File size: 41,794 Bytes
d19887c 059e0f0 d19887c fd955fd d5d3533 059e0f0 d19887c 059e0f0 d19887c 059e0f0 d19887c fd955fd d19887c 059e0f0 d19887c 059e0f0 d19887c 059e0f0 d19887c fd955fd d19887c fd955fd d19887c 059e0f0 d19887c 059e0f0 fd955fd 059e0f0 d19887c 57ddc8f d19887c cd5b155 d19887c 57ddc8f d19887c 57ddc8f d19887c 57ddc8f d19887c d5d3533 d19887c fd955fd d19887c fd955fd d19887c b96f2eb d19887c fd955fd d19887c 9e889b2 fd955fd 9e889b2 fd955fd 9e889b2 d19887c fd955fd d19887c d5d3533 fd955fd d5d3533 fd955fd d19887c fd955fd d19887c 059e0f0 d19887c b96f2eb d19887c c5c298a d19887c b96f2eb d19887c c5c298a d19887c c5c298a d19887c 059e0f0 d19887c fd955fd d19887c d5d3533 d19887c 2d59889 d19887c 57ddc8f d19887c d7a4441 d19887c 6116fcb d5d3533 6116fcb d19887c d7a4441 d19887c 9f640f3 d19887c b96f2eb 9f09eda 3adcbdf 9380ccd b96f2eb 6116fcb d5d3533 6116fcb 2d59889 d5d3533 2d59889 9380ccd d19887c b96f2eb 059e0f0 b96f2eb 57ddc8f d19887c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Defaulting to user installation because normal site-packages is not writeable\n",
"Requirement already satisfied: pandas in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (2.2.0)\n",
"Requirement already satisfied: tzdata>=2022.7 in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (from pandas) (2024.1)\n",
"Requirement already satisfied: numpy<2,>=1.22.4 in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (from pandas) (1.26.1)\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (from pandas) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (from pandas) (2024.1)\n",
"Requirement already satisfied: six>=1.5 in /Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.9/lib/python3.9/site-packages (from python-dateutil>=2.8.2->pandas) (1.15.0)\n",
"\u001b[33mWARNING: You are using pip version 21.2.4; however, version 24.2 is available.\n",
"You should consider upgrading via the '/Library/Developer/CommandLineTools/usr/bin/python3 -m pip install --upgrade pip' command.\u001b[0m\n"
]
}
],
"source": [
"!pip3 install pandas"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get the filelist\n",
"\n",
"For the full results.json"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 6263 results.json files\n"
]
}
],
"source": [
"import glob\n",
"\n",
"# Specify the path to the folder containing the results.json files\n",
"folder_path = \"lm-eval-output\"\n",
"\n",
"# Use glob to find all the results.json files\n",
"results_json_files = glob.glob(f\"{folder_path}/**/results.json\", recursive=True)\n",
"\n",
"# Show total number of results.json files found\n",
"print(f\"Found {len(results_json_files)} results.json files\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Process all the results.json\n",
"\n",
"One file at a time"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processed example: {'name': 'mistralai/Mistral-7B-Instruct-v0.2', 'config': {'dtype=bfloat16,trust_remote_code=True': {'confStr': 'dtype=bfloat16,trust_remote_code=True', 'confObj': {'dtype': 'bfloat16', 'trust_remote_code': 'True'}, 'results': {'cola': {'mcc,none': 0.12965656914783247, 'mcc_stderr,none': 0.032433640730190394, 'alias': 'cola'}}, 'groups': {}}}}\n"
]
}
],
"source": [
"import json\n",
"\n",
"# Global result map if it's not set\n",
"if 'global_result_map' not in globals():\n",
" global_result_map = {}\n",
"\n",
"#\n",
"# Function to process the results.json file\n",
"#\n",
"def process_results_json(file_path):\n",
" with open(file_path) as f:\n",
" data = json.load(f)\n",
"\n",
" # Model args, presplit by ','\n",
" model_args = data['config']['model_args'].split(',')\n",
"\n",
" # Extract the pretrained value from config.model_args\n",
" modelname = model_args[0].split('=')[1]\n",
"\n",
" # Opt array\n",
" confArgsArr = model_args[1:]\n",
"\n",
" # Sort the opt array\n",
" confArgsArr.sort()\n",
" # Convert it to a string\n",
" confStr = ','.join(confArgsArr)\n",
"\n",
" # Convert the option array of key=value strings to a dictionary\n",
" confObj = { }\n",
" for o in confArgsArr:\n",
" k, v = o.split('=')\n",
" confObj[k] = v\n",
" \n",
