pVmdKOZs2LldnrlSsjzZoX+xtXXSFVLC+9Mje2X+vLLbiQZs6JlbW8VDr/POnl2bGySy+WateQXno1vsxVnZqOps+KldlFX/26jqa/Eitr2thVowsCeuHlmEHjC6WmjRxNiyu7oIHUoqmjqTNi+9WvK13eQnr+pdjr1aklXXm5NGV6rKxmdenaK6XJL8TK7C7/DVdLk6bFys6rKt10vaOJU2N/o3JF6ZZ2jsY/FyurUM5V5w4BjYsrK1PaVbfOAT07ObZfyRJSz66Oxk6KlVmHp38PR6MnxspsdMegvo5GTUj8KR06wNGYia5CcdMsDu7vaMLzfucout3V19HkF1wdjRv1Ya839SVXhw7H9hvY29FLs8LadyBW7wN62ufF1a64ERD9ejh6bbGr7Ttix1rZwjdcfbUtVta3u6M33nG1ZWusrHc36Z33pS82x8p6dZXeWyFt+CJW1vM2acUqeR3Y6HbHbdKqj6W1caNSuneW1nzm6uPISD3bt2snO87VqrgOaNeO0oZNrj5cFXtvt90qbf5SWvFR7G90uUXee3h/Rays8y3Stu3Se8tjZZ06SDaCxN5LdOt0s7Rnr6sl78b+Rsf20v4Drt58J1Z2a3vp8OHE7/Ct7aSjx1wtfCO2X4ebJBtBsuD1uLK2fn2/tihWdnNb17sgmLcwVta+jevNnzl3QazsphusnZDmzI+Vee1EMUez49oEaydKlEgtsxFBr8a1E9de6apsmcS24+orXFUo7yS0E1e2lCpXSmwnWl1mnd/EdsK+qzWqSzOS2onaNZyEtiO/dqLZRa4uaODoxZmx+mjSyNVFFwYS2olGDaXmTRLbiYb1pUuaS1Pj2ol6daRWl0rPxbUTtWtKV7WSpryY2E5cf7U0OaWdkCZOje1XtYrU/kb/uxndKlWQOrZ3EtoJe0T69k6J7USpklKP2xPbieLFpD53+N//6JYTlAb2SW0nhgxwNGp8YtsxpL/jtUW5cZ32wf0cTZqW2E5Y2/F8Pu3Ei6+EdeBgXDvRy9Erc8Lasy+x7Zg939XOuBvE1k7Mf931vk/RzdqJxW+72vpVrKxPd2nJu9KmLXHtRDf/O5jQTtwurViZ2E70uE36cLX02edxbUcXafVaac2nsbJune2izdXqNbFztrZj/UZXH62Oayc6Spu3uFoRN6+utR1fbpWWfZjYdnyd1E507uBfQCa3E7v3Sm+/GzvW2ol9B1y9ldROHDzo6o2349qOdtLhI4ltxy3tbERfUtvRVsoNuZq/+NTthLUdtsW3E+1udL0RhXPi2o6217uykX4pfYx82o7kPkZ+7YTXxygrzZqb2Mew70R8f8L6GPbdie9PFLSP0aKZq3q1E/sYXjtR39GLcX0MaycaX5hPH6Oxo2lx/Qmvj9HM/92MbtbHaHlJYjtR0D6G9ZNuvDaxj2Hvtd0NiX0MM7mlvaMJyX2MWwIaNyV2LtbH6N4lkNCfsD5Gr26J7cSZ9DGsnbD+SUIfo5+jCVNT+xjPTXfzFrY0H+tjvPByYjthfYyXZ6e2EwXpY/S9w9GiNxP7GNZOvPmOhUiJ7cTSpD5Gz67Ssg/sux3bz/oYHyS3E7dJq9ckthMF7WPc3lHamEYfY8cOaemyxD6GzW0d305YH2Pv/sR2oqB9jJO1E3Z9Ed/HsDbBpq1L7mMktxMn72MUrJ1I7mPYtUjp0ol9jIJei5xJH8P6+8nXIgXpY9i1yIUNE/sYBb0WsT7Gpc0Tr0Wsj3HFpYnXItbHuPqK1GuRgvQx7Fqkw02JfYyCXoucrI9h37n4a5Ez6WPYtci4pD5GWtciveyzkXgtYtcncxelXosUpI/Ru7uFwNKmL+PajpNci6xd7+Y9IVC0iOu10SuTrkXu6CJ98qmrT9bGXq9rJ0efJV+LFLCPYdci1ieK72Oc/FrElbV50a3jzU6+1yIHDia2HR2sP5HPtYj1MV5/K/Z6Hdo5+fQx/P7j6foY0XZi3oLY69049mNnAAAUTElEQVR0o//E7sLXY2XXXS0VyXE0b1Gs7Pqr/euT15fEyuxpjBLFEtsYaycqVnD05Vex38OKFez1pFfjcozWLaVaNROfdrC+jus6mrcw9jcuuViqWlla8LrynkRo3sRVzeqOvtgc95tbRqpU3tHGuLLSpaUKZf1r3+h1uPUd6tQKaObs2MV6owvkZRsfrAwrlOv/7SpVpNo17f26eeG8tRPNL3K0Z39iH750SUeL3nIVXSvC2o5mTRwteiP2O2xt3WUtHK1d518j2mbXgA3rBbR2XexGktVFowYBbfk6cc2G2tUD2rE7saxqpYC270otW7027P1u2Gav17RxQNt2JO5XrWpAGzYlltWrFVAoN/HpiUDQnu5IKsuxvrp/k8c2u+ll13ebtya+Xq3zA9r81enLalQLaOXHdmPKf70iRaSWlwa070DisRXLB7R+Y1jHopmKI11Qz9GqNa6+2OQfW7y45UVOwvWUlVsdBe1uU9zmBF3v9eKzl3p1UvezduZAZI2S6OHWn7PBtfGbrdOxY5ebMAWXnfPx4+GEflupEo6OHnfz/Ow1rKxk8cSpxexGWPKNA3sPofhHcjx/R+GUMuV9BqLn6Nj3K2kpEMsmThy3713snVhZ+bI5Ce+N/zgzAQL303jt3ntA13X9kVYuGO19gG377V9Gql7t6hrS59Yz02ZvBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgXNWgMD9NFXruq6atRmseVOeUPXzKnl7D/jho+rXvZ06tm19zn4weGMIIIAAAggggAACCCCAAAIIIIAAAggggAACZyZA4F4Arz/8baxycoL6xQN9teyjT71FU5fMeFLlypYqwNHsggACCCCAAAIIIIAAAggggAACCCCAAAIIIFAYBAjcC1DLe/Yd0P/70zN6672VKlWyuB752WDdyuj2AsixCwLZKXD02HEVyQkqyCor2VmBnDUCpxA4dPio91uevIXCYZ04nqvixYvihwAC57AA3/VzuHJ5a+ekwIkTuTp6/ITKlCpxRr/dfNfPyY8Db+ocFjhy9Jgcx1HxYmfWF+fa/Rz+UGT5WyNwP4MKtIv0kiWKeY0AGwIIZKfA28tW6+6fPp5w8tEpo0KhkH7z2EjNf3O5ihUrqn5db9IPBt2enW+Us0agkArMXfye9z1+8s8/VqtLGucp2Hf/T38fpx279qph3Rp69L/uUb1a1bx/H/vcbI2YNEvHjh3XtVc013//6l4VK1qkkArythHIDoH8vutHjx7X5bfcm/AGHvv1ferc/iq+69lRrZwlAnkCtpbaX56cpJfnLfFulFepVF7/+/sHdWGDWqf9PvO7zgcJgewR+OSzL/ToP8ZrxarPvJO+rvXF+stv7lPZMqV0qt91rt2zp44L65kSuBfWmud9I1BIBWYtWKqFby7Xn//rnjyBIkX81bcnTZ+vV157R0//5aeyO+Vdh/xGf/v9A2rVIhbaFVI23jYCWSHw2JOTvKfR9uw7qCce/oGuuPQi77xtxMzNfX+u3/1kkNpee5lGT3lVbyz9SGP+/kut/Xyz7vzRo3ph5B9VuWI5/fwPw9S0UV3dP/C2rHjPnCQChVHgZN/1bTt2q8ugX+mtl/6Vx2JPqwUCDt/1wvhB4T1ntcC+/Yf04qtvqM/tbVWkSFB/Hfac1m3YouF//fkpv8/8rmd1tXPyhVBg1ZoN2rx1u26+sZUXsNsUzu2vb6m7+3XSqX7XuXYvhB+WLHvLBO5ZVmGcLgIIpCcw6cX52rR1u/7fg31TXuienz2unl1u1M03tPL+7elxL2vv/oP57pveWXA0Agh8GwJzFr3njVC3jvpP7+uVF7h/sGqdfv3YCL0y7n+8P2s31C7vcK/efOmfmvbK69q2Y49+/Z8DvH+ztVoe+dsYzRjz52/jFHlNBBA4CwIn+65/+vlm/eyP/873+zti4it818+CPS+BwPclsOS9VXrkf8dqzsTHdarvM9/176uG+LsInB2Bf4yYpgMHD+s3P75Tp/pd59r97HjzKt+eAIH7t2fLKyOAQAYKPDVmut58d6WaX1RfVStX0PVXXqwL6tX0zrRDv5/r8d/er4svauD9tz3COnfR+/rno/+Rge+EU0IAgZMJ9L7/kYTA3cI5GyU37LGH8g5p2/MhPfnn//QC9xrnV9bg3rd6//bl1zt1c5+fafWiMQAjgECGCyR/15cu/8QL3Du3u0qlS5XQZc0v0FWXN/XehU0pxXc9wyuU00PgFAJPDJuifQcO6Q8/H3LK7zPfdT5GCGSvgK290Of+RzSwZwd1aX+1TvW7zrV79tZzYTlzAvfCUtO8TwQQ8ASWr/zUG8FaumQJLXl/tRa8tVwTn/qtWjRpoCs63q9JTz2sBnWre/sufvsDb5S7/TsbAghkj0ByCDdlxkK9/8EaPf7wD/LeRLehv9UvHuijqTMX68rLmnhPt9i2/8AhXdXlQS2b/QwLqGZPlXOmhVQg+bu+beceTZu52JvreeWa9Zq98F39+J4e6tetnX76yFN81wvp54S3nf0C9qTavb/4q6aPflTVz6t0yu+zPdHG73r21znvoHAK2LSPs+a/o8n/flg2Jdypfte5di+cn5FsetcE7tlUW5wrAgicdYGHfv+kN2/zr/5jgG6761f64y+GeuG7bTPmLvF+8ONHxZ71E+AFEUDgrAskh3C2EPKUlxbqmcd/mve3ruv2H/rXo//pBXLWBgzt29H7ty1bd3hPu6xaOJpF0s96zfCCCJxdgeTvevKrT35pgcZNnetNJ2XzvvNdP7v+vBoC34XAhs1fq/d9v9cTv3vAW0zRtlN9n//y1GS+699FxfA3EDjLAvZE6p/+MU5Thv3Ou7GW3xb/u861+1muAF7urAsQuJ91Ul4QAQSyScDmeVy/6Sv9+Zd368Ff/V23tmmtzu2v8t6CTT+zc/c+PfzQoGx6S5wrAoVeIDmEW/3pRtnNtdkT/uKF6IePHFWrW+/X/Of+prmvv6/PN36pR3422HOzR1cf/usob45YNgQQyGyB0wXuNir2R7/9P73x4v/p2alz+a5ndnVydgikCHy1bZf6//BR/eTeHt70EtHtVN9nvut8kBDIPgFbo+HHv/uXxv/z17qwQa2TvoH433Wu3bOvngvbGRO4F7Ya5/0iUMgF7Ee6SaO6Klokx3tEbchPHtM9/Tur6y3XataCpRr73GyNeOIXOnLkmO6452EviI+OpinkdLx9BLJGIDmEO3EiV12H/EYPDu6mDje20vAJMzX/jWV6/plHtHnrdt1x98Pe/z+vcgUvmG9Yv6Yeurdn1rxfThSBwiqQ/F3/dP0WVa1cXuXLltax4yf0q/8eruLFiurRX97Nd72wfkh431krsHvPfvV98I8a0L29+tzeNu995OQEteWrHSf97eZ3PWurnBMvpALRKaPsqfLmjevnKRQpkqNT/a5z7V5IPzBZ9LYJ3LOosjhVBBBIX+APfxsrm8+5YoWy3ov1vb2tfjDodm/Uq+u6evQf4zVj7ls6dPiohvS5VQ/d14tpJdJn5xUQ+E4F+j3wR/3k3p5qdUnjvL9rnflH/nesPv18s2pWr6In//xjNaxbw/v3qa8s1j9GTJNd3F/Tqrme+P0DKlOqxHd6zvwxBBA4c4Hk7/r02W/q1/8zwvuNP3bsuHfD3J5esQVU+a6fuS9HIPB9CthI9cf+NTHlFMb+47/UskWjU/5287v+fdYcfxuBMxOwkeqLlnyQctBH80fq5Xlvn/R3nWv3M3Nm7+9egMD9uzfnLyKAwPcscPxErjelhI2Ay2+zUXEBx5HdVWdDAIFzS+DAoSP5hunhsKujx46pZIni59Yb5t0gUMgEQqGQ9h88rLJlSikYCKS8e77rhewDwds9pwVO9X3mu35OVz1vrhAJnO53nWv3QvRhyLK3SuCeZRXG6SKAAAIIIIAAAggggAACCCCAAAIIIIAAAghkpgCBe2bWC2eFAAIIIIAAAggggAACCCCAAAIIIIAAAgggkGUCBO5ZVmGcLgIIIIAAAggggAACCCCAAAIIIIAAAggggEBmChC4Z2a9cFYIIIAAAggggAACCCCAAAIIIIAAAggggAACWSZA4J5lFcbpIoAAAggggAACCCCAAAIIIIAAAggggAACCGSmAIF7ZtYLZ4UAAggggAACCCCAAAIIIIAAAggggAACCCCQZQIE7llWYZwuAggggAACCCCAAAIIIIAAAggggAACCCCAQGYKELhnZr1wVggggAACCCCAAAIIIIAAAggggAACCCCAAAJZJkDgnmUVxukigAACCCCAAAIIIIAAAggggAACCCCAAAIIZKYAgXtm1gtnhQACCCCAAAIIIIAAAggggAACCCCAAAIIIJBlAgTuWVZhnC4CCCCAAAIIIIAAAggggAACCCCAAAIIIIBAZgoQuGdmvXBWCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkmQOCeZRXG6SKAAAIIIIAAAggggAACCCCAAAIIIIAAAghkpgCBe2bWC2eFAAIIIIAAAggggAACCCCAAAIIIIAAAgggkGUCBO5ZVmGcLgIIIIAAAggggAACCCCAAAIIIIAAAggggEBmChC4Z2a9cFYIIIAAAggggAACCCCAAAIIIIAAAggggAACWSZA4J5lFcbpIoAAAggggAACCCCAAAIIIIAAAggggAACCGSmAIF7ZtYLZ4UAAggggAACCCCAAAIIIIAAAggggAACCCCQZQIE7llWYZwuAggggAACCCCAAAIIIIAAAggggAACCCCAQGYKELhnZr1wVggggAACCCCAAAIIIIAAAggggAACCCCAAAJZJkDgnmUVxukigAACCCCAAAIIIIAAAggggAACCCCAAAIIZKYAgXtm1gtnhQACCCCAAAIIIIAAAggggAACCCCAAAIIIJBlAgTuWVZhnC4CCCCAAAIIIIAAAggggAACCCCAAAIIIIBAZgoQuGdmvXBWCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkmQOCeZRXG6SKAAAIIIIAAAggggAACCCCAAAIIIIAAAghkpgCBe2bWC2eFAAIIIIAAAggggAACCCCAAAIIIIAAAgggkGUCBO5ZVmGcLgIIIIAAAggggAACCCCAAAIIIIAAAggggEBmChC4Z2a9cFYIIIAAAggggAACCCCAAAIIIIAAAggggAACWSZA4J5lFcbpIoAAAggggAACCCCAAAIIIIAAAggggAACCGSmAIF7ZtYLZ4UAAggggAACCCCAAAIIIIAAAggggAACCCCQZQIE7llWYZwuAggggAACCCCAAAIIIIAAAggggAACCCCAQGYKELhnZr1wVggggAACCCCAAAIIIIAAAggggAACCCCAAAJZJkDgnmUVxukigAACCCCAAAIIIIAAAggggAACCCCAAAIIZKYAgXtm1gtnhQACCCCAAAIIIIAAAggggAACCCCAAAIIIJBlAgTuWVZhnC4CCCCAAAIIIIAAAggggAACCCCAAAIIIIBAZgoQuGdmvXBWCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkmQOCeZRXG6SKAAAIIIIAAAggggAACCCCAAAIIIIAAAghkpgCBe2bWC2eFAAIIIIAAAggggAACCCCAAAIIIIAAAgggkGUCBO5ZVmGcLgIIIIAAAggggAACCCCAAAIIIIAAAggggEBmChC4Z2a9cFYIIIAAAggggAACCCCAAAIIIIAAAggggAACWSZA4J5lFcbpIoAAAggggAACCCCAAAIIIIAAAggggAACCGSmAIF7ZtYLZ4UAAggggAACCCCAAAIIIIAAAggggAACCCCQZQIE7llWYZwuAggggAACCCCAAAIIIIAAAggggAACCCCAQGYKELhnZr1wVggggAACCCCAAAIIIIAAAggggAACCCCAAAJZJkDgnmUVxukigAACCCCAAAIIIIAAAggggAACCCCAAAIIZKYAgXtm1gtnhQACCCCAAAIIIIAAAggggAACCCCAAAIIIJBlAgTuWVZhnC4CCCCAAAIIIIAAAggggAACCCCAAAIIIIBAZgoQuGdmvXBWCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkmQOCeZRXG6SKAAAIIIIAAAggggAACCCCAAAIIIIAAAghkpgCBe2bWC2eFAAIIIIAAAggggAACCCCAAAIIIIAAAgggkGUCBO5ZVmGcLgIIIIAAAggggAACCCCAAAIIIIAAAggggEBmChC4Z2a9cFYIIIAAAggggAACCCCAAAIIIIAAAggggAACWSZA4J5lFcbpIoAAAggggAACCCCAAAIIIIAAAggggAACCGSmAIF7ZtYLZ4UAAggggAACCCCAAAIIIIAAAggggAACCCCQZQIE7llWYZwuAggggAACCCCAAAIIIIAAAggggAACCCCAQGYKELhnZr1wVggggAACCCCAAAIIIIAAAggggAACCCCAAAJZJkDgnmUVxukigAACCCCAAAIIIIAAAggggAACCCCAAAIIZKYAgXtm1gtnhQACCCCAAAIIIIAAAggggAACCCCAAAIIIJBlAgTuWVZhnC4CCCCAAAIIIIAAAggggAACCCCAAAIIIIBAZgoQuGdmvXBWCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkmQOCeZRXG6SKAAAIIIIAAAggggAACCCCAAAIIIIAAAghkpgCBe2bWC2eFAAIIIIAAAggggAACCCCAAAIIIIAAAgggkGUCBO5ZVmGcLgIIIIAAAggggAACCCCAAAIIIIAAAggggEBmChC4Z2a9cFYIIIAAAggggAACCCCAAAIIIIAAAggggAACWSZA4J5lFcbpIoAAAggggAACCCCAAAIIIIAAAggggAACCGSmAIF7ZtYLZ4UAAggggAACCCCAAAIIIIAAAggggAACCCCQZQL/H1eDThYwmRyeAAAAAElFTkSuQmCC",
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"text_length(\"sst2\").visualize()"
]
},
{
"cell_type": "code",
"execution_count": 109,
"id": "7a724141-9c87-4211-86fe-25c0c39e68bb",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"type": "bar",
"x": [
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176,
177,
178,
179,
180,
181,
182,
183,
184,
185,
186,
187,
188,
189,
190,
191,
192,
193,
194,
195,
196,
197,
198,
199,
200,
201,
202,
203,
204,
205,
206,
207,
208,
209,
210,
211,
212,
213,
214,
215,
216,
217,
218,
219,
220,
221,
222,
223,
224,
225,
226,
227,
228,
229,
230,
231,
232,
233,
234,
235,
236,
237,
238,
239,
240,
241,
242,
243,
244,
245,
246,
247,
248,
249,
250,
251,
252,
253,
254,
255,
256,
257,
258,
259,
260,
261
],
"y": [
2,
3,
36,
134,
213,
304,
335,
416,
483,
448,
490,
428,
485,
487,
522,
478,
497,
498,
490,
513,
457,
469,
474,
419,
431,
407,
381,
409,
385,
376,
337,
339,
371,
316,
366,
319,
307,
325,
299,
275,
279,
301,
298,
277,
290,
251,
239,
280,
220,
261,
239,
233,
236,
223,
271,
251,
197,
226,
180,
207,
198,
190,
197,
192,
174,
172,
184,
175,
171,
155,
175,
157,
174,
145,
152,
152,
147,
129,
155,
151,
148,
145,
119,
149,
150,
124,
123,
138,
104,
127,
123,
111,
135,
111,
90,
126,
107,
93,
98,
94,
89,
112,
95,
94,
90,
88,
89,
79,
94,
91,
91,
84,
67,
75,
65,
75,
74,
75,
74,
64,
60,
78,
59,
62,
63,
72,
52,
63,
52,
60,
49,
52,
57,
50,
54,
44,
36,
54,
41,
49,
50,
40,
43,
51,
57,
45,
45,
35,
41,
38,
37,
35,
38,
39,
31,
40,
30,
24,
34,
18,
26,
36,
26,
30,
34,
29,
25,
21,
23,
20,
24,
30,
28,
14,
29,
14,
20,
19,
16,
12,
22,
14,
15,
7,
20,
8,
20,
15,
12,
12,
8,
11,
12,
8,
9,
11,
9,
10,
3,
8,
7,
7,
10,
9,
4,
9,
5,
7,
4,
7,
9,
8,
8,
8,
8,
7,
1,
1,
4,
2,
6,
2,
5,
2,
2,
3,
4,
2,
3,
3,
0,
3,