" # Create a dictionary to store the results, or use the existing one if it exists\n",
" if modelname in global_result_map:\n",
" modelObj = global_result_map[modelname]\n",
" else:\n",
" modelObj = {\n",
" 'name': modelname,\n",
" 'config': { }\n",
" }\n",
" \n",
" # Get the opt object for the model\n",
" if confStr in modelObj['config']:\n",
" confSet = modelObj['config'][confStr]\n",
" else:\n",
" confSet = {\n",
" 'confStr': confStr,\n",
" 'confObj': confObj,\n",
" 'results': {},\n",
" 'groups': {}\n",
" }\n",
"\n",
" # Iterate over the results and extract the result object for each test/group\n",
" if 'results' in data:\n",
" for test, result in data['results'].items():\n",
" confSet['results'][test] = result\n",
" if 'groups' in data:\n",
" for test, result in data['groups'].items():\n",
" confSet['groups'][test] = result\n",
" \n",
" # Update the global result map object\n",
" modelObj['config'][confStr] = confSet\n",
" global_result_map[modelname] = modelObj\n",
" return modelObj\n",
"\n",
"# Lets test the function with the first results.json file\n",
"first_result = process_results_json(results_json_files[0])\n",
"print(f\"Processed example: \", first_result)\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 134 models\n",
"Models: \n",
"['mistralai/Mistral-7B-Instruct-v0.2', 'mistralai/Mistral-7B-v0.1', 'mosaicml/mpt-7b-instruct', 'mosaicml/mpt-7b', 'mosaicml/mpt-7b-chat', 'bigscience/bloom-7b1', 'bigscience/bloomz-7b1-mt', 'bigscience/bloomz-7b1', 'EleutherAI/pythia-2.8b', 'EleutherAI/pythia-1.4b', 'EleutherAI/gpt-j-6b', 'EleutherAI/pythia-6.9b', 'google/flan-t5-base', 'google/gemma-2b', 'google/gemma-2b-it', 'google/gemma-7b', 'google/gemma-7b-it', 'google/flan-t5-large', 'microsoft/phi-1_5', 'microsoft/phi-2', 'microsoft/phi-1', 'allenai/OLMo-7B', 'TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T', 'TinyLlama/TinyLlama-1.1B-Chat-v1.0', 'RWKV/rwkv-5-world-1b5', 'RWKV/rwkv-5-world-3b', 'RWKV/rwkv-4-world-3b', 'RWKV/v5-EagleX-v2-7B-HF', 'RWKV/rwkv-6-world-1b6', 'RWKV/rwkv-4-world-1b5', 'RWKV/v5-Eagle-7B-HF', 'RWKV/v6-Finch-7B-HF', 'RWKV/rwkv-6-world-3b-v2.1', 'RWKV/rwkv-4-world-7b', 'RWKV/v6-Finch-14B-HF', 'RWKV/rwkv-raven-7b', 'RWKV/rwkv-6-world-3b', 'aisingapore/sealion7b', 'aisingapore/sealion3b', './rwkv-x-dev/1_3-C5-rwkv-270_pth', './rwkv-x-dev/225-EagleX-PreFT-C', './rwkv-x-dev/225-EagleX-PreFT-D', './rwkv-x-dev/1_0_pth', './rwkv-x-dev/chunk4-0_85_pth', './rwkv-x-dev/1_3-C1-rwkv-340_pth', './rwkv-x-dev/chunk1-0_8_pth', './rwkv-x-dev/chunk0-0_8_pth', './rwkv-x-dev/225-EagleX-PreFT-E', './rwkv-x-dev/225-EagleX-PreFT-B', './rwkv-x-dev/blink4-final_pth', './rwkv-x-dev/chunk2-0_8_pth', './rwkv-x-dev/chunk3-0_8_pth', './rwkv-x-dev/r3-4k-test2-fix3-blink-final_pth', './rwkv-x-dev/R4-7B-15t-With-Mask_pth', './rwkv-x-dev/r3-testchunk-1-8_pth', './rwkv-x-dev/R4-with-shuffle-rwkv-53_pth', './rwkv-x-dev/chunk7-2-0_85_pth', './rwkv-x-dev/EagleX-1_7T_pth', './rwkv-x-dev/r3-testchunk2-blink-fixed_pth', './rwkv-x-dev/r3-testchunk2-blink_pth', './rwkv-x-dev/rwkv-230_pth', './rwkv-x-dev/1_3-C0-rwkv-60_pth', './rwkv-x-dev/chunk5-0_85_pth', './rwkv-x-dev/R4-7B-Base-No-Mask_pth', './rwkv-x-dev/RWKV-5-World-1B5-v2-20231025-ctx4096', './rwkv-x-dev/R4-1B5-No-Mask_pth', './rwkv-x-dev/RWKV-32K-5B-RW_pth', './rwkv-x-dev/R4-7B-15t-32k-No-Mask_pth', './rwkv-x-dev/1_3-C0-PRERUN-rwkv-60_pth', './rwkv-x-dev/EagleX_1-7T_Chat_pth', './rwkv-x-dev/1_3-C1-rwkv-390_pth', './rwkv-x-dev/1_3-C1-rwkv-20_pth', './rwkv-x-dev/chunk8-1-0_85_pth', './rwkv-x-dev/R4-7B-Base-32k-No-Mask_pth', './rwkv-x-dev/R4-no-shuffle-rwkv-53_pth', './rwkv-x-dev/1_3-C2-rwkv-648_pth', './rwkv-x-dev/1_3-C2-rwkv-250_pth', './rwkv-x-dev/r3-testchunk-1-8-no-cuda-with-warmup_pth', './rwkv-x-dev/1_3-C0-rwkv-140_pth', './rwkv-x-dev/bruber_9b', './rwkv-x-dev/Eagle-225-1FT', './rwkv-x-dev/225-EagleX-PreFT-A', './rwkv-x-dev/225-EagleX-PreFT-F', './rwkv-x-dev/r3-c1-8_pth', './rwkv-x-dev/1_3-C0-PRERUN-rwkv-450_pth', './rwkv-x-dev/RWKV-5-World-3B-v2-20231118-ctx16k', './rwkv-x-dev/1_3-C0-PREPRERUN-rwkv-40_pth', './rwkv-x-dev/RWKV-5-World-7B-v2-20240128-ctx4096', './rwkv-x-dev/R4-7B-15t-No-Mask_pth', './rwkv-x-dev/1_0-c1-290_pth', './rwkv-x-dev/R4-1B5-With-Mask_pth', './rwkv-x-dev/Quetzal-N8-1', './rwkv-x-dev/1_3-C0-PREPRERUN-rwkv-30_pth', './rwkv-x-dev/1_3-C0-rwkv-70_pth', './rwkv-x-dev/chunk6-0_85_pth', './rwkv-x-dev/R4-7B-Base-With-Mask_pth', 'rwkv-x-dev/v5-Eagle-7B-1_0T-HF', './rwkv-x-dev/1_3-C0-PRERUN-rwkv-30_pth', './rwkv-x-dev/chunk7-1-0_85_pth', './rwkv-x-dev/1_3-C1-rwkv-190_pth', './rwkv-x-dev/R4-7B-15t-extd-e3_pth', './rwkv-x-dev/r3-testchunk2_pth', './rwkv-x-dev/Hermes-RWKV-v5-7B_pth', './rwkv-x-dev/1_3-C0-rwkv-153_pth', './rwkv-x-dev/R4-7B-15t-extd-e2_pth', './rwkv-x-dev/r3-testchunk-blink_pth', 'SmerkyG/rwkv-5-world-1b5', 'SmerkyG/rwkv6-world-1b6', 'SmerkyG/rwkv6-world-3b', 'SmerkyG/rwkv-5-world-3b', 'SmerkyG/rwkv-5-world-7b', 'SmerkyG/rwkv5-world-7b', 'togethercomputer/RedPajama-INCITE-7B-Base', 'togethercomputer/RedPajama-INCITE-7B-Instruct', 'togethercomputer/RedPajama-INCITE-7B-Chat', 'facebook/opt-2.7b', 'facebook/opt-6.7b', 'facebook/opt-1.3b', 'tiiuae/falcon-7b-instruct', 'tiiuae/falcon-rw-1b', 'tiiuae/falcon-rw-7b', 'tiiuae/falcon-7b', 'm8than/Finch-14B-Final2', 'm8than/Finch-14B-Continued', 'm8than/Finch-14B-Final', 'm8than/mistral-7b-instruct-0.2', 'm8than/Finch-14B-Continued-10', 'm8than/FinchX-Med', 'TimeMobius/Mobius-RWKV-Chat-12B-128k-v4-HF', 'huggyllama/llama-7b', 'meta-llama/Llama-2-7b-chat-hf', 'meta-llama/Llama-2-7b-hf', 'state-spaces/mamba-2.8b-hf', 'state-spaces/mamba-1.4b-hf']\n",
"Saved to compiled-lm-eval-results.json\n"
]
}
],
"source": [
"# Lets reset and reprocess all the results.json files\n",
"global_result_map = {}\n",
"\n",
"# Process all the results.json files\n",
"for file in results_json_files:\n",
" process_results_json(file)\n",
"\n",
"# Show high level list of models\n",
"print(f\"Found {len(global_result_map)} models\")\n",
"print(f\"Models: \\n{list(global_result_map.keys())}\")\n",
"\n",
"# Save the result map to a file\n",
"with open('summary/compiled-lm-eval-results.json', 'w') as f:\n",
" json.dump(global_result_map, f, sort_keys=True, indent='\\t')\n",
"\n",
"# Echo that its been saved to json\n",
"print(f\"Saved to compiled-lm-eval-results.json\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Convert the results into CSV table formats"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/71/91hw6kks41v97jkjp028xxbr0000gp/T/ipykernel_39274/788387412.py:2: DeprecationWarning: \n",
"Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),\n",
"(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)\n",
"but was not found to be installed on your system.\n",
"If this would cause problems for you,\n",
"please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466\n",
" \n",
" import pandas as pd\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>model</th>\n",
" <th>avg_acc</th>\n",
" <th>avg_acc_stderr</th>\n",
" <th>xcopa (acc)</th>\n",
" <th>xcopa (acc_stderr)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>mistralai/Mistral-7B-Instruct-v0.2</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>mistralai/Mistral-7B-v0.1</td>\n",
" <td>0.559455</td>\n",
" <td>0.053879</td>\n",
" <td>0.559455</td>\n",
" <td>0.053879</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>mosaicml/mpt-7b-instruct</td>\n",
" <td>0.537091</td>\n",
" <td>0.041919</td>\n",
" <td>0.537091</td>\n",
" <td>0.041919</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>mosaicml/mpt-7b</td>\n",
" <td>0.536000</td>\n",
" <td>0.042339</td>\n",
" <td>0.536000</td>\n",
" <td>0.042339</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>mosaicml/mpt-7b-chat</td>\n",
" <td>0.538000</td>\n",
" <td>0.047059</td>\n",
" <td>0.538000</td>\n",
" <td>0.047059</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60</th>\n",
" <td>huggyllama/llama-7b</td>\n",
" <td>0.541818</td>\n",
" <td>0.040718</td>\n",
" <td>0.541818</td>\n",
" <td>0.040718</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61</th>\n",
" <td>meta-llama/Llama-2-7b-chat-hf</td>\n",
" <td>0.559818</td>\n",
" <td>0.054954</td>\n",
" <td>0.559818</td>\n",
" <td>0.054954</td>\n",
" </tr>\n",
" <tr>\n",
" <th>62</th>\n",
" <td>meta-llama/Llama-2-7b-hf</td>\n",