3,
3,
3,
2,
1,
1,
1,
2,
2,
0,
0,
1,
3,
1,
5,
3,
2,
4,
4,
1,
0,
2,
0,
0,
1,
3,
0,
1
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Computes the input text length distribution"
},
"xaxis": {
"autorange": false,
"range": [
96.76865671641791,
228.32089552238807
],
"title": {
"text": ""
},
"type": "linear"
},
"yaxis": {
"autorange": true,
"range": [
0,
549.4736842105264
],
"title": {
"text": ""
},
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABOAAAAFoCAYAAAD+YIRiAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3QmcVXPjx/HvnTsz7cu0SFFKEUoqqUho02IpLVpJRSLbE7I8j53HkvAgUlRCCVmiLFHWCIVSEVqUkvY9Nffe/+t3xh0z95675DfT/zT3c16v/+v/6JzfOb/z/p175s53fosvFAqFxIYAAggggAACCCCAAAIIIIAAAggggAAChSLgI4ArFFdOigACCCCAAAIIIIAAAggggAACCCCAgCNAAMeDgAACCCCAAAIIIIAAAggggAACCCCAQCEKEMAVIi6nRgABBBBAAAEEEEAAAQQQQAABBBBAgACOZwABBBBAAAEEEEAAAQQQQAABBBBAAIFCFCCAK0RcTo0AAggggAACCCCAAAIIIIAAAggggAABHM8AAggggAACCCCAAAIIIIAAAggggAAChShAAFeIuJwaAQQQQAABBBBAAAEEEEAAAQQQQAABAjieAQQQQAABBBBAAAEEEEAAAQQQQAABBApRgACuEHE5NQIIIIAAAggggAACCCCAAAIIIIAAAgRwPAMIIIAAAggggAACCCCAAAIIIIAAAggUogABXCHicmoEEEAAAQQQQAABBBBAAAEEEEAAAQQI4HgGEEAAAQQQQAABBBBAAAEEEEAAAQQQKEQBArhCxOXUCCCAAAIIIIAAAggggAACCCCAAAIIEMDxDCCAAAIIIIAAAggggAACCCCAAAIIIFCIAgRwhYjLqRFAAAEEEEAAAQQQQAABBBBAAAEEECCA4xlAAAEEEEAAAQQQQAABBBBAAAEEEECgEAUI4AoRl1MjgAACCCCAAAIIIIAAAggggAACCCBAAMczgAACCCCAAAIIIIAAAggggAACCCCAQCEKEMAVIi6nRgABBBBAAAEEEEAAAQQQQAABBBBAgACOZwABBBBAAAEEEEAAAQQQQAABBBBAAIFCFCCAK0RcTo0AAggggAACCCCAAAIIIIAAAggggAABHM8AAggggAACCCCAAAIIIIAAAggggAAChShAAFeIuJwaAQQQQAABBBBAAAEEEEAAAQQQQAABAjieAQQQQAABBBBAAAEEEEAAAQQQQAABBApRgACuEHE5NQIIIIAAAggggAACCCCAAAIIIIAAAgRwPAMIIIAAAggggAACCCCAAAIIIIAAAggUogABXCHicmoEEEAAAQQQQAABBBBAAAEEEEAAAQQI4HgGEEAAAQQQQAABBBBAAAEEEEAAAQQQKEQBArhCxOXUCCCAAAIIIIAAAggggAACCCCAAAIIEMDxDCCAAAIIIIAAAggggAACCCCAAAIIIFCIAgRwhYjLqRFAAAEEEEAAAQQQQAABBBBAAAEEECCA4xlAAAEEEEAAAQQQQAABBBBAAAEEEECgEAUI4AoRl1MjgAACCCCAAAIIIIAAAggggAACCCBAAMczgAACCCCAAAIIIIAAAggggAACCCCAQCEKEMAVIi6nRgABBBBAAAEEEEAAAQQQQAABBBBAgAAu4hnYty9bm7ZuV7nSpVS8eCZPSAEKvPLWR1q8dIVuHda/AM/696lCoZAW/rBMtY84TKVKFi+UaxT1k27asl33Pf6CunY6Tc0bH+e52y2MZ+jJZ99w7vOy/p2d/79nz179uGyV6h9TS/60tEIzWLZyjUqWKK5DD6ngXKMw7i1W5SOvXWg3yYkRQAABBBBAAAEEEEAAAQQcAQI4SYFAQM9MnqG33v9cv6xYk/toVKlcQZf0PUu9u7Q56B+X7Tt3q0ypEgfsPtyud+uIcXpn9pf6csboQqnH0l9W6bxBt+jKgV015MJzC+Ua+3vSZN337st2Tp2Zkb6/l0j6+GTqsnrterXvfb1uG9Zf55/bKulzF8aBB+oZ6nfFPU71n3/8387/n/Ta+7rnf89rwv9u1EknHJPUrZl3iGnDEsWLJXW8CYvrtxqgkxoeowmP3OiUKYzPh1u93K6dVKU5CAEEEEAAAQQQQAABBBBA4B8LpHwAt33HLl06fKS+W/yLTmlST21anqhDK1fQHxs26/1P5qtTm2bq0uHUfwzshYK//7FJbc4fpnnvjDkgvfpiXa8wAoa8vqbn0hMT39DZbZrr6NrV/9/p98f9zoeeVYWssrpiwHmFUu9k6+KVAO5APkORAdzK1es0dfpHurjPWSpbplRS7TFj1lxNevX93BAvmUIvvPq+qlTOUtuWJxZaABerXpHXTqa+HIMAAggggAACCCCAAAIIIPDPBVI+gBs14XU9MeF1DbngXA0dcJ7S0nz/XNOjJd+cOUc33jPmgAVwsa5X2AGc1/j3x711j2Hq2qlloQVwydblQAdwpoeW3++ParoD+QxFBnD/5Dkyz/aylWv3K4CLvE5hfD4Kol7/xIMyCCCAAAIIIIAAAggggAAC+QVSOoDbsm2HWpx7hWpWP1TTJtzjGgTk5fr1t3Wa/NoH+njuAq3fuEVtTm2sbmedriYn1M097KMvvnMCvQf+M0T3Pz5J5r8Pr1ZZ7c9oqmsu7q7PvlroDHf96tsfnH/v36O9+pzXNre8mY/KzMNlet6NHP2Svvn+J+e4c9qdossuPDe3jkuXrdYN9zylm67oo6aNjs0tHwgG1WvIHTqvY0vnvM++9I5MyLhz1x7VrlnNKW96+l1/WS+nzPJVvzs9dz74dL7z321bNtbgfueoUoVyueec9t4cfTjnG3365ULn346pU0P9urXTmaefFPV5ine9cMAw5oHr9MjTrzgGxv7Upsfr2iE9o4Zfvvzmh3rvo6+c3okN6x2lLh1PVafWzWJ+hv/YsEWX3jBSQy/qktur6PIbH1bHNs0UCAQ19oW3tGLV745nj7PP0ICeHXI9w+328B1X6MEnX3TutVixTLVoUl83XNFbWeXKONctKPfwTZhn6vaREzR3/hJn3rrDqlZ2dj10+1DVqn6o87/jOZgeTua+TM858zyGN1Nm0usf6Oar+mrxjyviPgN5QWMFcJ/PW6RXp3/sPM9HHF7F6Sl6SZ+z8vk9NXGaRt52uR566iXnOLOZdrv+8p46qtbhuZfZtHmb7hs1SZ/PWyzzv81Q79Klcubsa9rwWFWvVjlmfff3GYp8WF57+xNNfOU9meHK5vMwuO85emX6R8rODuSGZ6buj4x9RY/fc7UOO7SSc4pYn4EzTmmkO0ZO0OvvfOocF+55eUnfs51n1Tx/HVo3U4XyZfTAE5OdIe43DO2tC3u0d/bVrVNDV1/czSlr7m32nG/12F1XOe+Iud8sVuWK5Z3PvhkKHw4q33j3M0146R09+8iN+XroLV66Uv++/2nd9q/+Oq5uzYT1ynttc/3de/7UhCnv6JO5C5zP3OnNT9CZZ5yUrwewsUm2nWN+UNmBAAIIIIAAAggggAACCKSgQEoHcF/MX6xBwx7Q7ddepB7nnBG3+Tdv3a5el92pzVu2O6Gb2d798CutW79JL425XfWOrun8W7jnjglTjj6yuk5uUs8Jmsz/maFm738yT93OOk3lypTSlGmznWDs6ZHX6+QT6+X+Em7mSTP/fsYpDXXc0TU1b8GPTkBjyt15/UDnOPMLcp/L79Kjd1+VL3gxPYoatBnkDJ/71+AeemnabCc8MEGeCQWKZWY4oVfH1s20bftO9bj0dq1es975Jbts6ZJOOHHCcbU1/pEbnWNN2Zv+O0YtTjpeJzc5Trt2/6mPv/hOZ7Vp7oQIkVu865mAYer0j50i5nz16tbUh59/64QhpvfXXcMH5Z4uPA+XqWunNs31+deLnHswoUirFo1c2yocHt1x/QB1/6uNTM+yfdnZTtBjAskSxTP12jufOv+d97hwu5lhoIdWznLq98fGLXrjnU8drzfG36P0dH+BuOetvAlAp737mcY8/6Ya1T9KLU6q7+w2z6MJQRM5/Ll3n3oMvk2bt+7Q9In3OoHMb79v0Jm9rnPu4akHhjkBXqxnIBLSLYD7/ofl6jnkDicg7NW5tX5fv0nT3/9CF/XskBvk5vWrXrWyE6ouWLLMCXNMwDbj+ftUvFimM9/iuRf92wmw+3Ztp0Mqltfzr850glEz16J5Ln9Z8VvM+u7PMxR5byY8v/t/z+m4o49Qu9OayAS2k1//wDnM2IfngAvfy1sT71WtGlXjfgbMPHnjX3zbCTvN1uev+SJbNK2vBsfWlnn+qlWp6Dy7Zr63Y+vUUOuWjZ255cy+Jicc7YT1Zst7byb8qndMLX37/U+a8/Uix/2Wf13oHDfuxbc1cvQUffL6Y06wF96+/u5H9b/6Xo2+f5hzrUT1ynttE9wPu22U837q3OFUVT2kgvM5N6Geua65ft73m/mcxGvnFPxZyi0jgAACCCCAAAIIIIAAAnEFUjqAM6sO3vbgeD37v5vy9WJzE/v3fU87vVxefeYu1f1rfjETypkwISM9XbNefijfL6jNGh+rpx8c7gxpNZOzn9P/JifoMr1dTA8zs4UXDeh/fgcNvzynR1r4l/C84Yb55XjI8JHOL+LvThrh9OBKNoAz5zQ98kwvuMg54EzPKxPOvDbubh19ZE4PpbdnzdV1dz6p+/492Ol5M+z2UU5vsM/fHJWvh6CZyN3ncx+uG+t64XszwZ3pBRTeTLiz/Ne1uYszGKf2fa53ehDd/58huYbmuK3bduZaR7ZTrADOhKTjHrpBpk3MZoLHk88Z6gRUY0Zcm6/dzMqXLzz+HydsM9tTz72pR5+ZmutREO6R9TYhWuMzL3FW4cw7B1yyDuGALBzQDrnhISf4mjllpBP+xHsGYhnmXYQhHGLOnPxg7hyCdz08US++MUvvvfig00ssHFoZ47Ejrst9Vh4e87KenjTdMW1Yv47Tg/C8gf9xwuBrLunuXD4cHOVdPMP2GYq8rz1/7tVp512lrPJl9Pq4u3MXS5jxwRe6/q7RcQO4ZD4DsYaxGjvz/F05qKszzD3vFiuAy/vZDwZDzmdw5sdf51onE8C1bNbAuVS8euUN4EyvupvvHav/XH2Bep+Xs+iMubZ5lkyv3f1tZ37uIoAAAggggAACCCCAAAII5BdI6QAu/Et+uKdLvIfDBEJmMwFY3m38lLf14JNT9NGr/3N6LIWDCDOEsP0Zfw/RHH73aKfX0EtP3aZ6dWvl/oLb/OzLZH5ZNkP3zBYOqd6dPEKH/zUc0fy76alz9yPPacStlznBVEEEQWddcKPTE2/SE7fk3pIJCxu1u1jhUNAMiX18/GvOL+amV1Y4mIpnlSg8eX/KSFX9Kxgy5wlf48OpjzhD7syw03/dNsoJck75q0eYOW70xGl6bNyr+mza4ypftnRUFWIFcKbX2/Tn7st3/IVX/VfrNmzObc9wu4WDx/DB4ZC057mtdOuw/gXiHlnxWAHc/jiYIZNmKKoJ4UwvwzuuG6DuZ+f01DRbrDaJrEtkDzjTU+2Mbtc44ZEJkcLbV9/9oIuuvi+3R2Ks5970/LzomvucIbXm8/DhnG819OZHcp9jcz4z5LpllyudHor/vrpf3PqGPx+JnqHI+zI9uUxPwXA7hvfv25etFp2vcHqrxuoBl8xnIF7QZXpgznrpIWVErHAbK4DLG5yaeprerwOH3Z9rVhgBnHm3mHfMBy89pEMPqZDLt2DJL+p92V165M4rnF6DybZzvPcD+xBAAAEEEEAAAQQQQACBVBRI6QAu3OsjMuiJfBDMcNCmnYbkGwIaPiYcKISHkYZ/QX3xyVt1/LFH5p7KrHJphpwu+OCZfD3Jzr3oZtWqXlX/u+tK59hwwBB53KKlK3T+4NududIG9upoHQSZFUNP7DDYuabpUZd3Mz2vTChohrKZXn5X/vtRZwidGXZ2ce9OzhDc0qVKxPy8JArgIu/t1Rmf6JYHnsntsRVeGMMMXczI+HuCfjP817TF5CdvcYb3RW6xArhjalfXE/f9K9/hZljt3G9+iOq5GO6pFT44PKQ37FEQwWdkvWMFcPvjYHp4dbv4Vmcop+mF9szI4fl6KP7TAC48TNsMPzW9x8KbGYpshvFed1lPDejZMTeYmTL6NplehOHNDLE9+4Ibdf+/L9XZ7U52hn226n6NE8aNuGWI81kwgaF57k3AaQIys9k+Q5HGsz/7Rlf8+3/6702XqHP7Fvl2nzfoFpUqUTxmAJfMZyBeAFen5mG5PS3zXjhWABf5+QgPKQ5bF0YAZ3qXrt+4Nap3qelxesq5Q3N7Z4bfb4naORV/mHLPCCCAAAIIIIAAAggggEA8gZQO4Bb9uFznX3qHbriijy7sfmZMp3AvoLzD5sIHz/nqe11y/YO5c7FFzh8VPs4EcG+9/3nuMMvwv8cM4GaNkz8tLbdOa9ZtVLue12rY4B4a1OesmAHcrt17dFLHIblzwMUKMzZu3uYMyTNzX4WHq+UFMMMKTWBiNjMEdvan32jspLdkhjuaIO7pB6/PHYobCRcvPDHz2305Y3S+IpEB3L2PvaDnp850FlNwWyGzS4cWzrxikVusAC7vULtwmVgBnOkNaObAiwxKwiFKrAAuWXe3hyxWALc/DqbnYvdLbnUm+Q/P/ZZ3iPA/DeDe/3ierr71MZ175imqWb1qVPWbNTrWGVoa67mPDODMCf776PN64dX3necoq1xpp85m8YLJo27JHeJq+wxFVjQ8tHrC/2505l/Lu0WGZ273kugzEC+Aa1S/Tm4P18jnym0OuEUfTshXP9NTs3X3fzlzOpq5HWMFcOF3kQnO93cIqukNa0J1E6zl3czCDE06XOrM92iGje9PO/OjFwEEEEAAAQQQQAABBBBA4G+BlA7gwqGJCVyee+zmmKugmvnO6rca4Az9NENA826mV5sJ114ec4czuXtBBXCzX3lEh1Qqn3up8DxZ4UUIwkPDIodMmjDDhHrhRRjMCWKFGS3Pu0qtTmmYu7BDMh8MswqiWb0x7/xpkeVswxOzUuV/7n9GkcNwE9WvIAK4yKHDZohiwzxDcgvCPfI+YgVw++NghuaaIbpntW3uDHXOu8BEvGcgsi6RQ1BXrl6nTv1uyJ0DL1Yb7E8wEx5SaYbLli9XRkfVOkwdzmiab4im7TMUWU/Tg9OEZOEh3JFBmJkrL9YQ1MhzuX0GCjKA+2L6kyqTp4fpwiXLnAVgHrvnKrVu0VjhYe/hednC9TPzOZp5Hf9JAGd6uZpVVyPD8Z+Wr1aXAf/RjVf00QXdzySAS/QSYj8CCCCAAAIIIIAAAgggEEMgpQM4YxIe8ml6lZneZbG2wdeP1LeLftKbE+9VlUpZzmFmeGKfoXc7CwiY+ctKliheYAFc3pUHzbXMEE3TU+yt5+5TreqHasOmrTq969VRw2LDv5znDeDC/xY51535pXvWZ/OjVlNM9GkxE7MvX7U2aj68cLlY1zPWyfSAW/LTSnW/5LaoeccS1asgAjgzNNKEcOEtvAqsWX3WBEYF4R55H6Z3VYPWA53wLLwipjkmWYe8izCYud8uHZ4zcX7eADNWm0TWJTKAC9fN9JQ0IXWshTf2J4Azwx0PrVwhd9i1W7vaPkOR5wz3+DQrEYeHe5tjfl7xmzpf9O+4izC41S/yM2D+2wwT/2jq/5xFQ8KbGWa6vz3gHrz1Mmc12PD20FMv6ZnJM3I/+2ZBhmtufTxfKGr+SDD0pkdkwsG8AVy8euXtfWfOb66Tt6y5fvja4aHZ+9POiT6v7EcAAQQQQAABBBBAAAEEUkkg5QM4M3Rv4L/ud+Y4O7HB0c7QrWPq1HBW2zRDVDu0buYMSQwPVzXzW/Xv0V6lSpXQW+/N0Qyzauhf82CZB6egesCZc5leJ2bF1c/nLdaY5990Ahozl1Y4BAmvsHjVoG5qfPxR+v7H5c6CEGbLG8B9Pm+RLr52hFP+gm5nOgGBWQjCBDz9r77XWfjADPesVqWSNm7ZJjOUzQRRTRsdq/sfn6TKlbJ0/LG1VCwzQwuXLHeGEJoFGW6/9iLXz0qs6yUbwJnVF03gaFadNYtBnNa8gXzyadnKNfrhl1+dBQbctoII4Mx5zTVbNjteK379XQ+PfdnxMXP6lSld0rmsrbtb3ftcfpcTBt01fJCqVqmgGodVUdnSpRI6hOd+27Zjl2Y8d59Tx7XrNqptz2t1UsNj9MxDw52hzLHaJLIukQGc2R8eInx68xPUs3MrlS5VUmvWbZAZnnrX8IEqW6bUfvWMCge/5rNmenqZYcb16tbUGac0VPVqhzhVsn2G3IzDq/6aORRbtWjkLP4w4skXndWJTcAYqwdcMp+BcA9EM0z0lCb1ZebMO+LwKs6zsr8BnCl781X9VKtGVX397Q96aMzL+T774dVxa1Y/VAN6dVS1Qyrq/U/mOXNMmi1viBavXnkDONMbuH2f4U75yy/srNo1q+nLb39wFkgJz38Y7/3mNtQ4lX6Qcq8IIIAAAggggAACCCCAQCKBlA/gDJCZTH7S6x/oi3mLnSAuvJl5xh6+Y2junGBm5cfbH5zgTHRvNvOL8r8u6aGenVvn9nrJDeD+6qkWPtddD090QorIIV5muOiRNao5qwyazYRUs+d86yx28MATL+Zex4QTd143MHeOLLPDBFLX3Pa4M4dWuD6m55xZDdMMVbvmku7Ov2dnB3Tbg+OdQMtspzSpp7EP5qzq+u33P+uRp1+RWa0yvJlf7EfccpkzpDY8FDDvg2TCuZuu7OsEU25brOvFCuDCQy3zrmxpeheOfOplp8fcuvWbci/Tt2tbJ5xw28KT1Yd7q5ljTADStOExTm+hvFusOeDMaq9jJ03PvaYJsW4b1t8JQ8JbQbhH1t+0w+DhDzqLTJgt3OMokUM4YInsufTKWx85bR5e2CDeM5C3LmHDyFVUzUIJz786U2ZV2PBmbEb99xrncxDruQ8PYTULLnRq09x5Zm+6d6wzl6CZ9y0zI107du7O/Ux98vpjqlC+TMxndn+eoUhjM5+ZmVfP3Et4Mz1fd+/+Uz/+8qsmPnqz88+R95LMZ8DME3n5TQ/LrLZqtvB8bZELLeStU+Szae4tOxBUvaNravRz05z3krF1++ybFXLveuQ55xizGUvTg9f0eHvqgWt1atPjnX+PV6/Iz4Vp+ztGPuv0ngxvvTq31rVDznd697rZhI+LbGfXDyj/iAACCCCAAAIIIIAAAgiksAABXETjm1/St2zd4fzia3r2uG3bd+zSvuyAExQU9JY3YDDhy4bN21Qpq2zM+enM9U2AYValrFihbL6FGyLrZsIdU/eKWWXzzbdljjM9ATdu2qrSpUvmm3/K7DPzoK3ftFXpfn/Ca+S9Zrzr7Y+bCRnMUMiscmWUnv73qqj7c45Ex4ZDl2kT/qsjj6jq9I4qUTwzN3hwK18Q7nnPa3r+rd+0xQmlzL1GbgXhYNsm282ztmu3ypUpnS8MTuQb3n/RNfdp567dziqteT9fP/6ySl0H3ZK7ym/4eNv6utXLhJFmKLHb5yDWfST7GTArpprPUuUK5fMNRU3WJ+9xJjwz7xi3hUjCx5nn1GyJ3kX7Uy8zJ+GWbTsK5B7+yX1TBgEEEEAAAQQQQAABBBAoigIEcB5r1Vg9fDxWzSJXnXAA98aEe2RWPGUreIE9e/bqxA6D1aXDqbrnxovzXcD0jDun/826/KIuznBoNgQQQAABBBBAAAEEEEAAAQSKkgABnMdakwDu/6dBCOAOjHuPwbc5wzTNcMnj6tZ05jNcvnKtnpj4hlOB1565S5UqlDswleEqCCCAAAIIIIAAAggggAACCBwgAQK4AwSd7GUI4JKVKtjj8g5BNRPQsxWOwO9/bJJZ4dQsXhKev6xCVlm1btFIF/Xs6Kzwy4YAAggggAACCCCAAAIIIIBAURMggPNYi5pVLQOBoDMHHduBEzDz7e3as1elShS3nrvrwNX64L1SKBRyFpwoXiyz0Ob1O3h1qDkCCCCAAAIIIIAAAggggEBREyCAK2otyv0ggAACCCCAAAIIIIAAAggggAACCHhKgADOU81BZRBAAAEEEEAAAQQQQAABBBBAAAEEipoAAVxRa1HuBwEEEEAAAQQQQAABBBBAAAEEEEDAUwIEcJ5qDiqDAAIIIIAAAggggAACCCCAAAIIIFDUBAjgilqLcj8IIIAAAggggAACCCCAAAIIIIAAAp4SIIDzVHNQGQQQQAABBBBAAAEEEEAAAQQQQACBoiZAAFfUWpT7QQABBBBAAAEEEEAAAQQQQAABBBDwlAABnKeag8oggAACCCCAAAIIIIAAAggggAACCBQ1AQK4otai3A8CCCCAAAIIIIAAAggggAACCCCAgKcECOA81RxUBgEEEEAAAQQQQAABBBBAAAEEEECgqAkQwBW1FuV+EEAAAQQQQAABBBBAAAEEEEAAAQQ8JUAA56nmoDIIIIAAAggggAACCCCAAAIIIIAAAkVNgACuqLUo94MAAggggAACCCCAAAIIIIAAAggg4CkBAjhPNQeVQQABBBBAAAEEEEAAAQQQQAABBBAoagIEcEWtRbkfBBBAAAEEEEAAAQQQQAABBBBAAAFPCRDAeao5qAwCCCCAAAIIIIAAAggggAACCCCAQFETIIArai3K/SCAAAIIIIAAAggggAACCCCAAAIIeEqAAM5TzUFlEEAAAQQQQAABBBBAAAEEEEAAAQSKmgABXFFrUe4HAQQQQAABBBBAAAEEEEAAAQQQQMBTAgRwnmoOKoMAAggggAACCCCAAAIIIIAAAgggUNQECOCKWotyPwgggAACCCCAAAIIIIAAAggggAACnhIggPNUc1AZBBBAAAEEEEAAAQQQQAABBBBAAIGiJkAAV9RalPtBAAEEEEAAAQQQQAABBBBAAAEEEPCUAAGcp5qDyiCAAAIIIIAAAggggAACCCCAAAIIFDUBArii1qLcDwIIIIAAAggggAACCCCAAAIIIICApwQI4DzVHFQGAQQQQAABBBBAAAEEEEAAAQQQQKCoCRDAFbUW5X4QQAABBBBAAAEEEEAAAQQQQAABBDwlQADnqeagMggggAACCCCAAAIIIIAAAggggAACRU2AAK6KFCcvAAAgAElEQVSotSj3gwACCCCAAAIIIIAAAggggAACCCDgKQECOE81B5VBAAEEEEAAAQQQQAABBBBAAAEEEChqAgRwRa1FuR8EEEAAAQQQQAABBBBAAAEEEEAAAU8JEMB5qjmoDAIIIIAAAggggAACCCCAAAIIIIBAURMggCtqLcr9IIAAAggggAACCCCAAAIIIIAAAgh4SoAAzlPNQWUQQAABBBBAAAEEEEAAAQQQQAABBIqaAAFcUWtR7gcBBBBAAAEEEEAAAQQQQAABBBBAwFMCBHCeag4qgwACCCCAAAIIIIAAAggggAACCCBQ1AQI4Ipai3I/CCCAAAIIIIAAAggggAACCCCAAAKeEiCA81RzUBkEEEAAAQQQQAABBBBAAAEEEEAAgaImQABX1FqU+0EAAQQQQAABBBBAAAEEEEAAAQQQ8JQAAZynmoPKIIAAAggggAACCCCAAAIIIIAAAggUNQECuKLWotwPAggggAACCCCAAAIIIIAAAggggICnBAjgPNUcVAYBBBBAAAEEEEAAAQQQQAABBBBAoKgJEMAVtRblfhBAAAEEEEAAAQQQQAABBBBAAAEEPCVAAOep5qAyCCCAAAIIIIAAAggggAACCCCAAAJFTYAArqi1KPeDAAIIIIAAAggggAACCCCAAAIIIOApAQI4y+ZYs3G35RkojgACCCCAAAIIIIAAAggggAACCHhboFrFEt6uoMdrRwBn2UAEcJaAFEcAAQQQQAABBBBAAAEEEEAAAc8LEMDZNREBnJ2fCOAsASmOAAIIIIAAAggggAACCCCAAAKeFyCAs2siAjg7PwI4Sz+KI4AAAggggAACCCCAAAIIIICA9wUI4OzaiADOzo8AztKP4ggggAACCCCAAAIIIIAAAggg4H0BAji7NiKAs/MjgLP0ozgCCCCAAAIIIIAAAggggAACCHhfgADOro0I4Oz8COAs/SiOAAIIIIAAAggggAACCCCAAALeFyCAs2sjAjg7PwI4Sz+KI4AAAggggAACCCCAAAIIIICA9wUI4OzaiADOzo8AztKP4ggggAACCCCAAAIIIIAAAggg4H0BAji7NiKAs/MjgLP0ozgCCCCAAAIIIIAAAggggAACCHhfgADOro0I4CL8du7ao1Ili7uquu1bs3G3XQtQGgEEEEAAAQQQQAABBBBAAAEEEPC4AAGcXQOlVAD3+bxFuvjaEfnEZk4ZqWpVKmrtuo266d6xWrx0hbLKl9GNQ/uoVYtGzrHx9hHA2T2AlEYAAQQQQAABBBBAAAEEEEAAAe8LEMDZtVFKBXAzZs3V7E/n6783XZKrlpGR7vzvYbePUtUqFTVscA8tWLJMlw4fqXcnj1BWuTJx9xHA2T2AlEYAAQQQQAABBBBAAAEEEEAAAe8LEMDZtVFKBXCTX/tAv675QzcM7Z1PLRAIqEGbQfpw6iOqXLG8s2/gsPvVr1s7nd78hJj7WrdozBxwds8fpRFAAAEEEEAAAQQQQAABBBBA4CAQIICza6SUCuCemPC6Pv1yoY4/9kgdUilLpzVvoKNqHa4/NmxRq+7X6PvZ4+Xz+RzRW0eMU93aNdTutCYx9/Xt2pYAzu75ozQCCCCAAAIIIIAAAggggAACCBwEAgRwdo2UUgHc/IVLNW/BUpUuWUJzvl6kWZ/N16QnblHJEsXUd+jd+nLG6FzNkaOnKDMzQx1aNY2578qBXbVp2167FqA0AggggAACCCCAAAIIIIAAAggg4HGBCmUzPV5Db1cvpQK4yKYw875VqlBOQy7srJZdrtTCWeOVlpbTA+6WB55RrRrV1KXDqTH3DezVUXv2BbzdwtQOAQQQQAABBBBAAAEEEEAAAQQQsBQonuG3PENqF0/pAO7pSdO17Ne1uueGQarfaoDCK6KaR6LfFfeoT9e26tiqacx9nVo3Ywhqan9+uHsEEEAAAQQQQAABBBBAAAEEUkKAIah2zZxSAdy33/+s4+rWVGZGutZt2KyB/7pfl/Q92+nldudDzyo93a/hl/d2hqmaRRjmTBulcmVLxd3HKqh2DyClEUAAAQQQQAABBBBAAAEEEEDA+wIEcHZtlFIBnAnZpkybrQpZZR213p1b67L+nZ2FFzZv3a4b7h6jz75aqFIli+uO6waoY+tmznHx9hHA2T2AlEYAAQQQQAABBBBAAAEEEEAAAe8LEMDZtVFKBXCGau++bO3avUfly5Z2ldu5a4+zKEN4NdS8B7ntI4CzewApjQACCCCAAAIIIIAAAggggAAC3hcggLNro5QL4Oy4oksTwBW0KOdDAAEEEEAAAQQQQAABBBBAAAGvCRDA2bUIAZydH4swWPpRHAEEEEAAAQQQQAABBBBAAAEEvC9AAGfXRgRwdn4EcJZ+FEcAAQQQQAABBBBAAAEEEEAAAe8LEMDZtREBnJ0fAZylH8URQAABBBBAAAEEEEAAAQQQQMD7AgRwdm1EAGfnRwBn6UdxBBBAAAEEEEAAAQQQQAABBBDwvgABnF0bEcDZ+RHAWfpRHAEEEEAAAQQQQAABBBBAAAEEvC9AAGfXRgRwdn4EcJZ+FEcAAQQQQAABBBBAAAEEEEAAAe8LEMDZtREBnJ0fAZylH8URQAABBBBAAAEEEEAAAQQQQMD7AgRwdm1EAGfnRwBn6UdxBBBAAAEEEEAAAQQQQAABBBDwvgABnF0bEcDZ+RHAWfpRHAEEEEAAAQQQQAABBBBAAAEEvC9AAGfXRgRwdn4EcJZ+FEcAAQQQQAABBBBAAAEEEEAAAe8LEMDZtREBnJ0fAZylH8URQAABBBBAAAEEEEAAAQQQQMD7AgRwdm1EAGfnRwBn6UdxBBBAAAEEEEAAAQQQQAABBBDwvgABnF0bEcDZ+RHAWfpRHAEEEEAAAQQQQAABBBBAAAEEvC9AAGfXRgRwdn4EcJZ+FEcAAQQQQAABBBBAAAEEEEAAAe8LEMDZtREBnJ0fAZylH8URQAABBBBAAAEEEEAAAQQQQMD7AgRwdm1EAGfnRwBn6UdxBBBAAAEEEEAAAQQQQAABBBDwvgABnF0bEcDZ+RHAWfpRHAEEEEAAAQQQQAABBBBAAAEEvC9AAGfXRgRwdn4EcJZ+FEcAAQQQQAABBBBAAAEEEEAAAe8LEMDZtREBnJ0fAZylH8URQAABBBBAAAEEEEAAAQQQQMD7AgRwdm1EAGfnRwBn6UdxBBBAAAEEEEAAAQQQQAABBBDwvgABnF0bEcDZ+RHAWfpRHAEEEEAAAQQQQAABBBBAAAEEvC9AAGfXRikbwAWDIWUHAsrMSM8nuHPXHpUqWdxV1W3fmo277VqA0ggggAACCCCAAAIIIIAAAggggIDHBQjg7BooZQO4+x+fpLc++EKfvPaoI7h23UbddO9YLV66Qlnly+jGoX3UqkWjhPsI4OweQEojgAACCCCAAAIIIIAAAggggID3BQjg7NooJQO4ufOXOGHbvuzs3ABu2O2jVLVKRQ0b3EMLlizTpcNH6t3JI5RVrozi7SOAs3sAKY0AAggggAACCCCAAAIIIIAAAt4XIICza6OUC+C279yt7pfc6vRwu/XB8U4AFwgE1KDNIH049RFVrljeER047H7169ZOpzc/Iea+1i0aMwec3fNHaQQQQAABBBBAAAEEEEAAAQQQOAgECODsGinlArhbR4xT7SOq6bSTG+rCq/7rBHB/bNiiVt2v0fezx8vn8zmi5ri6tWuo3WlNYu7r27UtAZzd80dpBBBAAAEEEEAAAQQQQAABBBA4CAQI4OwaKaUCuI+++E5PTZym5x67Wb+uWZ8bwP20fLX6Dr1bX84Ynas5cvQUZWZmqEOrpjH3XTmwq3bszrZrAUojgAACCCCAAAIIIIAAAggggAACHhcoXSL/IpYer67nqpcyAdyWbTt0Zq/r9OjdV+nIGtW0as0fuuzGh/TWxPuU5pNO73aNFs4arzTzH5JueeAZ1apRTV06nKqWXa503TewV0dt27XPc41KhRBAAAEEEEAAAQQQQAABBBBAAIGCFChbMqMgT5dy50qZAO7zeYt08bUjXBv4tXF36byBt2jmlJGqVqWic0y/K+5Rn65t1bFVU9VvNcB1X6fWzRiCmnIfGW4YAQQQQAABBBBAAAEEEEAAgdQTYAiqXZunTAAXybR81e+5Q1DNvjsfelbp6X4Nv7y35i1Y6izCMGfaKJUrWyruPlZBtXsAKY0AAggggAACCCCAAAIIIIAAAt4XIICza6OUDeBWrl6nflfe4yzCYLbNW7frhrvH6LOvFqpUyeK647oB6ti6WcJ9BHB2DyClEUAAAQQQQAABBBBAAAEEEEDA+wIEcHZtlLIBXCy2nbv2qGSJYrmroeY9zm0fAZzdA0hpBBBAAAEEEEAAAQQQQAABBBDwvgABnF0bEcDZ+TEHnKUfxRFAAAEEEEAAAQQQQAABBBBAwPsCBHB2bUQAZ+dHAGfpR3EEEEAAAQQQQAABBBBAAAEEEPC+AAGcXRsRwNn5EcBZ+lEcAQQQQAABBBBAAAEEEEAAAQS8L0AAZ9dGBHB2fgRwln4URwABBBBAAAEEEEAAAQQQQAAB7wsQwNm1EQGcnR8BnKUfxRFAAAEEEEAAAQQQQAABBBBAwPsCBHB2bUQAZ+dHAGfpR3EEEEAAAQQQQAABBBBAAAEEEPC+AAGcXRsRwNn5EcBZ+lEcAQQQQAABBBBAAAEEEEAAAQS8L0AAZ9dGBHB2fgRwln4URwABBBBAAAEEEEAAAQQQQAAB7wsQwNm1EQGcnR8BnKUfxRFAAAEEEEAAAQQQQAABBBBAwPsCBHB2bUQAZ+dHAGfpR3EEEEAAAQQQQAABBBBAAAEEEPC+AAGcXRsRwNn5EcBZ+lEcAQQQQAABBBBAAAEEEEAAAQS8L0AAZ9dGBHB2fgRwln4URwABBBBAAAEEEEAAAQQQQAAB7wsQwNm1EQGcnR8BnKUfxRFAAAEEEEAAAQQQQAABBBBAwPsCBHB2bUQAZ+dHAGfpR3EEEEAAAQQQQAABBBBAAAEEEPC+AAGcXRsRwNn5EcBZ+lEcAQQQQAABBBBAAAEEEEAAAQS8L0AAZ9dGBHB2fgRwln4URwABBBBAAAEEEEAAAQQQQAAB7wsQwNm1EQGcnR8BnKUfxRFAAAEEEEAAAQQQQAABBBBAwPsCBHB2bUQAZ+dHAGfpR3EEEEAAAQQQQAABBBBAAAEEEPC+AAGcXRsRwNn5EcBZ+lEcAQQQQAABBBBAAAEEEEAAAQS8L0AAZ9dGBHB2fgRwln4URwABBBBAAAEEEEAAAQQQQAAB7wsQwNm1EQGcnR8BnKUfxRFAAAEEEEAAAQQQQAABBBBAwPsCBHB2bUQAZ+dHAGfpR3EEEEAAAQQQQAABBBBAAAEEEPC+AAGcXRulZAC3fedulSyeKb/fH6W3c9celSpZ3FXVbd+ajbvtWoDSCCCAAAIIIIAAAggggAACCCCAgMcFCODsGiilArgJU97RMy/OUEZ6unbs3KXuZ5+h4Zf3cgTXrtuom+4dq8VLVyirfBndOLSPWrVolHAfAZzdA0hpBBBAAAEEEEAAAQQQQAABBBDwvgABnF0bpVQAN/Pjr1Wvbi1Vq1JRGzdvU8e+wzXmgevUsH4dDbt9lKpWqahhg3towZJlunT4SL07eYSyypWJu48Azu4BpDQCCCCAAAIIIIAAAggggAACCHhfgADOro1SKoCLpOox+DZd3OdstW3ZWA3aDNKHUx9R5YrlncMGDrtf/bq10+nNT4i5r3WLxswBZ/f8URoBBBBAAAEEEEAAAQQQQAABBA4CAQI4u0ZKuQBu9dr1WvvHRr3/8Tx9+uVCTX7iFu35c59adb9G388eL5/P54jeOmKc6tauoXanNYm5r2/XtgRwds8fpRFAAAEEEEAAAQQQQAABBBBA4CAQIICza6SUC+DuHzVZsz6br9Vr1uuGob3Vs3Nr/frbOvUdere+nDE6V3Pk6CnKzMxQh1ZNY+67cmBX7c0O2rUApRFAAAEEEEAAAQQQQAABBBBAAAGPC2Smp3m8ht6uXsoFcOHm2LR5my676WGdf04rZ7GFll2u1MJZ45WWltMD7pYHnlGtGtXUpcOpMfcN7NVRG7b+6e0WpnYIIIAAAggggAACCCCAAAIIIICApUClcsUsz5DaxVM2gDPN/vCYl/XHhs36702XqH6rAZo5ZaSzQIPZ+l1xj/p0bauOrZrG3NepdTOGoKb254e7RwABBBBAAAEEEEAAAQQQQCAlBBiCatfMKRPABYMhzV+4VI2PP9rp5bZ81e8aNOwBDejZQRd0P1N3PvSs0tP9Gn55b81bsNRZhGHOtFEqV7ZU3H2sgmr3AFIaAQQQQAABBBBAAAEEEEAAAQS8L0AAZ9dGKRPABQIB9brsTi1eulIVssrqzz/3qnP7U3XtkPNVvFimNm/drhvuHqPPvlqoUiWL647rBqhj62aObrx9BHB2DyClEUAAAQQQQAABBBBAAAEEEEDA+wIEcHZtlDIBXJhpz5692rN3r8qXLe0qt3PXHpUsUSx3NdS8B7ntI4CzewApjQACCCCAAAIIIIAAAggggAAC3hcggLNro5QL4Oy4oksTwBW0KOdDAAEEEEAAAQQQQAABBBBAAAGvCRDA2bUIAZydH4swWPpRHAEEEEAAAQQQQAABBBBAAAEEvC9AAGfXRgRwdn4EcJZ+FEcAAQQQQAABBBBAAAEEEEAAAe8LEMDZtREBnJ0fAZylH8URQAABBBBAAAEEEEAAAQQQQMD7AgRwdm1EAGfnRwBn6UdxBBBAAAEEEEAAAQQQQAABBBDwvgABnF0bEcDZ+RHAWfpRHAEEEEAAAQQQQAABBBBAAAEEvC9AAGfXRgRwdn4EcJZ+FEcAAQQQQAABBBBAAAEEEEAAAe8LEMDZtREBnJ0fAZylH8URQAABBBBAAAEEEEAAAQQQQMD7AgRwdm1EAGfnRwBn6UdxBBBAAAEEEEAAAQQQQAABBBDwvgABnF0bEcDZ+RHAWfpRHAEEEEAAAQQQQAABBBBAAAEEvC9AAGfXRgRwdn4EcJZ+FEcAAQQQQAABBBBAAAEEEEAAAe8LEMDZtREBnJ0fAZylH8URQAABBBBAAAEEEEAAAQQQQMD7AgRwdm1EAGfnRwBn6UdxBBBAAAEEEEAAAQQQQAABBBDwvgABnF0bEcDZ+RHAWfpRHAEEEEAAAQQQQAABBBBAAAEEvC9AAGfXRgRwdn4EcJZ+FEcAAQQQQAABBBBAAAEEEEAAAe8LEMDZtREBnJ0fAZylH8URQAABBBBAAAEEEEAAAQQQQMD7AgRwdm1EAGfnRwBn6UdxBBBAAAEEEEAAAQQQQAABBBDwvgABnF0bEcDZ+RHAWfpRHAEEEEAAAQQQQAABBBBAAAEEvC9AAGfXRgRwdn4EcJZ+FEcAAQQQQAABBBBAAAEEEEAAAe8LEMDZtREBnJ0fAZylH8URQAABBBBAAAEEEEAAAQQQQMD7AgRwdm1EAGfnRwBn6UdxBBBAAAEEEEAAAQQQQAABBBDwvgABnF0bEcDZ+RHAWfpRHAEEEEAAAQQQQAABBBBAAAEEvC9AAGfXRikZwG3bvlOlShaX3++P0tu5a4+zz21z27dm4267FqA0AggggAACCCCAAAIIIIAAAggg4HEBAji7BkqpAO7tWXM14skp2rFzl0yYdlHPDhp26fnyp6Vp7bqNuunesVq8dIWyypfRjUP7qFWLRo5uvH0EcHYPIKURQAABBBBAAAEEEEAAAQQQQMD7AgRwdm2UUgHcjFlzVb1qZR1/7JFavXa92ve+Xi88/h81rF9Hw24fpapVKmrY4B5asGSZLh0+Uu9OHqGscmXi7iOAs3sAKY0AAggggAACCCCAAAIIIIAAAt4XIICza6OUCuAiqXoOuUMDe3VS25aN1aDNIH049RFVrljeOWzgsPvVr1s7nd78hJj7WrdozBxwds8fpRFAAAEEEEAAAQQQQAABBBBA4CAQIICza6SUDeDWb9yiM7pdo3cnjVBmZoZadb9G388eL5/P54jeOmKc6tauoXanNYm5r2/XtlrLHHB2TyClEUAAAQQQQAABBBBAAAEEEEDA8wJVK5bwfB29XMGUDOACwaCu+s+jqlHtEN1wRR/9tHy1+g69W1/OGJ3bViNHT3GCuQ6tmsbcd+XArgp5uXWpGwIIIIAAAggggAACCCCAAAIIIFAAAjndldj+qUBKBnD/ffR5LV22WmNGXKfMjHRt2rJdLbtcqYWzxistLeeRuuWBZ1SrRjV16XBqzH0De3VkCOo/ffIohwACCCCAAAIIIIAAAggggAACB40AQ1DtmirlArgnn31Dsz6br3EP3aAypUs6eqFQSPVbDdDMKSNVrUpF59/6XXGP+nRtq46tmsbc16l1MwI4u+eP0ggggAACCCCAAAIIIIAAAgggcBAIEMDZNVJKBXAvvPq+Jr7yrp579N/KKlfakTM93vx+v+586Fmlp/s1/PLemrdgqbMIw5xpo1SubKm4+1gF1e4BpDQCCCCAAAIIIIAAAggggAACCHhfgADOro1SKoCrd8ZFUVonNTxGEx65UZu3btcNd4/RZ18tVKmSxXXHdQPUsXUz5/h4+wjg7B5ASiOAAAIIIIAAAggggAACCCCAgPcFCODs2iilArhkqHbu2qOSJYrlroaat4zbPgK4ZFQ5BgEEEEAAAQQQQAABBBBAAAEEDmYBAji71iOAs/NjDjhLP4ojgAACCCCAAAIIIIAAAggggID3BQjg7NqIAM7OjwDO0o/iCCCAAAIIIIAAAggggAACCCDgfQECOLs2IoCz8yOAs/SjOAIIIIAAAggggAACCCCAAAIIeF+AAM6ujQjg7PwI4Cz9KI4AAggggAACCCCAAAIIIIAAAt4XIICzayMCODs/AjhLP4ojgAACCCCAAAIIIIAAAggggID3BQjg7NqIAM7OjwDO0o/iCCCAAAIIIIAAAggggAACCCDgfQECOLs2IoCz8yOAs/SjOAIIIIAAAggggAACCCCAAAIIeF+AAM6ujQjg7PwI4Cz9KI4AAggggAACCCCAAAIIIIAAAt4XIICzayMCODs/AjhLP4ojgAACCCCAAAIIIIAAAggggID3BQjg7NqIAM7OjwDO0o/iCCCAAAIIIIAAAggggAACCCDgfQECOLs2IoCz8yOAs/SjOAIIIIAAAggggAACCCCAAAIIeF+AAM6ujQjg7PwI4Cz9KI4AAggggAACCCCAAAIIIIAAAt4XIICzayMCODs/AjhLP4ojgAACCCCAAAIIIIAAAggggID3BQjg7NqIAM7OjwDO0o/iCCCAAAIIIIAAAggggAACCCDgfQECOLs2IoCz8yOAs/SjOAIIIIAAAggggAACCCCAAAIIeF+AAM6ujQjg7PwI4Cz9KI4AAggggAACCCCAAAIIIIAAAt4XIICzayMCODs/AjhLP4ojgAACCCCAAAIIIIAAAggggID3BQjg7NqIAM7OjwDO0o/iCCCAAAIIIIAAAggggAACCCDgfQECOLs2IoCz89Oin3dHncGf5lPZciHLM1McAQQQQAABBBBAAAEEEEAAAQQQ8IYAAZxdOxDA2fnphjv25jtDRqbUr2eQAM7SleIIIIAAAggggAACCCCAAAIIIOAdAQI4u7YggLPz08VX78t3hkMPDRHAWZpSHAEEEEAAAQQQQAABBBBAAAEEvCVAAGfXHgRwEX47d+1RqZLFXVXd9hHA2T2AlEYAAQQQQAABBBBAAAEEEEAAAe8LEMDZtVHKBXBbt+3UzfeNlQnTJjxyY67e2nUbddO9Y7V46QpllS+jG4f2UasWjZz98fYRwNk9gJRGAAEEEEAAAQQQQAABBBBAAAHvCxDA2bVRSgVwS5et1pAbHlKdmodpz59/auKjN+fqDbt9lKpWqahhg3towZJlunT4SL07eYSyypVRvH0HewC35AdfzCfo2GNYSMLu40VpBBBAAAEEEEAAAQQQQAABBIqGAAGcXTumVAD3x4Yt+nn5akds9HPTcgO4QCCgBm0G6cOpj6hyxfLO/oHD7le/bu10evMTYu5r3aJxzDngSpaKH16lp9s1XEGVnjc/TW+8lRZ1unatg2p5arCgLsN5EEAAAQQQQAABBBBAAAEEEEDgIBYggLNrvJQK4MJUc776Pl8AZ4K5Vt2v0fezx8vny+kRduuIcapbu4bandYk5r6+XdvGDOAyMkN69Q2/a+uc2SaoypW90buMAM7uA0RpBBBAAAEEEEAAAQQQQAABBFJBgADOrpUJ4CT9tHy1+g69W1/OGJ2rOXL0FGVmZqhDq6Yx9105sKtrAHdh76AyM6UXpqRp+Yr8QzxNvnflZQEdVjX20E+7Jk2+dCgkffGV9Pqb0T3gTEjY+nTprzwy+ZNyJAIIIIAAAggggAACCCCAAAIIFDmBimWLFbl7OpA3RAAnadOW7WrZ5UotnDVeaWk5wdgtDzyjWjWqqUuHU2PuG9iro2sAN+gCqXgxn8Y9H3IN4K6+PKijamXEbWcTjm3dHoh5TGamTyWLRwdn+/PwBAIhzf4soNemRYeB7dsG1amdX+l+u2vsT304FgEEEEAAAQQQQAABBBBAAAEEvClQLIN8wKZlCOAkhUIh1W81QDOnjFS1KhUdz35X3KM+XduqY6umMfd1at0s7hDUF1/2uwZwVwwJJDUEddVqn2bNjn7ATe+6nt0DSnMf4bpfz0OiIai7d8c+nYntipfYr8txMAIIIIAAAggggAACCCCAAAIIHIQCDEG1azQCuL/87nzoWaWn+zX88t6at2CpswjDnGmjVK5sKcXbF2sVVDMHXKIAbv362MNQzRxxJoAbOy46ZTu2bsgJ4LZslX5e5p5A1zkyqAoVEj8ciQI4U8e33o6+hhma2qt7QH/u9enHn9zv48iaIVWq5I257r782t2pWGZIJzTwRh0TtxZHILgQYcoAACAASURBVIAAAggggAACCCCAAAIIIPD/I0AAZ+dOAPeX3+at23XD3WP02VcLVapkcd1x3QB1bN3M2Rtvn00A99Enafrw4+hg6JxOQTVuFEwqgHv2eb82b8kfgGVlhdS/b0Dlykm798QO+UqXCimZAO6xJ6NDwCNrhXIDuOdfTNO6dfmvU7KEdPGAgBPAJQoaEz3CO3bGny/P3Eei7YPZaTLekVu3LgEngFuxwqffI+4hfGyzpkFt2iT99LN7iFf36KCyshLVgP0IIIAAAggggAACCCCAAAIIHLwCBHB2bZeSAVw8sp279qhkiWK5q6HmPdZtn20AZ4KhyK3LOQUXwE15xa9dO6PvuMOZQR1++IEJ4F6f5te3C6JDtD49Azr6qJCW/ODTpk3uIVuLU4JOgPeGy0IR5q7O7x5U2bIFE8CNmxgdNB53bE5vQxPAjZ+Yrm3b81tWrBDShX0DBHB27yFKI4AAAggggAACCCCAAAIIeFyAAM6ugQjg7Pys5oAzPbIORAD3w4/R4dbggYEDGsDN/za6Dv16/x3ATX4pOvxqdlJQZ3XMCeDGjPPrzz/zN1a1qiH16emNAK50KWnT5tg99apUSRwSWj6KFEcAAQQQQAABBBBAAAEEEECg0AQI4OxoCeDs/Ajg9vqUaAiq6QGXCgHci6/49dPP0SHckIsDqlaNAM7yo0ZxBBBAAAEEEEAAAQQQQACB/0cBAjg7fAI4Oz8COA8EcH6/9MWX7r3PGtQPOSvOJjMHnM0QVNMDjgDO8sP0V/ENG6S9e93bs2RJqXx5wsyCkeYsCCCAAAIIIIAAAggggEDyAgRwyVu5HUkAZ+dHAOeRAO7Fl9K0clX+0MYEc5cPDhw0Adzvv/uUne3+QJoQsVixxA/r6tWxh8GaOf+2bo29v1y5nAUzIof6hq9avnzO/woEYtfDnMN2MwHcuInp2rEj/5kOqRxSv95BAjhbYMojgAACCCCAAAIIIIAAAv9AgADuH6DlKUIAZ+dHAEcA5yzCUBA94EwA98SY6Lnw6hwZUs8egaQCuFem+rVgUXTIdtEFAZmVaxct8ulDl9Vgj6oT0pltc+bbG/20X/v25f9gVD8spN49g84/Tp6Spr0R+82/n98t6ISdtpsXArjNm6XtO9zDylIlQ6pY0fYuKY8AAggggAACCCCAAAIIHFwCBHB27UUAZ+dHAEcAd9AFcFOmRod8p54S3K8AbtVv+cOpjAzJzHVXlAK4iS/4tTFidd6yZaQBF2YTwFm+NymOAAIIIIAAAggggAACB58AAZxdmxHA2fkRwBHAJR3Azf0yTev+iO5VValiSKecHFSiHnC7d0vBOB3MKmRJyfSAI4BL/KE3PeAI4BI7cQQCCCCAAAIIIIAAAgikjgABnF1bE8DZ+RHAEcDtVwA3/Z20qCeuQ7tg0gHcc5P8CuSMBM239esVUKVK3gjg3ns/TTt3RgeNR9cJql69xENUC2II6qZNsT/YFSpIa9b4ZAJNt61G9ZB27LQP4H75JfZ8e7VrJ3awfDVRHAEEEEAAAQQQQAABBBAoUAECODtOAjg7PwI4ArgDHsCt35A/2CldWhp4YbanArhP50QHjT27BZwAbtny2ItNHH1USIkCuBIlQlELNOT9GJv52eZ8nqa5X0UHYC1OCalpk6ATwJm57iI3Mxder+6BAgngvlvg09TXo69xesug2rRySVEjKrNtm0+/r3N/QWWVV4EM97V8/VEcAQQQQAABBBBAAAEEUkiAAM6usQng7PwI4AjgCOAk5Z0DzvSASxTATXguOpg64fiQup0XSCqAm/KyX5FBpPko9+sdUJUqISeAe2dmdAh4dqfgQRXATZqSpjVr8weJZjXcwQMLar49nzbG6C14aBWpIFa1tXzFpkzxXTt9WvWb++2a4eUFMb9iymByowgggAACCCCAAAKFIkAAZ8dKAGfnRwBHAEcA9/8UwP28LLqH29BLD0wAZ4axhuJ0YkvzS4l6wAUD8V8+O3b6ZBvAxbuGqeOGDT49Pd6vXRHDcU2I2a9XMKkAbskPsYfaHnuM/VBbcw8//uR+DdP7s/rh9tew/DFQIMVNADf55TSt/DX/vfr90uWDCyZwLZCKchIEEEAAAQQQQACBlBUggLNregI4Oz8COAI4ArgUDeCmvOJ3DeFObhZUzZqhhAHc+vU+vT8rupeeeSWde3ZQgYASBnDZ2bFfYOnp0tKffJo3P/oaJUpIXc41vQ3jB3CZmSHX+fzCV61UKaSPPknTB7Ojr9H57KBObJx4qG2iV7AJ4Iz1kh+jQ7hLBgaSCuDiOZnrm/Br777YNTH3abuZ9v7jD/ezVK8upftFAGeLTHkEEEAAAQQQQACBQhUggLPjJYCz8yOAI4AjgEvhAG7xkuhQaOCFgaQDuCfG+J2gLe92RPWQep2fXAA3/e00bdkaXYfGDYMyvc9MAPf85Ojhvo0bhpIO4F582a8/XFbvHdg/p1fWwRDAmfDrvQ/cw86unQPaZ95jU9K0fVu05aCLzAInBRPAjR3v1549+du7WtWQ+vQMEsBZ/iymOAIIIIAAAggggEDhCxDA2RkTwNn5EcARwBHAEcDle4sc6ABu7lfRwVLv8wMFGsAtXxEdTF15WXIBnAm/Ym0VKoRkhljG2wqiB5ypw+Oj/QpF5Gi1aobUq8ffAdzvv+eva8kS0sUDkgvg/vwz9l2YeftMHWwDODOsOdZ2QoOQVq70actW9yOOPz6ktNjFLX8SUhwBBBBAAAEEEEAgFQQI4OxamQDOzo8AjgCOAI4AjgAuzhDUVat9em5SdMpW84iQenYPFEgAFy/kM730CiKAi+y5lrfRixeXfvjRpy9dwtCKFUM6q2OwQAK42R+mafbH0YHreecG1KhhTgD3zLPR1scdE9L5PQIJA7h9+6QtW2KndEVlIYh4bWna1bQnGwIIIIAAAggggEC0AAGc3VNBAGfnRwBHAEcARwBHAJcggBs7LjoUOqZuwQVw879J04x3o4Opli2COr1lTvhl2wNu2lt+bd4c/QPj5OZBHX1UyAngJk2Jvs9mJwUPqgDOzLe3YmV0CDfgwoAOq5YTZsbaTEC3O2JBj7zH+nzJhVuJrrFokU+79rjX46QTE887uGOHT1Nfcx+S3KlDkBVnLb8XURwBBBBAAAEEiq4AAZxd2xLA2fkRwBHAEcARwBHAWQRwW7dKPy9zD0PqHBlU+XKJF2EwAdzrb0afo02rgg3gvp4fHfr06x04aAK4zZukYNA9uPKnh1SmdI61mTswcrv04pwA7suv0/TOey7WZwTV4pSg1q3zuYahZvhrzx4B7dnjk+lp57b5fCFVqiRNfc2vRS7zK/btGVDt2iGZAG7K1Oiws0XzoNqfmVwAN3lKmlb9lv8+zcIll11SMCvOmoU94m0lS9nPK7h2rS/qHsLXbNQgqIxMyy84fy1QEussBXEP9jXkDAgggAACCCBwIAUI4Oy0CeDs/AjgCOAI4AjgCOAsA7hnn/drc8TQx6zyIfXvFyCA80uXD84JhWyHoJoAbsJz6dqxM/8PvnLlQs57LNkA7q0Z0QFc+7Z/B3CjnooOx2rXCuUGcM9PTtPGTfkDKjPsc1D/7NwA7ruF0QFW/77JBXA7EoRfCkmFHcBt2Ci98ab7BIfdugRUvrzllw9JJoB7cmz0NY6qE1Kv7oECCeAWLPTpq3nR7W2GkJuAmw0BBBBAAAEEUkuAAM6uvQng7PwI4AjgCOAI4AjgCOAOiiGo4QBu67b8P/jMYhgHOoD7I2Ioa6lSBRfAmSGsb7j0iDR33atHUPIlDuA+m+PeK7Nc2ZDq10/ce80EcOOfTdf2HfmtK1cK6YI+3gngYt2n6e1Ys2ZIJoB75bXokM8M7TYBXLzhwiVKSqULoKef5de0pIrHcsgsJplhzWbYcqytePGQTO/JeJtZTCYydM57fFGZXzEpbA5CAAEEEDioBQjg7JqPAM7OjwCOAI4AjgCOAI4AjgBuP3vAFXYAN/ppf9RQ18MPC6nP+ckFcO+9n6ZPXUK487sGDlgAZ4bzxtqqVAkl7AFnejru3et+jvT0kCpWzBlyvGhx9DHh1ZyTCeCeGONXIJC/pjUOD6lXz6BCCTrJlSmTOMy0/JqWVPFPPk3TzFnRoes5ZwWdAG71ap/edplnsmQpOYvJJBPAGeslP0Zbm5WWa1T3hkNSWByEAAIIIJDSAgRwds1PAGfnRwBHAEcARwBHAEcARwCXYgHcsuU+/brKPdw647SgCqIH3Bdz3RcXOatDUM2aBpMK4MwKxBs25q9n2TLSgAuzD1gAN2mKe2/Crp2TW/Di999jB5GHHpo4uNqzW/rCZYVi8+I+9piQqhwSUjIB3BiXxWTqHp2zmEyqBHDbtsWf27Bs2cTtYfm1m+IIIIAAAv/PAgRwdg1AAGfnRwBHAEcARwBHAEcARwCXggHchOeih2Y2qBdS924BArg8PeBMAPfbmvzBTWamdOmgnLkNP3B5f5iXatVDQzru2JB+/tmniZOirRudENJ5nQPasMGnvXvdv8yZoc3FMkN68RW/TGgauQ0dEjhoAjgz3DfWAibls6TsGAbhey5bzj4cW7/Bp1dedQ9U+/YK6kAEcBs3SX/GWAW5eImQKmQl/mK/JuJ5zFuiWjV7p8Q14AgEEEDg4BUggLNrOwK4/fDbuWuPSpUsnq/ExVfnX87N/DW2X0+z+lhIL77s1/IV+b/w+XzSFUNyvnR+9Ema6xfPLucE1bhRUKtW+zTW5S+ux9bN+Yvrlq2S6+TlWSGZyarL/bV64A8uQx4GDwzo8MNDmjc/TW+8Ff1lql3roFqemjO/y2NPRn/xPbJWziTPfxLAEcARwBHAEcARwBHAOe+BZAO4kiWlDz92DzIa1A/JfJcoSj3g4gVwM95Nc+41cuvVI5B0APfMBL927sp/BtOzrV/vYJEK4B4f7VcoIh8yC2L0Oj/oBHDPx+ht2KNrUGb+wa1bY/dgM4uxJNpMAPf0OL9278l/pAlLD2QA9+xz6c534LxbeC7LZAI4s7DIm9Njf/dN5MB+BBBAIJUFCODsWp8ALgm/tes26qZ7x2rx0hXKKl9GNw7to1YtGjklCeB8ev7FNEXOVVOyhGTmNalUKaTXp/k1/9voL339egd09FEhLfnBp8kvRYd8zU4K6qyOOSGgGfrx55/5G6ta1ZD69AzK75defClNKyOGA5l/D68eaP7CbgLPyM2sRndCg5BWrPBp3MToOpi/vpuwc9MmafzEdG3bnv8MFf+avLx0KTl/Yf/p5+j7HHJxQOYvqnO/TNP0d6Lr0KFdUKecHJQZZmPm0onc6hyZs3rg7t2SGU5kvgDn3UqXlgZemLN64CtT/VqwKLoOF10QkAlNFy3yacrU6GucekpQZ7bNsXabO6n6YSH17pkzmY/b6oEZGZK5TxMsx5o7qWe3gOrVCzm9ENx6jpxwfEjdzjO9GaRxE9O1I2Ly8kMq5/wyVaJESFNe9uvnZS69GS4NyMyNNOfzNL0zM9r67E5BNW0SlPnrt7nPyC28eqCZO2niC/6oSbPDQ7cqVMiZO2nxkthzJ323wKepr8efvNxt7qQjquf8MmXmVDI9R9aszX+NYsUkE6Ab6+lvp2muy9Cq3ucHnKFVS3/y6fnJ0XVo3DCkLufm9Bx5erxfu3ZH/OJaJaR+vYLKjPGHBHP0lZfF/0NC57ODOrFx7D8kHPPXHxK2xvpDAqugOo2S9z1WUKugpsIiDIU9B1ys99j+BHDmPfbTL9HvEPNziwDOLJhx8ARw27ZJsVbfLVUqpKy//iAabw64WEOazXvAzBFnfj4nE8BFDtktUVy62PzMqBTStLf8WrU6+otv29ZBmeG0ibZEAVx6hpyf4W6bqYf5uWWC5z8jAjxz/CGHhNSoYeI6mB5whR3ArfvDp29dvreaepoFSIqXSCTFfgQQQKDoChDA2bUtAVwSfsNuH6WqVSpq2OAeWrBkmS4dPlLvTh6hrHJlCODoAUcPOHrA5XuLhCcvJ4AjgDMPRt4/JIwd79eeiF88w39ISPdLk19O08pf8wcyBHB/f7xMz+7atWP/IaFF86Danxn7DwkFuQgDAdzfq6AmWoQh0RDUotADzgRwz77g1+bN+T+/5ctJ/S/ITiqAm/9Nml53Wb239RlBmXkFCyqA+3p+dOjbt1fACeB+XOrTzy6hsPkUOn8QTdADzgRw5g+iK1bmv0ZamjT00pw/2pgAbtaH0X8gO+/cgKcCuFGj44/++HSOe2/CZieFnD8+mz+QuW11jwqpTp3EQaNp710RvTrD5zN/BPSlSR997F6Hpk1CjrXtZuay3BljBWAz3DgrieG+mzfHrkUy5W3vIZny8eqYkek7aFZzTuZeOQaBghAggLNTJIBL4BcIBNSgzSB9OPURVa5Y3jl64LD71a9bO7Vu0ZgAjgCOAI4AjgCOIagMQWUIqvMeoAdczusw7yqoBHAHVwD3wovRwVPTE0M6+6zAAQngNsUJbMqXl0xYEq8HnOmpvirGAimZxaTDqoWUaAiq6QGXKIB7fnKazHF5t1IlpUEX5Yz+eO0Nv775Ljogu7BPwAnglrvMSRg+V61aOT0en3rGHzW/oam/Gf1hArgXp6Tp19Wx/2iT6Bpm/8JF7kHhuWfHnsuyUsWQLugTkJlj8Z33op8Xcx9m9eCqVXOG0s/9KtrBBJXNmyVYJlk57b1li3vQWKZsSJUqSvGeGTMkOdF+Y+22WIxpT7Oas4LSrI/cnU5ultxiMr/84tOiJbGtE/06b/54FzlaIW+ZZIZex3MoU1ravkP69DP39mxxckBZFaSVEVMrhetgQvYjjkjuuY4c4RI+R5VDpOyAtHGju4YZ8WOC5UTtmciS/fYCBHB2hgRwCfz+2LBFrbpfo+9nj5fPTOAm6dYR41S3dg317dqWAI4AjgCOAI4AjgCOAI4AjgAuz5uQAC4H42DsAff/HcCZobivvhEdVBx6iHR+j0BSAZyZIsL05ovcLr044JkAzkxhYeaKjtxMKNWpfU6PR9sAbuYHafrks2jL7ucF1OD4nLBkvMtiMvWOy5l+JdZqznkDuFhD6S+7JJAbwJlerpGbucdkAzi31ZxNYDSgf7YTwJnpV1avjf6FrvNZQZkw8/vvfXrfpddlvWNDatcmx/rJsX5lZ+c/R/g9ZgK4SS+lafVvsReTMVPVxNpMj0UTwJlespHb34vJSFtjrDJs7rFYsZzpVzZHzH1ozte7R9CZfiVRHcxcnC+7LKJizm/a2wRwZvqVTZvy32e5stJFpidvBemll/1a/EP0Z2tQ/4ATwH3zrU+vTYu+z1anBdXqjBzrUU/5FYzIXo+oEXLuwwRwL7yYprURq18XLy5dMiCnF+1b0/36eXm0tpnSx0xvYrvt2u3Tnt2xz2PaM9Fm3mNmnnW3rfPZAaW555y5h5tpaCJ7Eod3Fjd/SDjM/j4T3YPZH+uZqn8U4/CT8Yt1DAFcAr2flq9W36F368sZo3OPHDl6ijIzM3TlwK56+KnoZae6neNT8WI+vfCK+192zmwd0lE1M/Ta29la4/ID45ijpbYt07Xwh3366DP3v/pccoFfv68P6M133G/gnA5SlUp+Pf18wPWA01uEdPwxGZr5UbZ+/Dn6kMOrSZ07puun5fv03iz3Olxwfpp27g7p1TfdXwId20o1q/s1flJAeyLmbzNXPKmx1LRRuuZ8la1vFkTXoUzpkC7oka5lqwJ65333++xxrk/p6T5NftXdun3rkOrUzNDLb2brj/XR56h3TEhntMjQt4v26bMv3O/z0v5+rf49oOnvutehc0efssqnacJkd+tWLUM67qgMvT0rW8tWRJ/jiOrSOWema8nP+/TBR+51uLBnmrZtD+n1Ge7Wnc6UjjjMrzHPBhRwoTi5qXTi8en6ZO4+ffd99DUqZkk9z0vXLyuz9e4H7vfZs0tOuSmvu9ehfRup9hHpmvJatja6/AX7hPohndosQ/MXZuvzL6OvYYbgXXKhXyt/C2jGe+51OO8sn8qU9mniFPf2bntGSMfUztCb72Vr5aroc9Q5Ump/RroW/7RPsz9xt76ot1+btwT1xtvu93lWe+nwQ/166ln39m7RPKSG9TL04Wf7tMjlS8ohlaUe56Tr5xX79G6Mz1bvrmnKzg7p5WnudejQVjqyul/PvZyt7S7DQxo1kFqclK6532Trq/nRDuaH94A+fq1YFdDbMT5bXc/xqYTFe6xuHantaen6/sfY77GL+/m1bkP899ihlf0a+1z899j7n2Trh6XR91mtqnSeeY+tiP0e69s9TXv+DGlqgvfYsy8GXP/6HH6PffF1tuZ998/fYxkZPk2aGv899spb2Vr3R/Q1jqsbUutTc95jn8Z4jw2+0K816wJ6K8Z77NyOPlWqkKZxL8R/j737YbZ+XhZdhxqHS+e0T9ePv+zT+x/G/pmxY2dIr02P8R5rJx1xuF9jJwacL+GRW/MmUpMTYr/HssqF1LtbRtz32PldfDK1+6fvMdPDrWXz2O8xf5o0uL9fv/4W0PQY77EunXwqXy72z4w2p4d0TJ0MzXg/W8tXRjscWVPq2CZdS37ap1kxhqA577GtQb0R42eGeY9Vr+rX6Anx32Mfzdmn713muvz7PZatd2e5v697dfU5c1m+/EaM91gb6cgj/Hrh5Wxt3R79zDRqEFKLJhn66rtszZ0XfQ2zkuqgvn6tXB3QjJnudeh6tk+lSvr03Evun612rUI6+sgMvfF2tlaviT7HUbWlM0+P/x4zdfhjY+z32NntpaqHxH6PtTw5pAbHZeiDGO+xqlWkrmcV7nusSSOpWeN0zZ2fra+/iXYwPYEu7Bn/Z0b3c3wqlsTPjFenZ2vtutjvse8W79Mnn7u/Q5J5j1WukKZn4r3Hjs7Qex9m66dfYn/3Xbpsn2bOjvPdd1dIr74V/z1m6uC2Om+zE6UmDc133336ZkH0NcqVCamv+e67MqB3Ynwf69HZlzP/8asxvo+1lmrXTNdLr2drg0swVP/YkE4/JUPfLNynOV+63+eQi/xatSb2e6xzJ5+y4rzHWp8W0rHmPfaB+3us1hFSp7Y5PzPcfgcwvetan5oe/z12plQjznffU5qG1Lh+hj6eu891fuRKFaTzu8T/7mveYyYseinGd98OznssXdNn7nP9+dygntS0YYa+XpCtL76O/x57b5Z7e57bMS3ue8x8961bO0OzPtnn+jPDvMdOa54R97vvwL5+bdgU1LQY333Ne6xaFb/GTHT/mXFq85BOqJeh2Z/u02KXxf9M77buZ8d/j/Xplqa9e0N6Jcb3MfPdt1Z1vyZOCUQtumNkTzxBat4kXevWu9fRHFO5Ypq2bg/GXjm7pM8JYt981/3ze1oLOb/DL/k5W26tZX6XqXtkusx77NMY77GLL/Bry7agNmx2b+9KWT6VK5Om51/JVnb+tR6dB+jUk6X6dTP0w7Js52ds5GY+0ccela7Va/dpW4wh5EcclqbtO0L6/Otg1Bzr5t3SpKHP+T72+tvZzh89IrfLLirm/kOXf01KgAAuAdOmLdvVssuVWjhrvNLScn5I3fLAM6pVo5oG9uqYFDIHIYAAAggggAACCCCAAAIIIIAAAgikrgABXIK2D4VCqt9qgGZOGalqVSo6R/e74h716dpWnVo3S90nhztHAAEEEEAAAQQQQAABBBBAAAEEEEhKgAAuCaY7H3pW6el+Db+8t+YtWOoswjBn2iiVK1sqidIcggACCCCAAAIIIIAAAggggAACCPxfe3cet9WY/wH8q7SI7GbGMn62+Y1mGMsoYx0ZW3aaUPatIltZsiRFZUmoRFKUkGzRjDWRZQw/W5YZhmmMF2PGTqSeUjOv64yeX56eSkpd9+l9/tN57vt8r/f3du77+pyNwJIsIID7Ft3/5LPPo3OPQfGHZ16OZRs1jO6nHRktFvHZb5O+nFJsu7Zlbuu+xfD8CYHvJDB5SlXxYJKGDerP9vopVVOj3tJ1o266kYCFwCIWmDbtq6hTt07UTY/lmmWxr1zEjbC5aoGqqdPiy8lTYsXll6t+oFNaaV/pQ7I4BNLVHV9MmhyNl2s02+anz5gR06Z+FQ0bzv7dvjhqtc1yCUz8fFIxn6nt96G5Trl6XSmjSb8Zp0ydFo2Xnf3BAuY6ldLFyqpTADcf/UpfDI2WafCNH8/z8fK5/ulnEyfF2RddG2kbQ684s/pv//neR3HWhdfGn1//e6y0YuM4s0ObaL7NZsX6ua1bWHV5nyVXYPr06XHVsLtj4A2jY/yYwVGv3tIFxqtvvBU9+94YL7zyRvHf2235i7ikS7tYvvGykV7T5eIhMfaJ56NBg/rRZt/fxHGH77PkIhr5Qhd4fcLb0bHbgNhzp61q/Wz9418fxi4HnRYXnHF07L/7dsX2//jcn6LHFcPjg48+jQ3WWTN6nnVsrPvjHy302rzhkikwp31l0njxzxOixxU3xJ9ffyvWWmO1uLLnyfGTddeyr1wyPyqLdNQPPvpM8X08oNcp0XTTDau3PWLU2Lj82tuK7+iqqqlx0TltY8dtNi/WD7v1/hg84t7i37dttnFceHbbaFC/3iKt28bKKXDfw09H76tHxheTvizmOkccuFt0andAcaDMXKecPc99VOk+75cMGBG/G/NkEQqvtsqKcXm3DvG/6//YXCf35lV4fQK4DBr4+t/eifadLysmhlOqquKGfmdXV9Wp24BY/YerRKe2reKlV/8W7c7oEw+M6B0rrdA45rYug2EpoYIFPv/iyzixS7/iC2nck+PjhTGDo/7XAdwrr70Zb7/7fuyyQ9OYMmVqcUn2zttvEce02SNG3DU27nnoqbjmklOLMzv2PapLXNbt+Gi6yf//+K9gFqUvZoH0A75X/5vix6uvVgS/NcPdGTP+XXweJ7z1bnQ8tlURwKWjl7u0Pj3O63h47Ljt5nH9XtNvVQAAEBRJREFUyPvi8adf+saBjsU8LJuvYIG57Svffe+j2PnAU6P3ue1jp+23qN6HpuHaV1Zw0yug9IsHjCiu2vjksy+iT9fjotlmTYqq09lHW+3VIW6/tns0+cn/xAPjnokefYfHY3f2jfRb9NATe8adQy6IVVdeIU4/f2D8/KfrRPvD9q6AESsxd4F7H366+O7euMl68c4/P4hdW58eN13ZJTbdaIO5zmfMdXLvbOXWl05+GXXf43HQPjtGvXp149KBt8Zf33wnrr309DDXqdy+VkLlArgMuvT+h58W/8OnZeDw0dUBXDqq/ovfHB3j7riiSOXTkiaXh7TcOX79q03muG7mkcwMhqaEChVIn730Y6n51pvFlnsc940AruaQ+g6+I9IktMsph8axp/WOVnvtELv8umnxZ9cM/118OvGL6NyhdYVKKDsngXTW5SorLR+j7nuiCDNqBnA3j3qoOGr51VfTo+mmTYoAbvwrf41zLh4c9wy/qBhKCoZ/uWvbeOLu/sWBDAuBBRGY277yyutHxfsffhLnn37UbJuwr1wQda+dl0AK1tIZbOk346ntDqgO4NItVbbd58R4bFS/Yl+a9o8nntsvHh/VLwbffE+898Encc7JhxRvn+553P2yoTF6aK95bc56AvMtcGD77nHUQbvHTtttbq4z33pe8H0IPPnMK9H98mHxwM29Z3t7c53vQ3zJfU8BXEa9T//jzxrApWCu+W9PiVceub76steuva+Ln66/dnHG0ZzWHbz/ThmNSimVLJDuWdS0Rfs5BnDpXjEHte8eh7XaNfbaeevYtc3pxdkev2iyfjHsdFr3g+Oejf49T6pkBrVnJpB+CNUM4N58+1/RvnOfuO2abnFh/5uqA7g0EU1HOAde3Kl6FDu26hQDep1cnAFiIbAwBGrbV6bwo9mmTeKjTybGx59OjK232Cha7rF9sTn7yoWh7j3mJZBCjlkDuPT36ey4x556Mdrst1MMGXFvcYBs1x2aFpfpr7n6qnHkgS2Kt515Of+fxg2d12asJzBfAul2EDu0PKUIOurXr2euM196/vj7EugzcGR89vmk2Q6amet8X+JL7vsK4DLqfc0A7o0334mDO/SI/7t3YHWVaeeQvqx2a95sjutOPGr/jEallEoWmFcAly7nu3fsU3HL1V2LG+o22719jLiqa6y/zhrFsB/94/jiLLibrzq3khnUnplAzQAunYXUpkOPOOHI/YpLU8/qNag6gBs5+pF4dvxr0bvrcdWj2O/oc+OM4w+KrX7588xGppxKFahtX7nHoWcW9x08t+NhMX36jOg35M5oe8iexeUu9pWV2unKqru2AO7ZF/8Sh598Yay80vKx/HKNivsSrrv26nFq96viV5v/rDiLPS0zL1d97v5BHshQWW3PutoUZpzUpV+svcYPovMJbcJcJ+t2LTHFpbOB255xadx1fc9Y44erfGPc5jpLzMdgkQ1UALfIqOe9oZoBXLo55Hb7nhgvP3x91KmzVPEG514yJNZde43Yd7dt57juqIP+e/TSQmBBBeYWwM28d8zIgedVf1ntfcTZxc3vN/nZf8+AG/3gk0VAN+vZRwtak9cTqBnApUunnn/p9eh22pEFTs++w4v7yrTcfft45sW/xMi7H4lBvU+thttuv5OKSefMzylRAgsqUNu+Mu0P2x+2T+z+9VPTb7n74Xj4iReKz6J95YKKe/23EagZwKX7t7Y8pmvxnZz2f8NvHxNDbrk3Hrj5kuh/3aji3m9Ht969eOt33v2gOFNz1qswvs02/Q2BuQn06ndjcb/BQb1PK85kN9fxeVncAukKigPbdYs+5x1fHMSddTHXWdzdKef2BXAZ9bVmAJceE79R8yNjzMg+1QHHISf0jDb77xQtmjeb47qZP/YzGppSKlRgTgFc+qyect6VcWP/c4qnBc1cOpx9RbRovmXsufNWxT9dNfSu+PDjz6Jrp8MrVEDZOQrUDOAOO6lXcb+imku6LPrQVrsUN3i+/6ZLikv5Z36mx956WfzoByvnODw1VaBAbfvKtD/ce5dtisv70pIOSNz++3HFfV7tKyuwyRVYcs0ALl2OP+bRZ+OqizpWjyZdkt/nvOPi5dfejAl//0d0//pAxtPPvxpdL72u1vshVSCFkjMQuHrY3fHwH56P6y7rHI2Xa1RUZK6TQWOW4BLSE3gPPqFndGz72+JWOrMu5jpL8Afjex66AO57Bp6ft68ZwKXXnn/ZsFh66bpxxvGtiwlmuqfMk6MHxArLLzvXdfOzXX9LYE4CtU0qZ56mnY6gb7zhetUvrVdv6eLBDcNuvT8G9zkjJk+uipbHdo1eZx4z2xEl4gQWRKC2e8DN+n6zXoI6bdpXxdN4Oxy5XxGEXHvT72Ps48/FbYO6L0gJXkvgGwK17SvTPTBvvGNMMdlMl0mnS/w22nC9OPmYlvaVPj+LRKBmAPfM+NeK8Pf3N1wUP1h1xXjp1QnR+rgLiocypM9wOjsu7Rt/uOpKxYGLDdZbKzq1bbVIarWRcgvcdOdDccPtD8TwfufESissVww2Xd2Tbl9irlPu3uc6uo8/mRitO1wQh+y/c3FriJlLmne/+KcJxSWp5jq5dq+y6xLAZdS/2gK49MSqzj0GFY+TX7ZRw+LIZIuvL2eZ27qMhqWUChaYPKUqttitXYwfMzhSwJaW9ON93JPjZxvVS2OHRJ06daJn3xtj9IN/iElfTol0OXSndgdUP0SkgimUnpFA/yF3Fgcmaj4FdWaJKYBrtlmT2K/FdsU/pdA4Pdnq9Qlvx1prrBYDep0SG6yzZkYjUkqlC9S2r0yh26UDb4077nm02B+mJ5Snh9Q0bFi/OOvDvrLSu55//W2OvyA6tm0VTTfdsCg2fSb7DrkzbrlrbDRoUD+qqqbG2ScdUtzWJC233/NopAMcaWK6TdONo0+346PxssvkP1AVZi/w8x2OmK3G9LkcesWZYa6TfftKWeANtz8YF19582xjG9b3rEj3fTPXKWXbsxiUAC6LNsy7iPTjvdEyDWoNMua2bt7v7C8ILHyBqqnTos5SS1WHdgt/C96RwPwLfD5pssnk/LN5xQIKTJ32VcyYPqPWG9nbVy4grpd/J4EUAE/8/Mviaoqay4wZ/44pVVXRaJmG3+m9vYjAdxUw1/mucl63OAR8fy8O9XJsUwBXjj4aBQECBAgQIECAAAECBAgQIECAQKYCArhMG6MsAgQIECBAgAABAgQIECBAgACBcggI4MrRR6MgQIAAAQIECBAgQIAAAQIECBDIVEAAl2ljlEWAAAECBAgQIECAAAECBAgQIFAOAQFcOfpoFAQIECBAgAABAgQIECBAgAABApkKCOAybYyyCBAgQIAAAQIECBAgQIAAAQIEyiEggCtHH42CAAECBAgQIECAAAECBAgQIEAgUwEBXKaNURYBAgQIECBAgAABAgQIECBAgEA5BARw5eijURAgQIAAAQIECBAgQIAAAQIECGQqIIDLtDHKIkCAAAECBAgQIECAAAECBAgQKIeAAK4cfTQKAgQIECBAgAABAgQIECBAgACBTAUEcJk2RlkECBAgQIAAAQIECBAgQIAAAQLlEBDAlaOPRkGAAAECBAgQIECAAAECBAgQIJCpgAAu08YoiwABAgQIECBAgAABAgQIECBAoBwCArhy9NEoCBAgQIAAAQIECBAgQIAAAQIEMhUQwGXaGGURIECAAAECBAgQIECAAAECBAiUQ0AAV44+GgUBAgQIECBAgAABAgQIECBAgECmAgK4TBujLAIECBAgQIAAAQIECBAgQIAAgXIICODK0UejIECAAAECBAgQIECAAAECBAgQyFRAAJdpY5RFgAABAgQIECBAgAABAgQIECBQDgEBXDn6aBQECBAgQIAAAQIECBAgQIAAAQKZCgjgMm2MsggQIECAAAECBAgQIECAAAECBMohIIArRx+NggABAgQIECBAgAABAgQIECBAIFMBAVymjVEWAQIECBAgQIAAAQIECBAgQIBAOQQEcOXoo1EQIECAAAECBAgQIECAAAECBAhkKiCAy7QxyiJAgAABAgQIECBAgAABAgQIECiHgACuHH00CgIECBAgQIAAAQIECBAgQIAAgUwFBHCZNkZZBAgQIECAAAECBAgQIECAAAEC5RAQwJWjj0ZBgAABAgQIECBAgAABAgQIECCQqYAALtPGKIsAAQIECBAgQIAAAQIECBAgQKAcAgK4cvTRKAgQIECAAAECBAgQIECAAAECBDIVEMBl2hhlESBAgAABAgQIECBAgAABAgQIlENAAFeOPhoFAQIECBAgQIAAAQIECBAgQIBApgICuEwboywCBAgQIECAAAECBAgQIECAAIFyCAjgytFHoyBAgAABAgQIECBAgAABAgQIEMhUQACXaWOURYAAAQIECBAgQIAAAQIECBAgUA4BAVw5+mgUBAgQIECAAAECBAgQIECAAAECmQoI4DJtjLIIECBAgAABAgQIECBAgAABAgTKISCAK0cfjYIAAQIECBAgQIAAAQIECBAgQCBTAQFcpo1RFgECBAgQIECAAAECBAgQIECAQDkEBHDl6KNRECBAgAABAgQIECBAgAABAgQIZCoggMu0McoiQIAAAQIECBAgQIAAAQIECBAoh4AArhx9NAoCBAgQIECAAAECBAgQIECAAIFMBQRwmTZGWQQIECBAgAABAgQIECBAgAABAuUQEMCVo49GQYAAAQIECBAgQIAAAQIECBAgkKmAAC7TxiiLAAECBAgQIECAAAECBAgQIECgHAICuHL00SgIECBAgAABAgQIECBAgAABAgQyFRDAZdoYZREgQIAAAQIECBAgQIAAAQIECJRDQABXjj4aBQECBAgQIECAAAECBAgQIECAQKYCArhMG6MsAgQIECBAgAABAgQIECBAgACBcggI4MrRR6MgQIAAAQIECBAgQIAAAQIECBDIVEAAl2ljlEWAAAECBAgQIECAAAECBAgQIFAOAQFcOfpoFAQIECBAgAABAgQIECBAgAABApkKCOAybYyyCBAgQIAAAQIECBAgQIAAAQIEyiEggCtHH42CAAECBAgQIECAAAECBAgQIEAgUwEBXKaNURYBAgQIECBAgAABAgQIECBAgEA5BARw5eijURAgQIAAAQIECBAgQIAAAQIECGQqIIDLtDHKIkCAAAECBAgQIECAAAECBAgQKIeAAK4cfTQKAgQIECBAgAABAgQIECBAgACBTAUEcJk2RlkECBAgQIAAAQIECBAgQIAAAQLlEBDAlaOPRkGAAAECBAgQIECAAAECBAgQIJCpgAAu08YoiwABAgQIECBAgAABAgQIECBAoBwCArhy9NEoCBAgQIAAAQIECBAgQIAAAQIEMhUQwGXaGGURIECAAAECBAgQIECAAAECBAiUQ0AAV44+GgUBAgQIECBAgAABAgQIECBAgECmAgK4TBujLAIECBAgQIAAAQIECBAgQIAAgXII/Af/V7Uf/pyvBAAAAABJRU5ErkJggg==",
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"text_length(\"sst2\", query=\"predicted_as:negative\").visualize()"
]
},
{
"cell_type": "code",
"execution_count": 110,
"id": "f5158e14-94ac-4020-9491-3a91626b3fe8",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"type": "bar",
"x": [
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176,
177,
178,
179,
180,
181,
182,
183,
184,
185,
186,
187,
188,
189,
190,
191,
192,
193,
194,
195,
196,
197,
198,
199,
200,
201,
202,
203,
204,
205,
206,
207,
208,
209,
210,
211,
212,
213,
214,
215,
216,
217,
218,
219,
220,
221,
222,
223,
224,
225,
226,
227,
228,
229,
230,
231,
232,
233,
234,
235,
236,
237,
238,
239,
240,
241,
242,
243,
244,
245,
246,
247,
248,
249,
250,
251,
252,
253,
254,
255,
256,
257,
258,
259,
260,
261,
262,
263,
264,
265,
266,
267,
268
],
"y": [
1,
7,
44,
122,
203,
291,
396,
512,
587,
626,
617,
695,
713,
700,
735,
734,
773,
792,
762,
803,
768,
734,
674,
647,
608,
588,
593,
521,
536,
510,
513,
480,
497,
427,
460,
408,
428,
394,
358,
380,
343,
356,
315,
342,
317,
303,
316,
279,
258,
280,
272,
263,
244,
262,
260,
227,
243,
205,
214,
232,
224,
220,
206,
190,
208,
203,
208,
182,
174,
177,
167,
186,
162,
150,
164,
177,
153,
168,
167,
143,
161,
154,
140,
131,
145,
142,
140,
134,
138,
127,
124,
139,
114,
105,
130,
112,
98,
109,
123,
114,
121,
103,
107,
105,
102,
99,
100,
103,
86,
93,
90,
100,
90,
85,
80,
79,
70,
83,
73,
86,
79,
66,
82,
77,
81,
74,
64,
78,
56,
67,
57,
56,
59,
52,
69,
53,
52,
44,
50,
55,
41,
43,
40,
40,
38,
43,
55,
37,
40,
36,
45,
33,
42,
35,
41,
36,
38,
37,
28,
37,
40,
41,
27,
25,
25,
30,
29,
26,
26,
32,
32,
31,
23,
26,
19,
20,
15,
27,
21,
22,
23,
24,
12,
23,
17,
18,
14,
16,
18,
14,
25,
13,
15,
9,
8,
7,
12,
8,
6,
10,
8,
13,
11,
11,
14,
8,
10,
11,
10,
14,
6,
9,
10,
8,
7,
4,
12,
8,
10,
4,
8,
2,
5,
7,
4,
3,
4,
9,
4,
5,
4,
5,
5,
3,
3,
3,
3,
3,
5,
2,
3,
1,
1,
5,
2,
4,
0,
4,
2,
2,
4,
2,
1,
4,
2,
3,
1,
2,
4,
3,
1,
0,
0,
0,
0,
0,
1
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Computes the input text length distribution"
},
"xaxis": {
"autorange": false,
"range": [
96.94253731343284,
222.4723880597015
],
"title": {
"text": ""
},
"type": "linear"
},
"yaxis": {
"autorange": true,
"range": [
0,
845.2631578947369
],
"title": {
"text": ""
},
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABOAAAAFoCAYAAAD+YIRiAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Qd8FEX/x/EfSQihE4oICoKogCBNioooVYqNKlWqFGki0hUEaVLFgiKINAWxg4KCCvoo2B4UARs+AgqC9N5J8rxm4h6Xy+3dJnMXl9xnX6//6/nL7uzMvmcuXL7M7GRJSkpKEg4EEEAAAQQQQAABBBBAAAEEEEAAAQQQCItAFgK4sLhyUwQQQAABBBBAAAEEEEAAAQQQQAABBLQAARwDAQEEEEAAAQQQQAABBBBAAAEEEEAAgTAKEMCFEZdbI4AAAggggAACCCCAAAIIIIAAAgggQADHGEAAAQQQQAABBBBAAAEEEEAAAQQQQCCMAgRwYcTl1ggggAACCCCAAAIIIIAAAggggAACCBDAMQYQQAABBBBAAAEEEEAAAQQQQAABBBAIowABXBhxuTUCCCCAAAIIIIAAAggggAACCCCAAAIEcIwBBBBAAAEEEEAAAQQQQAABBBBAAAEEwihAABdGXG6NAAIIIIAAAggggAACCCCAAAIIIIAAARxjAAEEEEAAAQQQQAABBBBAAAEEEEAAgTAKEMCFEZdbI4AAAggggAACCCCAAAIIIIAAAgggQADHGEAAAQQQQAABBBBAAAEEEEAAAQQQQCCMAgRwYcTl1ggggAACCCCAAAIIIIAAAggggAACCBDAMQYQQAABBBBAAAEEEEAAAQQQQAABBBAIowABXBhxuTUCCCCAAAIIIIAAAggggAACCCCAAAIEcIwBBBBAAAEEEEAAAQQQQAABBBBAAAEEwihAABdGXG6NAAIIIIAAAggggAACCCCAAAIIIIAAARxjAAEEEEAAAQQQQAABBBBAAAEEEEAAgTAKEMCFEZdbI4AAAggggAACCCCAAAIIIIAAAgggQADHGEAAAQQQQAABBBBAAAEEEEAAAQQQQCCMAgRwYcTl1ggggAACCCCAAAIIIIAAAggggAACCBDAMQYQQAABBBBAAAEEEEAAAQQQQAABBBAIowABXBhxuTUCCCCAAAIIIIAAAggggAACCCCAAAIEcIwBBBBAAAEEEEAAAQQQQAABBBBAAAEEwihAABdGXG6NAAIIIIAAAggggAACCCCAAAIIIIAAARxjAAEEEEAAAQQQQAABBBBAAAEEEEAAgTAKEMCFEZdbI4AAAggggAACCCCAAAIIIIAAAgggQADHGEAAAQQQQAABBBBAAAEEEEAAAQQQQCCMAgRwYcTl1ggggAACCCCAAAIIIIAAAggggAACCBDAMQYQQAABBBBAAAEEEEAAAQQQQAABBBAIowABXBhxuTUCCCCAAAIIIIAAAggggAACCCCAAAIEcIwBBBBAAAEEEEAAAQQQQAABBBBAAAEEwihAABdGXG6NAAIIIIAAAggggAACCCCAAAIIIIAAARxjAAEEEEAAAQQQQAABBBBAAAEEEEAAgTAKEMCFEZdbI4AAAggggAACCCCAAAIIIIAAAgggQADnMwbOn78gh44el7y5ckpcXCwjJIQCb77/mfy0dYeMGtgphHe9eKukpCTZ/Ms2KXXVFZIzR1xY6sjsNz105Lg8+dyr0rzJbXJTletd97jhGEMvLFimn/PBTvfq/z1z5pz8um2nlC9TUqKjosJmsO2P3ZIje5xcfll+XUc4ns2u8b51h+0huTECCCCAAAIIIIAAAggggIAWIIATkYSEBJm7ZKW8//GX8vuO3Z6hUbhQfune/k5p27TeJT9cjp88LblzZs+w5/BX36gpL8uHa7+Rb1bOCks7tv6+U5p1Gyn9ujaXXh3vCUsdab2pU/dz5y/oW8dmjUlrFY6vd9KWXXv2S8O2g+XxgZ3kvnvqOL53OC7MqDHUoe943fxXnntU/+/idz6W8U+/IvOfHibVKpZx9GjqZ4jqw+xx2Rxdr8Li8nW6SLVKZWT+jGG6TDg+H/7a5a9uR43mIgQQQAABBBBAAAEEEEAAgXQLRHwAd/zEKek5ZJr88NPvckvVclKv1o1yeaH8su/AYfn48++kSb0a0rTRrekGdkPBv/