" <td>0.566727</td>\n",
" <td>0.052515</td>\n",
" <td>0.566727</td>\n",
" <td>0.052515</td>\n",
" </tr>\n",
" <tr>\n",
" <th>63</th>\n",
" <td>state-spaces/mamba-2.8b-hf</td>\n",
" <td>0.552909</td>\n",
" <td>0.035570</td>\n",
" <td>0.552909</td>\n",
" <td>0.035570</td>\n",
" </tr>\n",
" <tr>\n",
" <th>64</th>\n",
" <td>state-spaces/mamba-1.4b-hf</td>\n",
" <td>0.544182</td>\n",
" <td>0.031390</td>\n",
" <td>0.544182</td>\n",
" <td>0.031390</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>65 rows × 5 columns</p>\n",
"</div>"
],
"text/plain": [
" model avg_acc avg_acc_stderr xcopa (acc) \\\n",
"0 mistralai/Mistral-7B-Instruct-v0.2 0.000000 0.000000 NaN \n",
"1 mistralai/Mistral-7B-v0.1 0.559455 0.053879 0.559455 \n",
"2 mosaicml/mpt-7b-instruct 0.537091 0.041919 0.537091 \n",
"3 mosaicml/mpt-7b 0.536000 0.042339 0.536000 \n",
"4 mosaicml/mpt-7b-chat 0.538000 0.047059 0.538000 \n",
".. ... ... ... ... \n",
"60 huggyllama/llama-7b 0.541818 0.040718 0.541818 \n",
"61 meta-llama/Llama-2-7b-chat-hf 0.559818 0.054954 0.559818 \n",
"62 meta-llama/Llama-2-7b-hf 0.566727 0.052515 0.566727 \n",
"63 state-spaces/mamba-2.8b-hf 0.552909 0.035570 0.552909 \n",
"64 state-spaces/mamba-1.4b-hf 0.544182 0.031390 0.544182 \n",
"\n",
" xcopa (acc_stderr) \n",
"0 NaN \n",
"1 0.053879 \n",
"2 0.041919 \n",
"3 0.042339 \n",
"4 0.047059 \n",
".. ... \n",
"60 0.040718 \n",
"61 0.054954 \n",
"62 0.052515 \n",
"63 0.035570 \n",
"64 0.031390 \n",
"\n",
"[65 rows x 5 columns]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Lets convert this into a table, which we will display in this notebook, and save as a CSV\n",
"import pandas as pd\n",
"\n",
"##################################################\n",
"#\n",
"# Utility functions\n",
"#\n",
"##################################################\n",
"\n",
"# Check if the given name string, is within the list, including \"*\" wildcard\n",
"def is_in_list(name, list):\n",
" for n in list:\n",
" if n[-1] == '*':\n",
" if name.startswith(n[:-1]):\n",
" return True\n",
" elif n == name:\n",
" return True\n",
" return False\n",
"\n",
"# Is in inclusion exclusion list pair\n",
"def is_in_list_pair(name, inList, exList):\n",
" if not is_in_list(name, inList):\n",
" return False\n",
" if is_in_list(name, exList):\n",
" return False\n",
" return True\n",
"\n",
"# Prepare a single test/group result object\n",
"# By applying common filtering and formatting changes\n",
"def prepare_test_result(result):\n",
" # The reutrn object\n",
" ret = {}\n",
" # Iterate the result key/value\n",
" for k, v in result.items():\n",
" # Skip if its alias\n",
" if k == 'alias':\n",
" continue\n",
"\n",
" # If the key ends with \",none\", drop the \",none\"\n",
" if k.endswith(',none'):\n",
" k = k[:-5]\n",
" \n",
" # Save the result\n",
" ret[k] = v\n",
" \n",
" # Return the result\n",
" return ret\n",
"\n",
"##################################################\n",
"#\n",
"# Generate the result\n",
"#\n",
"##################################################\n",
"\n",
"# Create a list of rows for the table\n",
"def generate_result_table(\n",
" inConfig = { \"dtype\": \"bfloat16\" },\n",
"\n",
" # Models to include/exclude\n",
" inModels = [\"*\"],\n",
" exModels = [\"./rwkv-x-dev/*\", \"rwkv-x-dev\"],\n",
"\n",
" # Results and groups to include\n",
" inResults = [],\n",
" inGroups = [\"*\"],\n",
"\n",
" # Exclude results and groups, applied after inResults and inGroups\n",
" exResults = [],\n",
" exGroups = [],\n",
"\n",
" # Sorted\n",
" sort = False,\n",
" simplified = False\n",
"):\n",
" table_rows = []\n",
"\n",
" # Iterate over the models\n",
" for model, modelObj in global_result_map.items():\n",
" # Skip if not in the inModels or exModels\n",
" if not is_in_list_pair(model, inModels, exModels):\n",
" continue\n",
"\n",
" # Iterate over the configurations\n",
" for confStr, confSet in modelObj['config'].items():\n",
" # Get the confObj\n",
" confObj = confSet['confObj']\n",
"\n",
" # Check if the inConfig, matches the confObj\n",
" if inConfig:\n",
" skip = False\n",
" for k, v in inConfig.items():\n",
" if k not in confObj or confObj[k] != v:\n",