cdknr3DZQNH87OkFl9dvWFI2Dw9lUzl55fuEzuqneTXFeq2L9Onxb3J6YvkPzxeaRvl2ZhabfTtrglgMvIMeQbwP2xa6+8teIzeaDdnZInd05H/bFyzdey+O2PPSGek0Kvvv2xFC4UL/Vr3Ri2AM6uXb51O2kv1yCAAAIIIIAAAggggAACCKRfIOIDuJnz35Xn578rve6/R/p0aSZRUVnSr+nSku99tF6GjZ+dYQGcXX3hDuDcxp8W97qtBkrzJrXCFsA5bUtGB3BqhlZ0dHSqrsvIMeQbwKVnHKmxve2PPWkK4HzrCcfnIxTtSo8HZRBAAAEEEEAAAQQQQAABBFIKRHQAd+TYCal5T18pUexyWT5/vN8gwJvrz7/2ypJ3PpH/fL1J9h88IvVurSIt7rxdqlYs7bnss69+0IHe5Md6yaTnFov67yuLFpKGtavLgAdayrpvN+vlrt9u/EX/eadWDaVds/qe8up9VOo9XGrm3bRZr8v3W37T193d4BZ5sOM9njZu3bZLho5/UYb3bSfVK5f1lE9ITJQ2vcZIs8a19H0XvP6hqJDx5KkzUqpEUV1ezfQb/GAbXWb7zr/1zJ1PvvhO/3f9WlWkR4e7pWD+vJ57Ll+9Xj5d/7188c1m/WdlrikuHVo0kDtur5bq8xSoPitgmD15kMx46U1toOxvrX6DPNKrdarll2+896ms/uxbPTuxUrlrpWnjW6VJ3Rq2n+F9B45Iz6HTpE/npp5ZRb2HPSWN69WQhIREmfPq+7Jj59/as9VdtaVL60YeT6vfnhrTV6a+8Jp+1mzZYqVm1fIytG9bic+bW9cbKnfrIdSYGj1tvnz93c/6vXVXFCmkT00f3UdKFrtc//+BHNQMJ/VcauacGo/WocosfvcTGdG/vfz0646AY8Ab1C6A+3LDj/L2iv/o8XzVlYX1TNHu7e5M4ffiwuUy7fHeMv3F1/V16lD9Nrh3a7m25JWeag4dPiZPzlwsX274SdT/r5Z658qZ/M6+6pXKSrGihWzbm9Yx5DtY3vngc1n45mpRy5XV56FH+7vlzRWfyYULCZ7wTLV9xpw35bnxD8kVlxfUt7D7DNS+pbKMmTZf3v3wC32dNfOye/u79FhV469R3RqSP19umfz8Er3EfWifttKxVUN9rvQ1xeWhB1rosurZ1q7fKM+O7a9/Rnz9/U9SqEA+/dlXS+GtoHLZqnUy//UPZcGMYSlm6P209Q95dNJL8vjDneT60iWCtsu7blX/6TNnZf7SD+Xzrzfpz9ztN1WUO2pXSzEDWNk47WfbDyonEEAAAQQQQAABBBBAAIEIFIjoAO6r736SbgMny+hHOkuru2sH7P7DR49LmwefkMNHjuvQTR2rPv1W9u4/JK/PHi3lriuh/8yauaPClOuuLiY3Vy2ngyb1f2qp2cefb5AWd94meXPnlKXL1+pg7KVpg+XmG8t5fglX70lTf177lkpy/XUlZMOmX3VAo8o9Mbirvk79gtyu91h5Zlz/FMGLmlFUoV43vXzu4R6t5PXla3V4oII8FQpki82qQ6/GdWvIseMnpVXP0bJr9379S3aeXDl0OFHx+lIyb8Ywfa0qO3zCbKlZ7Qa5uer1cur0WfnPVz/InfVu0iGC7xGoPhUwvLXiP7qIul+50iXk0y836jBEzf4aO6Sb53bWe7hUW5vUu0m+/O+P+hlUKFKnZmW/fWWFR2MGd5GW//SRmll2/sIFHfSoQDJ7XKy88+EX+r+9r7P6TS0DvbxQvG7fvoNHZNmHX2ivZfPGS0xMdEjcvRuvAtDlq9bJ7Ffek8rlr5Wa1crr02o8qhA0mMPZc+elVY/H5fDRE7Ji4UQdyPz19wG5o80g/QwvTh6oAzy7MeAL6S+A2/LLdmnda4wOCNvcW1f+3n9IVnz8lXRu3cgT5Hr7FStSSIeqm37epsMcFbCtfOVJicsWq9+3eE/nR3WA3b55A7msQD555e2PdDCq3rWoxuXvO/6ybW9axpDvs6nwfNzTi+T6666SBrdVFRXYLnn3E32ZsrfeAWc9y/sLJ0rJ4kUCfgbUe/LmvfaBDjvV0e6f90XWrF5eKpQtJWr8FS1cQI9d9b63stcUl7q1quh3y6lzVStep8N6dXg/mwq/ypUpKRu3/Cbr//ujdh/5cEd93cuvfSDTZi2Vz999Vgd71vHfH36VTg9NlFmTBuq6grXLu24V3A98fKb++XRvo1ulyGX59edchXqqXlW/98839TkJ1M8R+Hcpj4wAAggggAACCCCAAAIIBBSI6ABO7Tr4+NR5suDp4SlmsfkTe/TJl/Qsl7fnjpXS/7xfTIVyKkzIGhMja96YnuIX1BpVyspLU4foJa3q5ex3dxqugy4120XNMFOHtWlAp/sayZDeyTPSrF/CvcMN9ctxryHT9C/iqxZP0TO4nAZw6p5qRp6aBef7Djg180qFM++8PE6uuzp5htIHa76WQU+8IE8+2kPPvBk4eqaeDfblezNTzBBUL3LPksX/cl27+qxnU8GdmgVkHSrc2f7nHs/mDMqpYbvBegbRpMd6eQzVdUePnfRY+/aTXQCnQtKXpw8V1SfqUMHjzXf30QHV7CmPpOg3tfPlq889psM2dby46D15Zu5bHo9QuPu2W4VoVe7ornfh9H4HnFMHKyCzAtpeQ6fr4OujpdN0+BNoDNgZem/CYIWYHy2Z6nmH4NinFspry9bI6tem6lliVmiljOdMGeQZK0/NfkNeWrxCm1Yqf42eQdis62M6DB7QvaWu3gqOvDfPMB1Dvs915uw5ua1Zf4nPl1vefXmcZ7OElZ98JYPHzgoYwDn5DNgtY1V2avz169ZcL3P3PuwCOO/PfmJikv4MfvSf/3qsnQRwtWpU0FUFapd3AKdm1Y2YOEcee+h+adssedMZVbcaS2rWblr7mb93EUAAAQQQQAABBBBAAAEEUgpEdABn/ZJvzXQJNDhUIKQOFYB5H/OWfiBTX1gqn739tJ6xZAURaglhw9oXl2gOGTdLzxp6/cXHpVzpkp5fcG+660FRvyyrpXvqsEKqVUumyJX/LEdUf65m6oybsUimjHpQB1OhCILuvH+Ynom3+PmRnkdSYWHlBg+IFQqqJbHPzXtH/2KuZmVZwVQgq2DhycdLp0mRf4IhdR+rjk/fmqGX3Kllpw8/PlMHObf8MyNMXTdr4XJ59uW3Zd3y5yRfnlypmmAXwKlZbysWPZni+o79J8jeA4c9/Wn1mxU8WhdbIWnre+rIqIGdQuLu23C7AC4tDmrJpFqKqkI4NctwzKAu0vKu5Jma6rDrE9+2+M6AUzPVarcYoMMjFSJZx7c//CKdH3rSMyPRbtyrmZ+dBzypl9Sqz8On6zdKnxEzPONY3U8tua7VtJ+eofjoQx0Cttf6fAQbQ77PpWZyqZmCVj9a58+fvyA17+2rZ6vazYBz8hkIFHSpGZhrXp8uWX12uLUL4LyDU9VONfu168BJHrNwBHDqZ4v6GfPJ69Pl8svye/g2/fy7tH1wrMx4oq+eNei0nwP9fOAcAggggAACCCCAAAIIIBCJAhEdwFmzPnyDHt+BoJaDVm/SK8USUOsaK1CwlpFav6C+9sIouaHs1Z5bqV0u1ZLTTZ/MTTGT7J7OI6RksSLy9Nh++lorYPC97setO+S+HqP1u9K6tmlsHASpHUNvbNRD16lm1HkfauaVCgXVUjY1y6/fo8/oJXRq2dkDbZvoJbi5cma3/bwEC+B8n+3tlZ/LyMlzPTO2rI0x1NLFrFkvvqBfLf9VfbHkhZF6eZ/vYRfAlSlVTJ5/8uEUl6tltV9//0uqmYvWTC3rYmtJr+URiuDTt912AVxaHNQMrxYPjNJLOdUstLnThqSYoZjeAM5apq2Wn6rZY9ahliKrZbyDHmwtXVo39gQzS2c9LmoWoXWoJbZ33T9MJj3aU+5qcLNe9lmn5QAdxk0Z2Ut/FlRgqMa9CjhVQKYO0zHka7x23ffS99GnZcLw7nJvw5opTjfrNlJyZo+zDeCcfAYCBXDXlLjCM9PSu2K7AM7382EtKbaswxHAqdml+w8eTTW7VM04veWePp7ZmdbPt2D9HIl/mfLMCCCAAAIIIIAAAggggEAggYgO4H78dbvc13OMDO3bTjq2vMPWyZoF5L1szrp4/bdbpPvgqZ53sfm+P8q6TgVw73/8pWeZpfXntgHcmpclOirK06bdew9Kg9aPyMAeraRbuzttA7hTp89Itca9PO+AswszDh4+ppfkqXdfWcvVvAHUskIVmKhDLYFd+8X3Mmfx+6KWO6og7qWpgz1LcX3hAoUn6v1236yclaKIbwA38dlX5ZW3PtKbKfjbIbNpo5r6vWK+h10A573UzipjF8Cp2YDqHXi+QYkVotgFcE7d/Q0yuwAuLQ5q5mLL7qP0S/6td795LxFObwD38X82yEOjnpV77rhFShQrkqr5NSqX1UtL7ca9bwCnbjDhmVfk1bc/1uMoPm8u3Wa1ecGSmSM9S1xNx5BvQ62l1fOfHqbfv+Z9+IZn/p4l2GcgUABXufw1nhmuvuPK3zvgfvx0for2qZmadVs+rN/pqN7taBfAWT+LVHCe1iWoajasCtVVsOZ9qI0Zqjbqqd/3qJaNp6Wf+asXAQQQQAABBBBAAAEEEEDgokBEB3BWaKICl0XPjrDdBVW976x8nS566adaAup9qFltKlx7Y/YY/XL3UAVwa9+cIZcVzOepynpPlrUJgbU0zHfJpAozVKhnbcKgbmAXZtRq1l/q3FLJs7GDkw+G2gVR7d7o/f4033Km4YnaqfKxSXPFdxlusPaFIoDzXTqslihW8lqSGwp33+ewC+DS4qCW5qolunfWv0kvdfbeYCLQGPBti+8S1D927ZUmHYZ63oFn1wdpCWasJZVquWy+vLnl2pJXSKPa1VMs0TQdQ77tVDM4VUhmLeH2DcLUu/LslqD63svfZyCUAdxXK16Q3F4zTDf/vE1vAPPs+P5St2YVsZa9W+9ls9qn3ueo3uuYngBOzXJVu676huO/bd8lTbs8JsP6tpP7W95BABfshxDnEUAAAQQQQAABBBBAAAEbgYgO4JSJteRTzSpTs8vsjh6Dp8nGH3+T9xZOlMIF4/Vlanliuz7j9AYC6v1lObLHhSyA8955UNWllmiqmWLvL3pSSha7XA4cOiq3N38o1bJY65dz7wDO+jPfd92pX7rXrPsu1W6KwT4t6sXs23fuSfU+PKucXX3K2skMuJ9/+0Nadn881XvHgrUrFAGcWhqpQjjrsHaBVbvPqsAoFO6+z6FmV1Wo21WHZ9aOmOoapw7emzCod7/1HJL84nzvANOuT3zb4hvAWW1TMyVVSG238UZaAji13PHyQvk9y6799avpGPK9pzXjU+1EbC33Vtf8b8dfcm/nRwNuwuCvfb6fAfXfapn4Z289rTcNsQ61zDStM+CmjnpQ7wZrHdNffF3mLlnp+eyrDRkGjHouRSiq/pGgz/AZosJB7wAuULu8Z9+p+6t6vMuq+q26raXZaennYJ9XziOAAAIIIIAAAggggAACkSQQ8QGcWrrX9eFJ+h1nN1a4Ti/dKnNNcb3bplqi2qhuDb0k0Vquqt5v1alVQ8mZM7u8v3q9rFS7hv7zHiw1cEI1A07dS806UTuufrnhJ5n9yns6oFHv0rJCEGuHxf7dWkiVG66VLb9u1xtCqMM7gPtyw4/ywCNTdPn7W9yhAwK1EYQKeDo9NFFvfKCWexYtXFAOHjkmaimbCqKqVy4rk55bLIUKxssNZUtKttissvnn7XoJodqQYfQjnf1+VuzqcxrAqd0XVeCodp1Vm0HcdlMFySJZZNsfu+WX3//UGwz4O0IRwKn7qjpr1bhBdvz5tzw15w3to97plztXDl2tqbu/trfrPVaHQWOHdJMihfNL8SsKS55cOYM6WO9+O3bilKxc9KRu4569B6V+60ekWqUyMnf6EL2U2a5PfNviG8Cp89YS4dtvqiit760juXLmkN17D4hanjp2SFfJkztnmmZGWcGv+qypmV5qmXG50iWk9i2VpFjRy3STTMeQP2Nr11/1DsU6NSvrzR+mvPCa3p1YBYx2M+CcfAasGYhqmegtVcuLemfeVVcW1mMlrQGcKjuifwcpWbyI/HfjLzJ99hspPvvW7rglil0uXdo0lqKXFZCPP9+g3zGpDu8QLVC7vAM4NRu4YbshunzvjvdKqRJF5ZuNv+gNUqz3Hwb6+eZvqXEk/UXKsyKAAAIIIIAAAggggAACwQQiPoBTQOpl8ovf/US+2vCTDuKsQ71n7KkxfTzvBFM7P46eOl+/6F4d6hflh7u3ktb31vXMevEEcP/MVLPuNfaphTqk8F3ipZaLXl28qN5lUB0qpFq7fqPe7GDy86956lHhxBODunrekaVOqEBqwOPP6XdoWe1RM+fUbphqqdqA7i31n1+4kCCPT52nAy113FK1nMyZmryr68Yt/5MZL70pardK61C/2E8Z+aBeUmstBfQeSCqcG96vvQ6m/B129dkFcNZSS++dLdXswmkvvqFnzO3df8hTTfvm9XU44e+wXlZvzVZT16gApHqlMnq2kPdh9w44tdvrnMUrPHWqEOvxgZ10GGIdoXD3bb/qhx5DpupNJtRhzTgK5mAFLL4zl958/zPd59bGBoHGgHdbLEPfXVTVRgmvvP2RqF1hrUPZzJwwQH8O7Ma9tYRVbbjQpN5NeswOnzhHv0tQvfctNmuMnDh52vOZ+vzdZyV/vty2YzYtY8jXWL3PTL1XTz2LdaiZr6dPn5Vff/9TFj4zQv+x77M4+Qyo90T2Hv6UqN1W1WG9r813owXvNvmOTfVsFxISpdx1JWTWouX655Ky9ffZVzvkjp2xSF+jDmWpZvCqGW8vTn5Ebq1+g/7zQO3y/Vyovh8zbYGePWkdbe6tK4/0uk/P7vVnY13n289+P6D8IQIIIIAAAggggAACCCAQwQIEcD6dr35JP3L0hP7FV83s8XccP3FKzl9I0EFBqA/vgEGFLwcOH5OC8Xls30+n6lcBhtqVskD+PCk2bvBtmwp3VNsLxOdJ8b4tdZ2aCXjw0FHJlStHivdPqXPqPWj7Dx2VmOjooHV41xmovrS4qZBBLYWMz5tbYmIu7oqalnsEu9YKXZbPnyBXX1VEz47KHhfrCR78lQ+Fu/d91cy//YeO6FBKPavvEQoH0z45rsbaqdOSN3euFGFwMF/rfOcBT8rJU6f1Lq3en69ff98pzbuN9Ozya11v2l5/7VJhpFpK7O9zYPccTj8DasdU9VkqlD9fiqWoTn28r1PhmfoZ428jEus6NU7VEexnUVrapd5JeOTYiZA8Q3qemzIIIIAAAggggAACCCCAQGYUIIBzWa/azfBxWTMzXXOsAG7Z/PGidjzlCL3AmTPn5MZGPaRpo1tl/LAHUlSgZsbd3WmE9O7cVC+H5kAAAQQQQAABBBBAAAEEEEAgMwkQwLmsNwng/p0OIYDLGPdWPR7XyzTVcsnrS5fQ7zPc/sceeX7hMt2Ad+aOlYL582ZMY6gFAQQQQAABBBBAAAEEEEAAgQwSIIDLIGin1RDAOZUK7XXeS1DVC+g5wiPw975DonY4VZuXWO8vyx+fR+rWrCydWzfWO/xyIIAAAggggAACCCCAAAIIIJDZBAjgXNajalfLhIRE/Q46jowTUO/bO3XmnOTMHmf87q6Ma/WlW1NSUpLecCIuW2zY3ut36erQcgQQQAABBBBAAAEEEEAAgcwmQACX2XqU50EAAQQQQAABBBBAAAEEEEAAAQQQcJUAAZyruoPGIIAAAggggAACCCCAAAIIIIAAAghkNgECuMzWozwPAggggAACCCCAAAIIIIAAAggggICrBAjgXNUdNAYBBBBAAAEEEEAAAQQQQAABBBBAILMJEMBlth7leRBAAAEEEEAAAQQQQAABBBBAAAEEXCVAAOeq7qAxCCCAAAIIIIAAAggggAACCCCAAAKZTYAALrP1KM+DAAIIIIAAAggggAACCCCAAAIIIOAqAQI4V3UHjUEAAQQQQAABBBBAAAEEEEAAAQQQyGwCBHCZrUd5HgQQQAABBBBAAAEEEEAAAQQQQAABVwkQwLmqO2gMAggggAACCCCAAAIIIIAAAggggEBmEyCAy2w9yvMggAACCCCAAAIIIIAAAggggAACCLhKgADOVd1BYxBAAAEEEEAAAQQQQAABBBBAAAEEMpsAAVxm61GeBwEEEEAAAQQQQAABBBBAAAEEEEDAVQIEcK7qDhqDAAIIIIAAAggggAACCCCAAAIIIJDZBAjgMluP8jwIIIAAAggggAACCCCAAAIIIIAAAq4SIIBzVXfQGAQQQAABBBBAAAEEEEAAAQQQQACBzCZAAJfZepTnQQABBBBAAAEEEEAAAQQQQAABBBBwlQABnKu6g8YggAACCCCAAAIIIIAAAggggAACCGQ2AQK4zNajPA8CCCCAAAIIIIAAAggggAACCCCAgKsECOBc1R00BgEEEEAAAQQQQAABBBBAAAEEEEAgswkQwGW2HuV5EEAAAQQQQAABBBBAAAEEEEAAAQRcJUAA56ruoDEIIIAAAggggAACCCCAAAIIIIAAAplNgAAus/Uoz4MAAggggAACCCCAAAIIIIAAAggg4CoBAjhXdQeNQQABBBBAAAEEEEAAAQQQQAABBBDIbAIEcJmtR3keBBBAAAEEEEAAAQQQQAABBBBAAAFXCRDAuao7aAwCCCCAAAIIIIAAAggggAACCCCAQGYTIIDLbD3K8yCAAAIIIIAAAggggAACCCCAAAIIuEqAAM5V3UFjEEAAAQQQQAABBBBAAAEEEEAAAQQymwABXGbrUZ4HAQQQQAABBBBAAAEEEEAAAQQQQMBVAgRwruoOGoMAAggggAACCCCAAAIIIIAAAgggkNkECOAyW4/yPAgggAACCCCJ0Vv/AAAgAElEQVSAAAIIIIAAAggggAACrhIggHNVd9AYBBBAAAEEEEAAAQQQQAABBBBAAIHMJkAAl9l6lOdBAAEEEEAAAQQQQAABBBBAAAEEEHCVAAGcq7qDxiCAAAIIIIAAAggggAACCCCAAAIIZDYBArjM1qM8DwIIIIAAAggggAACCCCAAAIIIICAqwQI4FzVHTQGAQQQQAABBBBAAAEEEEAAAQQQQCCzCRDAZbYe5XkQQAABBBBAAAEEEEAAAQQQQAABBFwlQADnqu6gMQgggAACCCCAAAIIIIAAAggggAACmU2AAC6z9SjPgwACCCCAAAIIIIAAAggggAACCCDgKgECOFd1B41BAAEEEEAAAQQQQAABBBBAAAEEEMhsAgRwma1HeR4EEEAAAQQQQAABBBBAAAEEEEAAAVcJEMC5qjtoDAIIIIAAAggggAACCCCAAAIIIIBAZhMggMtsPcrzIIAAAggggAACCCCAAAIIIIAAAgi4SoAAzlXdQWMQQAABBBBAAAEEEEAAAQQQQAABBDKbAAFcZutRngcBBBBAAAEEEEAAAQQQQAABBBBAwFUCBHCG3bH74GnDO1AcAQQQQAABBBBAAAEEEEAAAQQQcLdA0QLZ3d1Al7eOAM6wgwjgDAEpjgACCCCAAAIIIIAAAggggAACrhcggDPrIgI4Mz8hgDMEpDgCCCCAAAIIIIAAAggggAACCLhegADOrIsI4Mz8COAM/SiOAAIIIIAAAggggAACCCCAAALuFyCAM+ujiAzgzpw5J1HRURKbNSaV3slTZyRnjji/qv7OMQPObABSGgEEEEAAAQQQQAABBBBAAAEE3C9AAGfWRxEVwP2975AMeuIF2bptp6gwrX6tG2X8sAckV87ssmfvQRk+cY78tHWHxOfLLcP6tJM6NStr3UDnCODMBiClEUAAAQQQQAABBBBAAAEEEEDA/QIEcGZ9FFEB3PTZb8hfe/bL5Md6yoWERGnz4BPSseUd0qxxLRk4eqYUKVxABvZoJZt+3iY9h0yTVUumSHze3AHPEcCZDUBKI4AAAggggAACCCCAAAIIIICA+wUI4Mz6KKICuEkzl2itoX3a6v/tMXiaNKxdTZo2qikV6nWTT9+aIYUK5NPnug6cJB1aNJDbb6poe65uzSq8A85s/FEaAQQQQAABBBBAAAEEEEAAAQQuAQECOLNOiqgA7s+/9krL7o9Lq7try7HjJ2X7n3/LnKmD5PiJ01Kn5QDZsnaeZMmSRYuOmvKylC5VXBrcVtX2XPvm9QngzMYfpRFAAAEEEEAAAQQQQAABBBBA4BIQIIAz66SICuDU5guPTnpJvtn4ixw6fEz6d2shPTrcJf/b8Ze07zNOvlk5y6M5bdZSiY3NKo3qVLc9169rc7mQkGTWA5RGAAEEEEAAAQQQQAABBBBAAAEEXC4QE508YYkjfQIRFcCNfWqhHDl2QiYM7y77DhyWPiNmSKu7asud9W+WWk37yeY18yQqKnlAjZw8V0oWLypNG91qe65rm8ay78iZ9MlTCgEEEEAAAQQQQAABBBBAAAEEELhEBC7LF3eJtNSdzYyoAK5Ws/7ywsSHpXyZkro33vtovSxftU5mTxkk5et0kY+WTpOihQvocx36jpd2zetL4zrVbc81qVuDJajuHNe0CgEEEEAAAQQQQAABBBBAAAEEQijAElQzzIgK4Dr2nyA1qlwvve6/W85fSJARE+foTReG92svT0xfIDEx0TKkd1vZsGmr3oRh/fKZkjdPzoDn2AXVbABSGgEEEEAAAQQQQAABBBBAAAEE3C9AAGfWRxEVwG39facMnTBb/tqzX6tVKnetTBzRXQrE55HDR4/L0HGzZd23myVnjjgZM6iLNK5bQ18X6BwBnNkApDQCCCCAAAIIIIAAAggggAACCLhfgADOrI8iKoCzqE6fOStRUVGSLTZrKr2Tp85IjuzZPLuhel/g7xwBnNkApDQCCCCAAAIIIIAAAggggAACCLhfgADOrI8iMoAzI0tZmgAulJrcCwEEEEAAAQQQQAABBBBAAAEE3ChAAGfWKwRwZn5swmDoR3EEEEAAAQQQQAABBBBAAAEEEHC/AAGcWR8RwJn5EcAZ+lEcAQQQQAABBBBAAAEEEEAAAQTcL0AAZ9ZHBHBmfgRwhn4URwABBBBAAAEEEEAAAQQQQAAB9wsQwJn1EQGcmR8BnKEfxRFAAAEEEEAAAQQQQAABBBBAwP0CBHBmfUQAZ+ZHAGfoR3EEEEAAAQQQQAABBBBAAAEEEHC/AAGcWR8RwJn5EcAZ+lEcAQQQQAABBBBAAAEEEEAAAQTcL0AAZ9ZHBHBmfgRwhn4URwABBBBAAAEEEEAAAQQQQAAB9wsQwJn1EQGcmR8BnKEfxRFAAAEEEEAAAQQQQAABBBBAwP0CBHBmfUQAZ+ZHAGfoR3EEEEAAAQQQQAABBBBAAAEEEHC/AAGcWR8RwJn5EcAZ+lEcAQQQQAABBBBAAAEEEEAAAQTcL0AAZ9ZHBHBmfgRwhn4URwABBBBAAAEEEEAAAQQQQAAB9wsQwJn1EQGcmR8BnKEfxRFAAAEEEEAAAQQQQAABBBBAwP0CBHBmfUQAZ+ZHAGfoR3EEEEAAAQQQQAABBBBAAAEEEHC/AAGcWR8RwJn5EcAZ+lEcAQQQQAABBBBAAAEEEEAAAQTcL0AAZ9ZHBHBmfgRwhn4URwABBBBAAAEEEEAAAQQQQAAB9wsQwJn1EQGcmR8BnKEfxRFAAAEEEEAAAQQQQAABBBBAwP0CBHBmfUQAZ+ZHAGfoR3EEEEAAAQQQQAABBBBAAAEEEHC/AAGcWR8RwJn5EcAZ+lEcAQQQQAABBBBAAAEEEEAAAQTcL0AAZ9ZHBHBmfgRwhn4URwABBBBAAAEEEEAAAQQQQAAB9wsQwJn1EQGcmR8BnKEfxRFAAAEEEEAAAQQQQAABBBBAwP0CBHBmfUQAZ+ZHAGfoR3EEEEAAAQQQQAABBBBAAAEEEHC/AAGcWR8RwJn5EcAZ+lEcAQQQQAABBBBAAAEEEEAAAQTcL0AAZ9ZHBHBmfgRwhn4URwABBBBAAAEEEEAAAQQQQAAB9wsQwJn1EQGcmR8BnKEfxRFAAAEEEEAAAQQQQAABBBBAwP0CBHBmfUQAZ+ZHAGfoR3EEEEAAAQQQQAABBBBAAAEEEHC/AAGcWR8RwJn5EcAZ+lEcAQQQQAABBBBAAAEEEEAAAQTcL0AAZ9ZHBHBmfgRwhn4URwABBBBAAAEEEEAAAQQQQAAB9wsQwJn1EQGcmR8BnKEfxRFAAAEEEEAAAQQQQAABBBBAwP0CBHBmfUQAZ+ZHAGfoR3EEEEAAAQQQQAABBBBAAAEEEHC/AAGcWR8RwJn5EcAZ+lEcAQQQQAABBBBAAAEEEEAAAQTcL0AAZ9ZHERvAnT13Xk6dPiP58uSSLFmyeBRPnjojOXPE+VX1d273wdNmPUBpBBBAAAEEEEAAAQQQQAABBBBAwOUCBHBmHRRxAdwPP/0u42YslJ+2/iFXFi0kz41/SK4teaXs2XtQhk+cIz9t3SHx+XLLsD7tpE7Nylo30DkCOLMBSGkEEEAAAQQQQAABBBBAAAEEEHC/AAGcWR9FVAC3e+9BadD6EZkyspfUv62qxGaN8egNHD1TihQuIAN7tJJNP2+TnkOmyaolUyQ+b24JdI4AzmwAUhoBBBBAAAEEEEAAAQQQQAABBNwvQABn1kcRFcA9N+8d2XfgsDwxuGsKtYSEBKlQr5t8+tYMKVQgnz7XdeAk6dCigdx+U0Xbc3VrVuEdcGbjj9IIIIAAAggggAACCCCAAAIIIHAJCBDAmXVSRAVwKlSrXqmsHDx8TA4dOSa3VC0vLe68TfYdOCJ1Wg6QLWvned4HN2rKy1K6VHFpcFtV23Ptm9cngDMbf5RGAAEEEEAAAQQQQAABBBBAAIFLQIAAzqyTIiqAu/P+YbL/4BEZ+XBHSUhIlGfmvi09OtwlN1a4Ttr3GSffrJzl0Zw2a6nExmaVRnWq257r17W5HDx21qwHKI0AAggggAACCCCAAAIIIIAAAgi4XKBAnmwub6G7mxdRAdw9nUdIr473SpO6NXSvvLZsjaz54nt58tEeUqtpP9m8Zp5ERSXviDpy8lwpWbyoNG10q+25rm0ay9nzie7uYVqHAAIIIIAAAggggAACCCCAAAIIGApkyxpleIfILh5RAVyfETPknjtqSsPa1XSvL1+9Xt58/1NZ8PRwKV+ni3y0dJoULVxAn+vQd7y0a15fGtepbntOBXlswhDZHyCeHgEEEEAAAQQQQAABBBBAAIFIEGAJqlkvR1QA995H6+WVtz6Sl6cPFbXxwiNjnpfyZa6Whx5oIU9MXyAxMdEypHdb2bBpq96EYf3ymZI3T86A5wjgzAYgpRFAAAEEEEAAAQQQQAABBBBAwP0CBHBmfRRRAZwK3abOel3eWvGZnDx1RtQuplNG9pK4uFg5fPS4DB03W9Z9u1ly5oiTMYO6SON/lqoGOkcAZzYAKY0AAggggAACCCCAAAIIIIAAAu4XIIAz66OICuAsqnPnL0hiQqIO3nwPFczlyJ7Nsxuq93l/5wjgzAYgpRFAAAEEEEAAAQQQQAABBBBAwP0CBHBmfRSRAZwZWcrSBHCh1OReCCCAAAIIIIAAAggggAACCCDgRgECOLNeIYAz82MTBkM/iiOAAAIIIIAAAggggAACCCCAgPsFCODM+ogAzsyPAM7Qj+IIIIAAAggggAACCCCAAAIIIOB+AQI4sz4igDPzI4Az9KM4AggggAACCCCAAAIIIIAAAgi4X4AAzqyPCODM/AjgDP0ojgACCCCAAAIIIIAAAggggAAC7hcggDPrIwI4Mz8COEM/iiOAAAIIIIAAAggggAACCCCAgPsFCODM+ogAzsyPAM7Qj+IIIIAAAggggAACCCCAAAIIIOB+AQI4sz4igDPzI4Az9KM4AggggAACCCCAAAIIIIAAAgi4X4AAzqyPCODM/AjgDP0ojgACCCCAAAIIIIAAAggggAAC7hcggDPrIwI4Mz8COEM/iiOAAAIIIIAAAggggAACCCCAgPsFCODM+ogAzsyPAM7Qj+IIIIAAAggggAACCCCAAAIIIOB+AQI4sz4igDPzI4Az9KM4AggggAACCCCAAAIIIIAAAgi4X4AAzqyPCODM/AjgDP0ojgACCCCAAAIIIIAAAggggAAC7hcggDPrIwI4Mz8COEM/iiOAAAIIIIAAAggggAACCCCAgPsFCODM+ogAzsyPAM7Qj+IIIIAAAggggAACCCCAAAIIIOB+AQI4sz4igDPzI4Az9KM4AggggAACCCCAAAIIIIAAAgi4X4AAzqyPCODM/AjgDP0ojgACCCCAAAIIIIAAAggggAAC7hcggDPrIwI4Mz8COEM/iiOAAAIIIIAAAggggAACCCCAgPsFCODM+ogAzsyPAM7Qj+IIIIAAAggggAACCCCAAAIIIOB+AQI4sz4igDPzI4Az9KM4AggggAACCCCAAAIIIIAAAgi4X4AAzqyPCODM/AjgDP0ojgACCCCAAAIIIIAAAggggAAC7hcggDPrIwI4Mz8COEM/iiOAAAIIIIAAAggggAACCCCAgPsFCODM+ogAzsyPAM7Qj+IIIIAAAggggAACCCCAAAIIIOB+AQI4sz4igDPzI4Az9KM4AggggAACCCCAAAIIIIAAAgi4X4AAzqyPCODM/AjgDP0ojgACCCCAAAIIIIAAAggggAAC7hcggDPrIwI4Mz8COEM/iiOAAAIIIIAAAggggAACCCCAgPsFCODM+ogAzsyPAM7Qj+IIIIAAAggggAACCCCAAAIIIOB+AQI4sz4igDPzI4Az9KM4AggggAACCCCAAAIIIIAAAgi4X4AAzqyPCODM/AjgDP0ojgACCCCAAAIIIIAAAggggAAC7hcggDPrIwI4Mz8COEM/iiOAAAIIIIAAAggggAACCCCAgPsFCODM+ogAzsyPAM7Qj+IIIIAAAggggAACCCCAAAIIIOB+AQI4sz4igDPzI4Az9KM4AggggAACCCCAAAIIIIAAAgi4X4AAzqyPIjaAS0xMkgsJCRKbNSaF4MlTZyRnjji/qv7O7T542qwHKI0AAggggAACCCCAAAIIIIAAAgi4XIAAzqyDIjaAm/TcYnn/k6/k83ee0YJ79h6U4RPnyE9bd0h8vtwyrE87qVOzctBzBHBmA5DSCCCAAAIIIIAAAggggAACCCDgfgECOLM+isgA7uvvftZh2/kLFzwB3MDRM6VI4QIysEcr2fTzNuk5ZJqsWjJF4vPmlkDnCODMBiClEUAAAQQQQAABBBBAAAEEEEDA/QIEcGZ9FHEB3PGTp6Vl91F6htuoqfN0AJeQkCAV6nWTT9+aIYUK5NOiXQdOkg4tGsjtN1W0PVe3ZhXeAWc2/iiNAAIIIIAAAggggAACCCCAAAKXgAABnFknRVwAN2rKy1LqqqJy282VpGP/CTqA23fgiNRpOUC2rJ0nWbJk0aLqutKlikuD26ranmvfvD4BnNn4ozQCCCCAAAIIIIAAAggggAACCFwCAgRwZp0UUQHcZ1/9IC8uXC6Lnh0hf+7e7wngftu+S9r3GSffrJzl0Zw2a6nExmaVRnWq257r17W5nDmXYNYDlEYAAQQQQAABBBBAAAEEEEAAAQRcLhAXG+3yFrq7eRETwB05dkLuaDNInhnXX64uXlR27t4nDw6bLu8vfFKisojc3mKAbF4zT6LUf4jIyMlzpWTxotK00a1Sq2k/v+e6tmksh46fc3cP0zoEEEAAAQQQQAABBBBAAAEEEEDAUCB/7ljDO0R28YgJ4L7c8KM88MgUv739zstjpVnXkfLR0mlStHABfU2HvuOlXfP60rhOdSlfp4vfc03q1mAJamR/fnh6BBBAAAEEEEAAAQQQQAABBCJCgCWoZt0cMQGcL9P2nX97lqCqc09MXyAxMdEypHdb2bBpq96EYf3ymZI3T86A59gF1WwAUhoBBBBAAAEEEEAAAQQQQAABBNwvQABn1kcRG8D9sWuvdOg3Xm/CoI7DR4/L0HGzZd23myVnjjgZM6iLNK5bI+g5AjizAUhpBBBAAAEEEEAAAQQQQAABBBBwvwABnFkfRWwAZ8d28tQZyZE9m2c3VO/r/J0jgDMbgJRGAAEEEEAAAQQQQAABBBBAAAH3CxDAmfURAZyZH++AM/SjOAIIIIAAAggggAACCCCAAAIIuF+AAM6sjwjgzPwI4Az9KI4AAggggAACCCCAAAIIIIAAAu4XIIAz6yMCODM/AjhDP4ojgAACCCCAAAIIIIAAAggggID7BQjgzPqIAM7MjwDO0I/iCCCAAAIIIIAAAggggAACCCDgfgECOLM+IoAz8yOAM/SjOAIIIIAAAggggAACCCCAAAIIuF+AAM6sjwjgzPwI4Az9KI4AAggggAACCCCAAAIIIIAAAu4XIIAz6yMCODM/AjhDP4ojgAACCCCAAAIIIIAAAggggID7BQjgzPqIAM7MjwDO0I/iCCCAAAIIIIAAAggggAACCCDgfgECOLM+IoAz8yOAM/SjOAIIIIAAAggggAACCCCAAAIIuF+AAM6sjwjgzPwI4Az9KI4AAggggAACCCCAAAIIIIAAAu4XIIAz6yMCODM/AjhDP4ojgAACCCCAAAIIIIAAAggggID7BQjgzPqIAM7MjwDO0I/iCCCAAAIIIIAAAggggAACCCDgfgECOLM+IoAz8yOAM/SjOAIIIIAAAggggAACCCCAAAIIuF+AAM6sjwjgzPwI4Az9KI4AAggggAACCCCAAAIIIIAAAu4XIIAz6yMCODM/AjhDP4ojgAACCCCAAAIIIIAAAggggID7BQjgzPqIAM7MjwDO0I/iCCCAAAIIIIAAAggggAACCCDgfgECOLM+IoAz8yOAM/SjOAIIIIAAAggggAACCCCAAAIIuF+AAM6sjwjgzPwI4Az9KI4AAggggAACCCCAAAIIIIAAAu4XIIAz6yMCODM/AjhDP4ojgAACCCCAAAIIIIAAAggggID7BQjgzPqIAM7MjwDO0I/iCCCAAAIIIIAAAggggAACCCDgfgECOLM+IoAz8yOAM/SjOAIIIIAAAggggAACCCCAAAIIuF+AAM6sjwjgzPwI4Az9KI4AAggggAACCCCAAAIIIIAAAu4XIIAz6yMCODM/AjhDP4ojgAACCCCAAAIIIIAAAggggID7BQjgzPqIAM7MjwDO0I/iCCCAAAIIIIAAAggggAACCCDgfgECOLM+IoAz8yOAM/SjOAIIIIAAAggggAACCCCAAAIIuF+AAM6sjwjgzPwI4Az9KI4AAggggAACCCCAAAIIIIAAAu4XIIAz6yMCODM/AjhDP4ojgAACCCCAAAIIIIAAAggggID7BQjgzPqIAM7MjwDO0I/iCCCAAAIIIIAAAggggAACCCDgfgECOLM+IoAz8yOAM/SjOAIIIIAAAggggAACCCCAAAIIuF+AAM6sjwjgzPwI4Az9KI4AAggggAACCCCAAAIIIIAAAu4XIIAz6yMCODM/AjhDP4ojgAACCCCAAAIIIIAAAggggID7BQjgzPqIAM7MjwDO0I/iCCCAAAIIIIAAAggggAACCCDgfgECOLM+isgA7tjxk5IzR5xER0en0jt56ow+5+/wd273wdNmPUBpBBBAAAEEEEAAAQQQQAABBBBAwOUCBHBmHRRRAdwHa76WKS8slRMnT4kK0zq3biQDe94n0VFRsmfvQRk+cY78tHWHxOfLLcP6tJM6NStr3UDnCODMBiClEUAAAQQQQAABBBBAAAEEEEDA/QIEcGZ9FFEB3Mo1X0uxIoXkhrJXy649+6Vh28Hy6nOPSaXy18jA0TOlSOECMrBHK9n08zbpOWSarFoyReLz5g54jgDObABSGgEEEEAAAQQQQAABBBBAAAEE3C9AAGfWRxEVwPlSte41Rrq2aSL1a1WRCvW6yadvzZBCBfLpy7oOnCQdWjSQ22+qaHuubs0qvAPObPxRGgEEEEAAAQQQQAABBBBAAAEELgEBAjizTorYAG7/wSNSu8UAWbV4isTGZpU6LQfIlrXzJEuWLFp01JSXpXSp4tLgtqq259o3ry9/Hz5j1gOURgABBBBAAAEEEEAAAQQQQAABBFwucHm8//flu7zZrmleRAZwCYmJ0v+xZ6R40ctkaN928tv2XdK+zzj5ZuUsT8dMm7VUB3ON6lS3Pdeva3NJTExyTWfSEAQQQAABBBBAAAEEEEAAAQQQQCAcAlFRyROWONInEJEB3IRnXpGt23bJ7CmDJDZrjBw6clxqNe0nm9fME2tAjZw8V0oWLypNG91qe65rm8YsQU3fuKMUAggggAACCCCAAAIIIIAAAghcQgIsQTXrrIgL4F5YsEzWrPtOXp4+VHLnyqH1kpKSpHydLvLR0mlStHAB/Wcd+o6Xds3rS+M61W3PNalbgwDObPxRGgEEEEAAAQQQQAABBBBAAAEELgEBAjizToqoAO7Vtz+WhW+ukkXPPCrxeXNpOTXjLTo6Wp6YvkBiYqJlSO+2smHTVr0Jw/rlMyVvnpwBz7ELqtkApDQCCCCAAAIIIIAAAggggAACCLhfgADOrI8iKoArV7tzKq1qlcrI/BnD5PDR4zJ03GxZ9+1myZkjTsYM6iKN69bQ1wc6RwBnNgApjQACCCCAAAIIIIAAAggggAAC7hcggDPro4gK4JxQnTx1RnJkz+bZDdW7jL9zBHBOVLkGAQQQQAABBBBAAAEEEEAAAQQuZQECOLPeI4Az8+MdcIZ+FEcAAQQQQAABBBBAAAEEEEAAAfcLEMCZ9REBnJkfAZyhH8URQAABBBBAAAEEEEAAAQQQQMD9AgRwZn1EAGfmRwBn6EdxBBBAAAEEEEAAAQQQQAABBBBwvwABnFkfEcCZ+RHAGfpRHAEEEEAAAQQQQAABBBBAAAEE3C9AAGfWRwRwZn4EcIZ+FEcAAQQQQAABBBBAAAEEEEAAAfcLEMCZ9REBnJkfAZyhH8URQAABBBBAAAEEEEAAAQQQQMD9AgRwZn1EAGfmRwBn6EdxBBBAAAEEEEAAAQQQQAABBBBwvwABnFkfEcCZ+RHAGfpRHAEEEEAAAQQQQAABBBBAAAEE3C9AAGfWRwRwZn4EcIZ+FEcAAQQQQAABBBBAAAEEEEAAAfcLEMCZ9REBnJkfAZyhH8URQAABBBBAAAEEEEAAAQQQQMD9AgRwZn1EAGfmF9YA7vjxLLaty507ybDlFEcAAQQQQAABBBBAAAEEEEAAAQScCRDAOXOyu4oAzswvrAHcO8uiZd/+1A28rJBIs3sTHLV82/Yscviw/yCvZIlEyZ/f0W24CAEEEEAAAQQQQAABBBBAAAEEIliAAM6s8wngzPzCHsB9/0Pq8KxyxSQdwB0+HLjx8fEiKoCbvyg61YXx8UnSqX0CAZxh/1McAQQQQAABBBBAAAEEEEAAgUgQIIAz62UCODM/WfLu2RR3uL1WoqM7Hjtmv7xU3SBPniRRM+ACBXCHDoksWpw6XFPl774zUa4umUQA56g3uAgBBBBAAAEEEEAAAQQQQAABBAIJEMCZjQ8CODM/eeCh8547VKmUJE3vcb40dNVHUX5rb90yeWaakwBuwavRfpeYdr4/IWQBnAr6/rfNf1sLxCdJqVJJcuCAPWRUlDDTznCcURwBBBBAAAEEEEAAAQQQQACBf1OAAM5MnwDOzM8ogAu2NDSjArgVH/gP1xTNnY0TRQVwdkGfWsaqAji11PXNd1LPxsua9eJS1y1b7Gf9lS+fJOfOBe6M2FjRbQl0qOAy2PMYdrnj4ofUEuEAe2Xw/j3HlFyIAAIIIIAAAggggAACCCDwLwsQwJl1AAGcmZ/fAE6FRD9s8h9qXXVVkuOZaRkVwJnU4x3ABQsU310eLd9ttH+nnXJb8eUSCHEAACAASURBVIH/JbW33JToCfqWve/f1nqnXbB6DLvccXEVwC18NVqS/IRw9zRJfh4OBBBAAAEEEEAAAQQQQAABBC4FAQI4s14igDPzsw3gQrE01CQYS8sSVJN6Qh3AOZlpZxr0OelyNaNv/37/M/auvSZ599gTJ+xn9OXKlSRWAHfoUOrrLLdA91DtVPfhQAABBBBAAAEEEEAAAQQQQODfFiCAM+sBAjgzPwI4ryWopsGY06WuxvU4WBpqu3tsviTp1CH5HX1qpt3+/akHUMGConepdRLAqXo+WeN/Rl+LZsn1nDljP0jj4gwH8L9QPNAyYpbl/gsdQpUIIIAAAggggAACCCCAgAMBAjgHSAEuIYAz8yOAu0QDOL001M+GtffceXGpq9+gzyeAC7ik9p8lqIFmwDkN+o4eTT1Qc+USUSFdQpB9P6L9r+pN88hXgaLdrMCYaHG8pHb5+9Hy+7bU1Rcvlvw8oTrs2qruX6iQs5mFR44E3q04Xz5n9wnVM3EfBBBAAAEEEEAAAQQQQODfEiCAM5MngDPzI4C7hAO4UARjGRXA+aun4g1JOrBSwdiHq/2nbDWqJgeK27dnkT1/+w+TypROXlIb7HAyoy/YPdR5FcD997vUbfF+nl9+8T8r8LJCSXLNNc5CL1XP9z+krqf89RfdEhLsA7ZCBZPdVnzovy1tWydIAQduTkx27LBvR+48SSGrx0lbuAYBBBBAAAEEEEAAAQQQ8CdAAGc2LgjgzPwI4AjgUo2gyhWT0rQENb0z7bwDKzWjL1CgqIKkeYtSh3TxXjP6gn0UnARwu3fbB0lxcUk66HMSwNk9T8d2CWkK4IIFfaqe06dSt7lV8+R67Nzy5RXpdP8FHYx99739LsJVKvuZZukH2kk9wfqH8wgggAACCCCAAAIIIIBAOAUI4Mx0CeDM/AjgCOAyTQC3arV9kNTwjkRH77RzEvSFIoC7cCHwBzcmJjRBn5NgLNjzOPkR46SeYPc5rN5tGOCIjw92h4w9//Mv9mFt2TLOZjlmbIupDQEEEEAAAQQQQACByBYggDPrfwI4Mz8COAK4TBPAqU0lgi11DcVMu2CBVaCZdtYMOBVYrf/af2DY+I7kzStCVY+/mYPeM+CC1aOCscMB3iV3dUlnM+2C/ahS9Sxa7H8pcpOGiY5nDgarJ1Tn7dwqlEuSli1C9y7AULWX+yCAAAIIIIAAAgggEOkCBHBmI4AAzsyPAI4AjgBORDr9Mw4yagbcv11PWgM4FVwePJR6xpd3oBgs6Av2o0oFcMHqOXUy8KYSOXIGn3mm6jl12v4+VxQNfg/1LARwwXqU8wgggAACCCCAAAIIuEuAAM6sPwjgzPwI4AjgCOAI4AJuKuEkGHOyBHXFB/ZLhO9snChO6lGbPXzyqf/7NL0neVOJUNRz/lzgH6xZY4MHcOp5AkV5+eNFnNRj+CNeF1duJ0/6v9PlRTLnJhk//mgfspYr5yxkDYU990AAAQQQQAABBBBwjwABnFlfEMCZ+RHAEcARwBHAZUgA52Spa7AZcCpIenlh6mWqTmb0WUtDnQZ9n6/3H/Q1aZQc9AWbAWfV4y/qUUtqr7s2SQdjweoJ9iNe1XPwoH3YpDbjcOIWrJ5L7fz7K6Llmw2pXcpdnyStW7JE+FLrT9qLAAIIIIAAAgiEQoAAzkyRAM7MjwCOAI4AjgCOAO6fT4G1pNZJYOU0gPO3dLdD2wRPABcsUDxwwP6HfMGCEnDmYFrqCfZXyYkgy39zOVj+G6wOp+edtMUtAZwKSAO1t9iVzMZz2u9chwACCCCAAAIImAoQwJkJEsCZ+RHAEcARwBHAEcC5OIBTQdKPfnZcLVUiebOHQDP60hLAbdpsP4uuwg1Jup633vG/ScZttZJn9O3da3+PmJgkKVBAAl5TuHCSnD0b+C+1bNmSl9R+vMb/DMVm9yboekIRwDl5nmB/BVubixzwM0vR6p9g91Dn1dLqpET/vnfd6WxG3x9/ZJGjx/zXpt59qNyCHU76J9g9QnXeSf8EG9ehagv3QQABBBBAAIFLQ4AAzqyfCODM/AjgCOAI4AjgCOBcHsD5W0rpZEltWgI4u8DKux61S22gIMlu5mDePCKd778QMBjzrue9Ff6DvptqXFy662/moJN6rCWoKhj7bqP/EE/NSlOBogqs5i5I3Rbven7dah86lr4uObgM5pYYJD+Lik4O4L7+NnV7vZ/nwgX7thQqFLrnseufGtUTRT2zcvvfNv9tqVQh0VHQd+SIyIbv/ffPlVckeerx1z95cot06Zg83oK5GX6FojgCCCCAAAIIXGICBHBmHUYAZ+ZHAEcARwBHAEcARwBnO2Ps3wjgggVWJkGfd2AVrB4nAVywmXZOAjhVz/qv/IdNd9RPntEXLEiy6jlyNHXwpd55ZwVjwQJFp/X4C2Lbtwlcj3cwFuyriwrgVP/sP5D6edJST7DnCdaOUJ1XzxMoIC1YMElOHA+8y3Ou3KFZrvznziyye7f/uq69Jjkg/epr+01zVNB69KjIUT9jzfK66qrQtDVU/twHAQQQQAABS4AAzmwsEMClwe/kqTOSM0dcihIPPHTe899VKiWJ2knw0CGRBa9Gy+HDqb+gdb4/Qa4umSTbtmeR+YtSzwyIj0+STu0TJH9+kXeWRcv3P6S+R+WKSaKWCbmhHtXWUqWcPc+7y6Plu43pe56Q1nNYRL2s/tCh1G0JWk++JOnUIbl/gj5PmOupeEOStGiWIIcc1GO3y2a8g+cJdT3BNhMI9DzWO8acPE8463GyaYHl5mTTAie7oAZ7Hif1hPvdbG58B5yTmWl2m1dcqjPgggVjmTGA+zeDMe8ZfcECq0CBYlqDsfPn/YdA6ntIRgVwqp7tO/y3I0cO0cHlwUOBv2ipTVkCXaN2PFaBlRrXJ/28S1F9H1L1qGDsw9X+g68WTZOD2D177EO6yy9P0vWcPm1/TZEiyfW8NC/19zfvgHTlqii/Idz1ZZM3MbGex19A2q51gpQp7SyAC/Y8WQJnkmn4Bhz40iNHssj2Hf6vyZ5dHD9PKBp05nTgu8RlD0Utme8eTj6nme+peSIEEEiPAAFcetQuliGAc+C3Z+9BGT5xjvy0dYfE58stw/q0kzo1K+uSBHAEcL5DyBOQOgjGbIPYfyEYswsUCeDSt2soAVz63P6NpaEEcMk/xdK6BDVY0JeRM+AiMYALtKQ2IwM4JzPt3nrX/7LoTh0uLnX9dWvq8Kxo0eCBlRVcOgnG7ALStARjTuoJRQCn6vnlV/8J2o2Vk2faBasnIcjy7JgY0WFtoCNfvuBflFUA98qSKNm3P3V7rUBxv59z1p2zRCVJwQJi+7zqOhWyqlmD3/zXv0nxYkk66Nu5K4t8stZ/EHtXkwRdT7BDPU+weoLd41I7r9zeeMv/57RjhwuO3C61Z6a9CCCQPgECuPS5ef7OS0pKcvbPbGb1XNKlB46eKUUKF5CBPVrJpp+3Sc8h02TVkikSnzc3ARwz4FKNbQI4PzM7vQLFYDO5mAF3cUiFeqYdM+Au2v4bQV+wwMpkZlpGLXV16xJUArjksW31j9sCuPS+a85JMJaZA7hQzLRb8aH/UEWFeCqwUkHfsvf8B1ZtWycHVscDLO/NlSs5GAsWwKl65i1M3ZYc2UW6dEoOeIIFik7qUUHSnJdT15M718V6gv1S4iRQVPVcuLgIJsUtc+dJDhTXrbdfinzzzYkS5WCGopPgMhT1hMIt0DhRQLlDtAw8WP9xHgEEwitAAGfmywy4IH4JCQlSoV43+fStGVKoQPI/A3YdOEk6tGggdWtWIYAjgCOA4x1wvAPun08BS1BT/zaVUcFYRtVDABd4U4mMXIJ6Kc2AI4BL/iHpJFC0Zoxl5Ew7f0Gfd2ClgrGdO1P/fMubV/5ZUussgHNSj7/35110C16PkyDpL5t3+Kk+UsuMjzkIFJ3UYxsolkmS+1ol6HrsZutdXzZRypZJntGn/vHG98gaczFQXLU6Stb5eQ/m9WmsJ1hwueE7+0CxcuVEOX4si7z2hv9rbrs1+Xky6gjUx9lik6RgwdC05FSAJeuqhhzZgz+zCpb/97vdUv4k7XbwYOD2qhmxga6Jzydy/IT9DuhlyyTqn09OjkDPHBebpOu5cMH+XqqtTtxWfxxlG/43uydB1AZLoTiCPU+o6gnWVjUOTpy0v0rttu7kCPQ8auxHh8CNAM5JT9hfQwAXxG/fgSNSp+UA2bJ2nmT552Uao6a8LKVLFZf2zesTwBHAEcARwBHAEcCxCYPXT0Lr3XksQb2I4iS4TOs74Ajgkn2ZAZc68AhF0OcbwJkGY3aBYqjrCVUwFmxGX7jraXtfgieACxaMOQng7J4nlPWoAE7Vs3df6jDJqmfXriyy+Uf/IV21GxN0MPbzzwF2xy6TpIO+c+fsf4FTu1bb9U+uXCJdO14IXs91yUFSYqJ96BEfL6KeZ/Un/p/nnjsdPM8/9Thxe+0N/8mJ2iVduanAatPm1G1RwY1696R6Hrt62rRK0AHcX39lkWPH/NsqV6ueXX+l7qPsccmBvFWPv/dpNmmUXI8TN/U8X/iZRVq29MXncdI/wcabqifY8+ze7d8kS1TyOy4DzlTN4izw1TN8X4uSvXtT21r9ozYAUu8Q9XcE65+4f/rHSQAXrJ4KpXmZpkkERwAXRO+37bukfZ9x8s3KWZ4rp81aKrGxWaVf1+by1IsX/waIyybSpV207NqTIO996P/GN1cXqVohRv676YJ8+Y3/a+5uJHJlkWiZ+2qC379gYmNFurV3Rz03VRWpVsnZ88xbnCBnzqZ+ZifPE8p6/vo7UZZ/4P8v1Eupnphoke4do8XJ82zYdF7Wf+P/C4013uz6J9T1LHgtQU75eUmyk3pq3ChSrXKMfOfgecJdz10NRYoVjZZg9ez+O1GW2Yw3J88Tynq+33Je1n3lfxwEqyc6SqRHp2hx8jzhrqdaFZEaVWLEST0LlybIyVOpf+44eZ6Q1rM3UZat9P9z51KqR0n26hwte/YFf56NW87LF0HGm13/hLKe4kWjZdEbF/QvBf6OYM9TtbLITTfGSLDnyYh67mwocpWD5/l7X6K8azPenDyPm+rp2Sla9u4P/Dw335hVNv54Tj7/0n8fO3meYPXcWFHklmoO6rkiWl5944IctVm2eUnVc4fIVVcGf559BxLlnRX+f745cgthPZt+PiefrbMZBw7q6dExWvYfDP484a6ncgWRW6tnleD1xMiSt87LYZtddYM9TyjrOXAoUd5+3/848K7nPzb90/gOkRJXxshb750XfztFZ80q0rF1tKh63vvQfz2VKojcVCWwW5Mg9ah3I6p6Dh5OlA/XJEpiYuq/OSqUE6lROTZg/6SlHiduduPaqmfpOxfk4GH/v1t2vz/5eezrSZJbq8XK5l/Pyefr/X9+GtZP7p9Q1LPpF/vPaZMGIiWKOajnSKKs+iRREuz6p1KsbA5QT+M01LPM5udbpQpJcsuNsbJl6zn5wubvnwZ1kp/nq+/Oy5mzqW2zxiRJ9UoxcvBIorz9nt3nJ7l/VD12n5+G9YK7PdAhWo4eT5Sff0sSf9lywfxJUqFMrPwYpJ7SV8ea5E8RX5YALsgQOHTkuNRq2k82r5knUf+8rGHk5LlSsnhR6dqmccQPIAAQQAABBBBAAAEEEEAAAQQQQAABBAILEMAFGSFqj4rydbrIR0unSdHCyVsndeg7Xto1ry9N6tZgfCGAAAIIIIAAAggggAACCCCAAAIIIBBQgADOwQB5YvoCiYmJliG928qGTVv1Jgzrl8+UvHlyOijNJQgggAACCCCAAAIIIIAAAggggAACkSxAAOeg9w8fPS5Dx82Wdd9ulpw54mTMoC7SOINnv508dUbX7e8IdM7B43EJAmEROHb8pB6z0X7e9smYDQs5Nw2RwNlz5yU2a4xn4x112zNnz0nWmGi/4zlE1XIbBNItcOTYCYnLFqv/z/vgZ226SSkYRoEzZ85JVHSU/jnrezBmwwjPrQMKnD9/Qc6cOy+5c6Z+wXxCYqKcP3dB4uJSv/sq0DnIEQingNqE4sTJU5Ind+pJQYHOqTbxszacPRP43gRwabBXAzVH9mwpfilLQ/GAl279fac8PHqm3FX/Znmw072ea7/c8KOMm7FI9h88IteUuELGD+8uJYtdrs8HOheqdnEfBOwEjh47KSOenKN/gM+fMcxz2QdrvpYpLyzVfyGoc51bN5KBPe+T6Kgo2bP3oAyfOEd+2rpD4vPllmF92kmdmpVBRiDDBFZ/9q08NmmuzJwwQKpVKpOq3o8/3yAPjXxW3l/0pP5Zm5CQoK//5IvvJFu2WGnXtF6Kn9EZ1nAqilgBu+8HKhR+fv678tqyNZIrZw65tXp5eWJwV74fROxIcc+D230/+HvfIRn0xAuyddtO/f2gfq0bZfywByRXzux8P3BP90VcS9T7vifPXCLvfbRe/8NxoQL55KnRfeS6UsW0xYLXP5SXlqyUs2fPya3Vb5CJI3pIttisQc9FHCQPnGEC6rvpi4vek/mvX9z1cfSgLvr1WIHOkR9kWBcFrIgAzgX9oAKLCc++KsWKFJJaNSp4frk7feas3NF2sDz+cCepe2sVmbf0A/n860067Ah0zgWPRBMyucDWbbuk19DpOhQ+c/asLHxmhOeJV675Wo/lG8peLbv27JeGbQfLq889JpXKXyMDR8+UIoULyMAerWTTz9uk55BpsmrJFInPmzuTi/F4bhCYNHOJnsl8+OgJmTbqQaleuWyKZh08fEza9Rkru3bv9wRwS979RFZ8/JW8OPkRPQuuadfHZPro3lKtYurwzg3PSBsyl4Dd9wP1lGo8//jrdpn0aE/9c9U6+H6QucbApfY0gb4fTJ/9hvy1Z79MfqynXEhIlDYPPiEdW94hzRrX4vvBpdbRmai9KjB+54PPpc29dSVr1miZOut1+d/2XTJn6mD59fedcn+/8fL23LFSMH9eGfzELClXuoT06nhPwHOZiIdHcaGAmt228I1V0rheDSlcMF5Wffqt/hn63eo5kjUmxvZcYmKibbbgwsfMtE0igHNB136/5TcpEJ9H3vngCz0d35oBt3HL/+TRSS/JikVP6laqX/5ubNhDvlj2rPyxc6/tOcIMF3RqJm/CvgNH9JcTdcxatDxFAOf76K17jZGubZpI/VpVpEK9bvLpWzP0vy6qQ71PsUOLBlK3ZpVMLsbjuUFAfUFR/3qtxt0jPe9LFcCpmW/1at0oU154TY9pNQOu+6Ap0uru2nLH7dX0I6h/cVTL/Yb2aeuGR6INmVzA7vvBqdNnpFrjXrL6talyxeUFUygE+u7A94NMPmBc8HiBvh+o0Fgd1s/PHoOnScPa1aRpo5p8P3BB39GEZIH1326RMU8tkFWLp8hLi1fI3v2H5dGHOuhz6l3gY6bPl+XzJwQ8hyUCGSlgfSdY++YMuaxg8u9Y1uF9bvffB8gPMrJjbOoigHNBJ1hNePqlt1IEcOqXRfUvMrMmDfS0sm6rgTJzwkPy51/7bM+VvfYqFz0VTcnMAupLSqAATi2drt1igP4SExubVeq0HCBb1s7zLOMeNeVlKV2quLRvXj8zM/FsLhNQobBvAKeWnny49hu9NLVWs/6eAK5hu8EyZWQvqVC2lH4Kdd3qT/8rz47v77KnojmZWcD3+4H6JXDw2FnSv1tz+c9XP8jllxWQNvfWkeJXFNb/Em733YHvB5l5lLjr2fx9P/jzr73Ssvvj+h811Htit//5t8yZOkiOnzjN9wN3dV9Et2barKVy9PhJvaRfvQboiiIFpUvrxtrkr78PyB1tBsmPn84PeC6iAXn4DBf47MuNMmb6QlnzxvRUdXuf4/tBhneN3woJ4NzRD7oVvl+wly5fK//d+ItMGfWgp5XNuo2UIb3b6ADO7tzNN5Zz0VPRlMwsECiAUy+l7f/YM1K86GUytG87+W37LmnfZ5x8s3KWh0R9yVHBXL+uzTMzE8/mMgHfAG7v/kPStvc4ee2FUfpfDr0DuOpNesmS50dJqRJF9VOoLzJqFtzi50e67KloTmYW8P1+8PF/NshDo56Vpo1ulUZ1qut3FKr/+2jJVFm2eh3fDzLzYLhEns3f9wO1+YJa2fHNxl/k0OFj0r9bC+nR4S75346/+H5wifRrZm+mmkHcY8hUeXfeeClauIA8MuZ5uanK9To0VocKjm++u49s+HC2Hst25/xt1pDZ7Xi+f0dAvcNQ/cPGiP7t9Xs1vQ/fc4GyBfKDjOs/AriMsw5ak+8XbPVleumytTJ7yiOesuoXw+fGPyQHDh21PVfx+uSZGhwIhFsgUAA34ZlXRL0LZvaUQXpmp/pLoFbTfrJ5zTyJisqimzZy8lwpWbyodG2T/C+LHAhkhIB3AJeUlCQ9h0yXqhWvk6aNaunq7+o4TF54cqCUu66E3NdrtIwd0k2sn6vLV6+XlZ98lWJmcka0mToiW8Df94PJzy+RD1+drGcUq5cuq18K1TuL+H4Q2WPFLU/v7/vB2KcW6iX8E4Z3l30HDkufETOk1V215c76N/P9wC0dF8Ht2L7zb2ndc7RMe7y3fie3OtSyafXut25tm+j/Vu+IVTPj1WqOyc+/ZntO/VzmQCDcAuqdr50HPCm3VrtB+nVLOZnB37lA2QL5Qbh76+L9CeAyzjpoTb5fsH/cukO/UNH6gm2t4f7k9ely8Mgx23OXX5Y/aF1cgEAoBOwCuBcWLJM1676Tl6cPldy5cuiqVNBRvk4X+WjpNP2viuro0He8tGteX+/aw4FARgl4B3DWz1V/dY8Z1EXWrv9eGtepIXc1uFlfonadVAHHqIGdMqq51INAqhny6vvBkLGzPO+IVUTqFRWTHu0hOXLE8f2AMfOvC/j7fqD+EfmFiQ9L+TIldfvUkv7lq9bpf6jj+8G/3mUR3YA9ew9K+77j5eEeLeXuBrd4LBa+uVp+3/GXqO8D6vj6u59l1NSX9atVAp2LaEwePkMEzp2/IH1HPC1FLy8gjw/s5Hm9j6rc7lygbIH8IEO6TVdCAJdx1kFr8g3gzp+/oHfc69OlmX5J7ZxX35dPPt8gb8weI4HOBa2ICxAIkYC/L9ivvv2xLHxzlSx65lGJz5tL16RmvEVHR8sT0xdITEy0DOndVr/IVr0Mf/3ymZI3T84QtYjbIBBcwN874LxLeS9BVbv6Lnj9Q3lp2hA5ffqstOg+SiYMe8Dzr+PBa+MKBMwFfL8fqBlvTe4fJgMeaCmN69aQT9dv1LOJvnxvpmSPy2b73cG8JdwBAWcC/r4fdOw/QWpUuV563X+3nL+QICMmztGbMg3v157vB85YuSoMAmo5dNs+Y6VD8wZ6J1TrUN9Xd+3ZLy0eGKV/91K7TaqJEddcfaUM7NFKdu7eZ3suDM3klgh4BNR3APUeWHVMGNZdoqOjkn/fUv+blGR7LjEhke8HLhhHBHAu6ASrCc/OfVuHE9YuqOrP1bsI1E48W3/fKVcWLaRfEH5NiSt0kUDnXPRYNCUTC/j7gl2ududUT1ytUhmZP2OYHD56XIaOmy3rvt0sOXPE6X9RVL88ciCQkQLteo+Vh3u0EjUu/R0qgHvl2UflqisL65mb459+RZavXicnT53Ry6UH9rwvxb80ZmTbqSsyBfx9P7D+JfvwkeOSLVusjH6ks9S7NXlHab4fROY4cdNT+/t+oL7LDp0wW/7as183tVK5a2XiiO5SID4P3w/c1HkR1hY1k23Sc4tTPfWCp4dL1Yql5c0Vn+lZyCqoq1ntBpk2urfkzpldXx/oXIQx8rgZKKD+/r+vx+hUNaplqGr5tN25Xvffw/eDDOwnu6oI4FzQCU6acPzkac8Pe9/rA51zcm+uQSCjBVSQkSN7NkKMjIanvnQLnD13XqKyZJGsWWPSfQ8KIhAOAfVS8Dy5/c8i5vtBOMS5p6mAejdRVFSUZIvNmupWfD8w1aV8OAQSE5PkzNmzkiN7XKrbBzoXjrZwTwRCIcD3g1Aopu8eBHDpc6MUAggggAACCCCAAAIIIIAAAggggAACjgQI4BwxcRECCCCAAAIIIIAAAggggAACCCCAAALpEyCAS58bpRBAAAEEEEAAAQQQQAABBBBAAAEEEHAkQADniImLEEAAAQQQQAABBBBAAAEEEEAAAQQQSJ8AAVz63CiFAAIIIIAAAggggAACCCCAAAIIIICAIwECOEdMXIQAAggggAACCCCAAAIIIIAAAggggED6BAjg0udGKQQQQAABBBBAAAEEEEAAAQQQQAABBBwJEMA5YuIiBBBAAAEEEEAAAQQQQAABBBBAAAEE0idAAJc+N0ohgAACCCCAAAIIIIAAAggggAACCCDgSIAAzhETFyGAAAIIIIAAAggggAACCCCAAAIIIJA+AQK49LlRCgEEEEAAAQQQQAABBBBAAAEEEEAAAUcCBHCOmLgIAQQQQAABBBBAAAEEEEAAAQQQQACB9AkQwKXPjVIIIIAAAggggAACCCCAAAIIIIAAAgg4EiCAc8TERQgggAACCCCAAAIIIIAAAggggAACCKRPgAAufW6UQgABBBBAAAEEEEAAAQQQQAABBBBAwJEAAZwjJi5CAAEEEEAAAQQQQAABBBBAAAEEEEAgfQIEcOlzoxQCCCCAAAIIIIAAAggggAACCCCAAAKOBAjgHDFxEQIIIIAAAggggAACCCCAAAIIIIAAAukT+H87dmgDAACAMOz/r3lhQdeDqZwA97l5ESBAgAABAgQIECBAgAABAgQIEEgCAlxiMiJAgAABAgQIECBAgAABAgQIECDwCQhwn5sXAQIECBAgQIAAAQIECBAgQIAAgSQgwCUmIwIECBAgQIAAAQIECBAgQIAAAQKfgAD3uXkRIECAAAECBAgQIECAAAECBAgQSAICXGIyIkCAAAECBAgQIECAAAECBAgQIPAJCHCfmxcBAgQI6MGEBAAABCFJREFUECBAgAABAgQIECBAgACBJCDAJSYjAgQIECBAgAABAgQIECBAgAABAp+AAPe5eREgQIAAAQIECBAgQIAAAQIECBBIAgJcYjIiQIAAAQIECBAgQIAAAQIECBAg8AkIcJ+bFwECBAgQIECAAAECBAgQIECAAIEkIMAlJiMCBAgQIECAAAECBAgQIECAAAECn4AA97l5ESBAgAABAgQIECBAgAABAgQIEEgCAlxiMiJAgAABAgQIECBAgAABAgQIECDwCQhwn5sXAQIECBAgQIAAAQIECBAgQIAAgSQgwCUmIwIECBAgQIAAAQIECBAgQIAAAQKfgAD3uXkRIECAAAECBAgQIECAAAECBAgQSAICXGIyIkCAAAECBAgQIECAAAECBAgQIPAJCHCfmxcBAgQIECBAgAABAgQIECBAgACBJCDAJSYjAgQIECBAgAABAgQIECBAgAABAp+AAPe5eREgQIAAAQIECBAgQIAAAQIECBBIAgJcYjIiQIAAAQIECBAgQIAAAQIECBAg8AkIcJ+bFwECBAgQIECAAAECBAgQIECAAIEkIMAlJiMCBAgQIECAAAECBAgQIECAAAECn4AA97l5ESBAgAABAgQIECBAgAABAgQIEEgCAlxiMiJAgAABAgQIECBAgAABAgQIECDwCQhwn5sXAQIECBAgQIAAAQIECBAgQIAAgSQgwCUmIwIECBAgQIAAAQIECBAgQIAAAQKfgAD3uXkRIECAAAECBAgQIECAAAECBAgQSAICXGIyIkCAAAECBAgQIECAAAECBAgQIPAJCHCfmxcBAgQIECBAgAABAgQIECBAgACBJCDAJSYjAgQIECBAgAABAgQIECBAgAABAp+AAPe5eREgQIAAAQIECBAgQIAAAQIECBBIAgJcYjIiQIAAAQIECBAgQIAAAQIECBAg8AkIcJ+bFwECBAgQIECAAAECBAgQIECAAIEkIMAlJiMCBAgQIECAAAECBAgQIECAAAECn4AA97l5ESBAgAABAgQIECBAgAABAgQIEEgCAlxiMiJAgAABAgQIECBAgAABAgQIECDwCQhwn5sXAQIECBAgQIAAAQIECBAgQIAAgSQgwCUmIwIECBAgQIAAAQIECBAgQIAAAQKfgAD3uXkRIECAAAECBAgQIECAAAECBAgQSAICXGIyIkCAAAECBAgQIECAAAECBAgQIPAJCHCfmxcBAgQIECBAgAABAgQIECBAgACBJCDAJSYjAgQIECBAgAABAgQIECBAgAABAp+AAPe5eREgQIAAAQIECBAgQIAAAQIECBBIAgJcYjIiQIAAAQIECBAgQIAAAQIECBAg8AkIcJ+bFwECBAgQIECAAAECBAgQIECAAIEkIMAlJiMCBAgQIECAAAECBAgQIECAAAECn8AAfCKTazx2iD8AAAAASUVORK5CYII=",
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"text_length(\"sst2\", query=\"predicted_as:positive\").visualize()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}