" skip = True\n",
" break\n",
" if skip:\n",
" continue\n",
"\n",
" # Create a row object\n",
" row = {\n",
" 'model': model,\n",
" # 'config': confStr\n",
"\n",
" \"avg_acc\": 0.0,\n",
" \"avg_acc_stderr\": 0.0,\n",
" }\n",
"\n",
" # Total acc / acc_stderr\n",
" acc_total = 0.0\n",
" acc_count = 0\n",
" acc_stderr_total = 0.0\n",
" acc_stderr_count = 0\n",
"\n",
" # Add the groups\n",
" for test, result in confSet['groups'].items():\n",
"\n",
" # Skip if not in the inGroups or exGroups\n",
" if not is_in_list_pair(test, inGroups, exGroups):\n",
" continue\n",
"\n",
" # Filter the result obj\n",
" cleanResult = prepare_test_result(result)\n",
"\n",
" # Add the result to the row, as seperate columns for each key\n",
" for k, v in cleanResult.items():\n",
" if k == 'acc':\n",
" acc_total += v\n",
" acc_count += 1\n",
" elif k == 'acc_stderr':\n",
" acc_stderr_total += v\n",
" acc_stderr_count += 1\n",
" \n",
" # For simplified, we only use acc and perplexity\n",
" if simplified and k not in ['acc', 'perplexity']:\n",
" continue\n",
"\n",
" # Save the value\n",
" row[f\"{test} ({k})\"] = v\n",
"\n",
" # Add the results\n",
" for test, result in confSet['results'].items():\n",
"\n",
" # Skip if not in the inResults or exResults\n",
" if not is_in_list_pair(test, inResults, exResults):\n",
" continue\n",
"\n",
" # Filter the result obj\n",
" cleanResult = prepare_test_result(result)\n",
"\n",
" # Add the result to the row, as seperate columns for each key\n",
" for k, v in cleanResult.items():\n",
" if k == 'acc':\n",
" acc_total += v\n",
" acc_count += 1\n",
" elif k == 'acc_stderr':\n",
" acc_stderr_total += v\n",
" acc_stderr_count += 1\n",
"\n",
" # For simplified, we only use acc and perplexity\n",
" if simplified and k not in ['acc', 'perplexity']:\n",
" continue\n",
"\n",
" # Save the value\n",
" row[f\"{test} ({k})\"] = v\n",
" \n",
" # Add the avg acc and acc_stderr\n",
" if acc_count > 0:\n",
" row[\"avg_acc\"] = acc_total / acc_count\n",
" if acc_stderr_count > 0:\n",
" row[\"avg_acc_stderr\"] = acc_stderr_total / acc_stderr_count\n",
"\n",
" # Append the row to the table\n",
" table_rows.append(row)\n",
"\n",
" # Create a dataframe from the table rows\n",
" df = pd.DataFrame(table_rows)\n",
"\n",
" # Sort by avg_acc\n",
" if sort:\n",
" df = df.sort_values(by='avg_acc', ascending=False)\n",
"\n",
" # Show the dataframe\n",
" return df\n",
"\n",
"# Generate the dataframe\n",
"df = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"xcopa\"], inResults=[] )\n",
"\n",
"# # Save the dataframe to a CSV file\n",
"# df.to_csv('summary/compiled-lm-eval-results.csv', index=False)\n",
"\n",
"# Show results\n",
"df\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total 38760\n",
"-rw-r--r--@ 1 picocreator staff 1.4M Aug 12 16:40 bf16-all-results-and-groups.csv\n",
"-rw-r--r--@ 1 picocreator staff 373K Aug 12 16:40 bf16-all-simplified-results-and-groups.csv\n",
"-rw-r--r--@ 1 picocreator staff 373K Aug 12 16:40 bf16-all-sorted-results-and-groups.csv\n",
"-rw-r--r--@ 1 picocreator staff 99K Aug 12 16:40 bf16-eng-focus.csv\n",
"-rw-r--r--@ 1 picocreator staff 1.3M Aug 12 16:40 bf16-eng-results.csv\n",
"-rw-r--r--@ 1 picocreator staff 113K Aug 12 16:40 bf16-eng-summary.csv\n",
"-rw-r--r--@ 1 picocreator staff 142K Aug 12 16:40 bf16-multilang-results.csv\n",
"-rw-r--r--@ 1 picocreator staff 20K Aug 12 16:40 bf16-multilang-summary.csv\n",
"-rw-r--r--@ 1 picocreator staff 99K Aug 12 16:40 bf16-sorted-eng-focus.csv\n",
"-rw-r--r--@ 1 picocreator staff 1.3M Aug 12 16:40 bf16-sorted-eng-results.csv\n",
"-rw-r--r--@ 1 picocreator staff 113K Aug 12 16:40 bf16-sorted-eng-summary.csv\n",
"-rw-r--r--@ 1 picocreator staff 20K Aug 12 16:40 bf16-sorted-multilang-summary.csv\n",
"-rw-r--r-- 1 picocreator staff 11M Aug 12 16:40 compiled-lm-eval-results.json\n",
"-rw-r--r--@ 1 picocreator staff 184K Jul 31 15:25 rwkv-x-dev-bf16-sorted-eng-180.csv\n",
"-rw-r--r--@ 1 picocreator staff 33K Jul 31 15:25 rwkv-x-dev-bf16-sorted-eng-21-focus.csv\n",
"-rw-r--r--@ 1 picocreator staff 129K Aug 12 16:40 rwkv-x-dev-bf16-sorted-eng-all.csv\n",
"-rw-r--r--@ 1 picocreator staff 8.4K Aug 12 16:40 rwkv-x-dev-bf16-sorted-eng-focus.csv\n",
"-rw-r--r--@ 1 picocreator staff 6.9K Aug 12 16:40 rwkv-x-dev-bf16-sorted-multilang-summary.csv\n"
]
}
],
"source": [
"##################################################\n",
"#\n",
"# Build the various subsets\n",
"#\n",
"##################################################\n",
"\n",
"FOCUS_MODEL_LIST=[\n",
" # \"./rwkv-x-dev/*\", \n",
" \"rwkv-x-dev/*\", \"RWKV/*\", \"meta-llama/Llama-2-7b*\", \"mistralai/Mistral-7B-v0.1\", \"m8than/*\"\n",
"]\n",
"\n",
"# Overall results\n",
"all_results = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[\"*\"] )\n",
"all_results.to_csv('summary/bf16-all-results-and-groups.csv', index=False)\n",
"\n",
"all_results = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[\"*\"], simplified=True )\n",
"all_results.to_csv('summary/bf16-all-simplified-results-and-groups.csv', index=False)\n",
"\n",
"all_results = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[\"*\"], simplified=True, sort=True )\n",
"all_results.to_csv('summary/bf16-all-sorted-results-and-groups.csv', index=False)\n",
"\n",
"# Multilang results\n",
"multiLang_tTest = [\"xcopa_*\", \"xnli_*\", \"xstorycloze_*\", \"xwinograd_*\", \"lambada_openai_*\", \"pawsx_*\"]\n",
"multiLang_tGrps = [\"xcopa\", \"xnli\", \"xstorycloze\", \"xwinograd\", \"lambada_multilingual\", \"pawsx\"]\n",
"# Both test and groups, merged into a single list\n",
"multiLang_joint = multiLang_tTest + multiLang_tGrps\n",
"\n",
"multilang_grp = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=multiLang_tGrps, inResults=[] )\n",
"multilang_test = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=multiLang_tGrps, inResults=multiLang_tTest )\n",
"multilang_grp.to_csv('summary/bf16-multilang-summary.csv', index=False)\n",
"multilang_test.to_csv('summary/bf16-multilang-results.csv', index=False)\n",
"\n",
"multilang_grp_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=multiLang_tGrps, inResults=[], sort=True )\n",
"multilang_grp_sorted.to_csv('summary/bf16-sorted-multilang-summary.csv', index=False)\n",
"\n",
"# RWKV perf tracking\n",
"rwkv_multilang_grp_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=multiLang_tGrps, inResults=[], exModels=[], inModels=FOCUS_MODEL_LIST, sort=True )\n",
"rwkv_multilang_grp_sorted.to_csv('summary/rwkv-x-dev-bf16-sorted-multilang-summary.csv', index=False)\n",
"\n",
"# All other results\n",
"eng_grp = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[], exGroups=multiLang_joint, exResults=multiLang_joint )\n",
"eng_grp_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[], exGroups=multiLang_joint, exResults=multiLang_joint, sort=True )\n",
"eng_test = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[\"*\"], exGroups=multiLang_joint, exResults=multiLang_joint )\n",
"eng_test_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[\"*\"], exGroups=multiLang_joint, exResults=multiLang_joint, sort=True )\n",
"\n",
"eng_grp.to_csv('summary/bf16-eng-summary.csv', index=False)\n",
"eng_test.to_csv('summary/bf16-eng-results.csv', index=False)\n",
"eng_test_sorted.to_csv('summary/bf16-sorted-eng-results.csv', index=False)\n",
"eng_grp_sorted.to_csv('summary/bf16-sorted-eng-summary.csv', index=False)\n",
"\n",
"# English focused subset\n",
"eng_focus_mixed=[\"lambada_openai\", \"lambada_standard\", \"blimp\", \"piqa\", \"copa\", \"sciq\", \"truthfulqa\", \"pythia\"] #\"np_open\", \"cmmlu\", \"record\"\n",
"eng_focus_tGrps=[\"anli\", \"glue\", \"mmlu\" ]\n",
"eng_focus_tTest=[\"blimp\", \"arc_*\", \"logiqa\", \"winogrande\", \"openbookqa\", \"hellaswag\"]\n",
"\n",
"eng_focus_tGrps = eng_focus_tGrps + eng_focus_mixed\n",
"eng_focus_tTest = eng_focus_tTest + eng_focus_mixed\n",
"\n",
"eng_focus = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=eng_focus_tGrps, inResults=eng_focus_tTest )\n",
"eng_focus_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=eng_focus_tGrps, inResults=eng_focus_tTest, sort=True )\n",
"eng_focus.to_csv('summary/bf16-eng-focus.csv', index=False)\n",
"eng_focus_sorted.to_csv('summary/bf16-sorted-eng-focus.csv', index=False)\n",
"\n",
"# RWKV perf tracking\n",
"rwkv_eng_focus_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=eng_focus_tGrps, inResults=eng_focus_tTest, exModels=[], inModels=FOCUS_MODEL_LIST, sort=True, simplified=True )\n",
"rwkv_eng_focus_sorted.to_csv('summary/rwkv-x-dev-bf16-sorted-eng-focus.csv', index=False)\n",
"\n",
"# RWKV perf tracking\n",
"rwkv_eng_all_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[\"*\"], exModels=[], inModels=FOCUS_MODEL_LIST, sort=True, simplified=True )\n",
"rwkv_eng_all_sorted.to_csv('summary/rwkv-x-dev-bf16-sorted-eng-all.csv', index=False)\n",
"\n",
"# # Overall results\n",
"# rwkv_all_results = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[\"*\"], inModels=[\"./rwkv-x-dev/*\", \"rwkv-x-dev/*\", \"RWKV/*\"], exModels=[], sort=True )\n",
"# rwkv_all_results.to_csv('summary/rwkv-x-dev-bf16-all-results-and-groups.csv', index=False)\n",
"\n",
"# List the files\n",
"!ls -lh summary"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# 21 eval focus\n",
"focus_21=[\"sciq\", \"glue\", \"anli\", \"mnli\", \"mnli_mismatch\", \"swag\", \"winogrande\", \"wnli\", \"truthfulqa\", \"logiqa\", \"logiqa2\", \"lambada_standard\", \"lambada_openai\", \"mmlu\", \"piqa\", \"arc_easy\", \"arc_challenge\", \"hellaswag\", \"openbookqa\", \"mathqa\", \"arithmetic\"]\n",
"focus_21_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=focus_21, inResults=focus_21, exModels=[], inModels=[\"./rwkv-x-dev/*\", \"rwkv-x-dev/*\", \"RWKV/*\", \"meta-llama/Llama-2-7b*\", \"mistralai/Mistral-7B-v0.1\"], sort=True, simplified=True )\n",
"focus_21_sorted.to_csv('summary/rwkv-x-dev-bf16-sorted-eng-21-focus.csv', index=False)\n",
"\n",
"# English 180\n",
"eng_180=[\n",
" \"anli\",\n",
" \"glue\",\n",
" \"blimp\",\n",
" \"truthfulqa\",\n",
" \"lambada\",\n",
" \"ai2_arc\",\n",
" \"multimedqa\",\n",
" \"pythia\",\n",
" \"mathqa\",\n",
" \"mmlu\",\n",
" \"anli_r1\",\n",
" \"anli_r2\",\n",
" \"anli_r3\",\n",
" \"wsc\",\n",
" \"lambada_standard_cloze_yaml\",\n",
" \"mnli\",\n",
" \"mnli_mismatch\",\n",
" \"mrpc\",\n",
" \"qnli\",\n",
" \"qqp\",\n",
" \"rte\",\n",
" \"sst2\",\n",
" \"wnli\",\n",
" \"blimp_adjunct_island\",\n",
" \"blimp_anaphor_gender_agreement\",\n",
" \"blimp_anaphor_number_agreement\",\n",
" \"blimp_animate_subject_passive\",\n",
" \"blimp_animate_subject_trans\",\n",
" \"blimp_causative\",\n",
" \"blimp_complex_NP_island\",\n",
" \"blimp_coordinate_structure_constraint_complex_left_branch\",\n",
" \"blimp_coordinate_structure_constraint_object_extraction\",\n",
" \"blimp_determiner_noun_agreement_1\",\n",
" \"blimp_determiner_noun_agreement_2\",\n",
" \"blimp_determiner_noun_agreement_irregular_1\",\n",
" \"blimp_determiner_noun_agreement_irregular_2\",\n",
" \"blimp_determiner_noun_agreement_with_adj_2\",\n",
" \"blimp_determiner_noun_agreement_with_adj_irregular_1\",\n",
" \"blimp_determiner_noun_agreement_with_adj_irregular_2\",\n",
" \"blimp_determiner_noun_agreement_with_adjective_1\",\n",
" \"blimp_distractor_agreement_relational_noun\",\n",
" \"blimp_distractor_agreement_relative_clause\",\n",
" \"blimp_drop_argument\",\n",
" \"blimp_ellipsis_n_bar_1\",\n",
" \"blimp_ellipsis_n_bar_2\",\n",
" \"blimp_existential_there_object_raising\",\n",
" \"blimp_existential_there_quantifiers_1\",\n",
" \"blimp_existential_there_quantifiers_2\",\n",
" \"blimp_existential_there_subject_raising\",\n",
" \"blimp_expletive_it_object_raising\",\n",
" \"blimp_inchoative\",\n",
" \"blimp_intransitive\",\n",
" \"blimp_irregular_past_participle_adjectives\",\n",
" \"blimp_irregular_past_participle_verbs\",\n",
" \"blimp_irregular_plural_subject_verb_agreement_1\",\n",
" \"blimp_irregular_plural_subject_verb_agreement_2\",\n",
" \"blimp_left_branch_island_echo_question\",\n",
" \"blimp_left_branch_island_simple_question\",\n",
" \"blimp_matrix_question_npi_licensor_present\",\n",
" \"blimp_npi_present_1\",\n",
" \"blimp_npi_present_2\",\n",
" \"blimp_only_npi_licensor_present\",\n",
" \"blimp_only_npi_scope\",\n",
" \"blimp_passive_1\",\n",
" \"blimp_passive_2\",\n",
" \"blimp_principle_A_c_command\",\n",
" \"blimp_principle_A_case_1\",\n",
" \"blimp_principle_A_case_2\",\n",
" \"blimp_principle_A_domain_1\",\n",
" \"blimp_principle_A_domain_2\",\n",
" \"blimp_principle_A_domain_3\",\n",
" \"blimp_principle_A_reconstruction\",\n",
" \"blimp_regular_plural_subject_verb_agreement_1\",\n",
" \"blimp_regular_plural_subject_verb_agreement_2\",\n",
" \"blimp_sentential_negation_npi_licensor_present\",\n",
" \"blimp_sentential_negation_npi_scope\",\n",
" \"blimp_sentential_subject_island\",\n",
" \"blimp_superlative_quantifiers_1\",\n",
" \"blimp_superlative_quantifiers_2\",\n",
" \"blimp_tough_vs_raising_1\",\n",
" \"blimp_tough_vs_raising_2\",\n",
" \"blimp_transitive\",\n",
" \"blimp_wh_island\",\n",
" \"blimp_wh_questions_object_gap\",\n",
" \"blimp_wh_questions_subject_gap\",\n",
" \"blimp_wh_questions_subject_gap_long_distance\",\n",
" \"blimp_wh_vs_that_no_gap\",\n",
" \"blimp_wh_vs_that_no_gap_long_distance\",\n",
" \"blimp_wh_vs_that_with_gap\",\n",
" \"blimp_wh_vs_that_with_gap_long_distance\",\n",
" \"sciq\",\n",
" \"truthfulqa_mc1\",\n",
" \"truthfulqa_mc2\",\n",
" \"multirc\",\n",
" \"lambada_openai\",\n",
" \"lambada_standard\",\n",
" \"piqa\",\n",
" \"prost\",\n",
" \"wsc273\",\n",
" \"qa4mre_2011\",\n",
" \"qa4mre_2012\",\n",
" \"qa4mre_2013\",\n",
" \"arc_challenge\",\n",
" \"arc_easy\",\n",
" \"logiqa\",\n",
" \"winogrande\",\n",
" \"boolq\",\n",
" \"logiqa2\",\n",
" \"openbookqa\",\n",
" \"medmcqa\",\n",
" \"medqa_4options\",\n",
" \"mmlu_anatomy\",\n",
" \"mmlu_clinical_knowledge\",\n",
" \"mmlu_college_biology\",\n",
" \"mmlu_college_medicine\",\n",
" \"mmlu_medical_genetics\",\n",
" \"mmlu_professional_medicine\",\n",
" \"pubmedqa\",\n",
" \"mc_taco\",\n",
" \"lambada_openai_mt_de\",\n",
" \"lambada_openai_mt_en\",\n",
" \"lambada_openai_mt_es\",\n",
" \"lambada_openai_mt_fr\",\n",
" \"lambada_openai_mt_it\",\n",
" \"mmlu_formal_logic\",\n",
" \"mmlu_high_school_european_history\",\n",
" \"mmlu_high_school_us_history\",\n",
" \"mmlu_high_school_world_history\",\n",
" \"mmlu_international_law\",\n",
" \"mmlu_jurisprudence\",\n",
" \"mmlu_logical_fallacies\",\n",
" \"mmlu_moral_disputes\",\n",
" \"mmlu_moral_scenarios\",\n",
" \"mmlu_philosophy\",\n",
" \"mmlu_prehistory\",\n",
" \"mmlu_professional_law\",\n",
" \"mmlu_world_religions\",\n",
" \"mmlu_business_ethics\",\n",
" \"mmlu_global_facts\",\n",
" \"mmlu_human_aging\",\n",
" \"mmlu_management\",\n",
" \"mmlu_marketing\",\n",
" \"mmlu_miscellaneous\",\n",
" \"mmlu_nutrition\",\n",
" \"mmlu_professional_accounting\",\n",
" \"mmlu_virology\",\n",
" \"mmlu_econometrics\",\n",
" \"mmlu_high_school_geography\",\n",
" \"mmlu_high_school_government_and_politics\",\n",
" \"mmlu_high_school_macroeconomics\",\n",
" \"mmlu_high_school_microeconomics\",\n",
" \"mmlu_high_school_psychology\",\n",
" \"mmlu_human_sexuality\",\n",
" \"mmlu_professional_psychology\",\n",
" \"mmlu_public_relations\",\n",
" \"mmlu_security_studies\",\n",
" \"mmlu_sociology\",\n",
" \"mmlu_us_foreign_policy\",\n",
" \"mmlu_abstract_algebra\",\n",
" \"mmlu_astronomy\",\n",
" \"mmlu_college_chemistry\",\n",
" \"mmlu_college_computer_science\",\n",
" \"mmlu_college_mathematics\",\n",
" \"mmlu_college_physics\",\n",
" \"mmlu_computer_security\",\n",
" \"mmlu_conceptual_physics\",\n",
" \"mmlu_electrical_engineering\",\n",
" \"mmlu_elementary_mathematics\",\n",
" \"mmlu_high_school_biology\",\n",
" \"mmlu_high_school_chemistry\",\n",
" \"mmlu_high_school_computer_science\",\n",
" \"mmlu_high_school_mathematics\",\n",
" \"mmlu_high_school_physics\",\n",
" \"mmlu_high_school_statistics\",\n",
" \"mmlu_machine_learning\",\n",
" \"wic\",\n",
" \"swag\",\n",
" \"hellaswag\",\n",
" \"cb\",\n",
" \"sglue_rte\"\n",
"]\n",
"eng_180_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=eng_180, inResults=eng_180, exModels=[], inModels=[\"./rwkv-x-dev/*\", \"rwkv-x-dev/*\", \"RWKV/*\", \"meta-llama/Llama-2-7b*\", \"mistralai/Mistral-7B-v0.1\"], sort=True, simplified=True )\n",
"eng_180_sorted.to_csv('summary/rwkv-x-dev-bf16-sorted-eng-180.csv', index=False)\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|