Commit
·
b2a80b7
1
Parent(s):
aa53828
update results / drop old misplaced results
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- lm-eval-output/RedPajama-INCITE-7B-Base/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/RedPajama-INCITE-7B-Base/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -252
- lm-eval-output/RedPajama-INCITE-7B-Base/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +0 -3
- lm-eval-output/RedPajama-INCITE-7B-Base/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/RedPajama-INCITE-7B-Base/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -283
- lm-eval-output/RedPajama-INCITE-7B-Base/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +0 -3
- lm-eval-output/RedPajama-INCITE-7B-Base/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/RedPajama-INCITE-7B-Base/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -390
- lm-eval-output/RedPajama-INCITE-7B-Base/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +0 -3
- lm-eval-output/RedPajama-INCITE-7B-Base/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/RedPajama-INCITE-7B-Base/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -548
- lm-eval-output/RedPajama-INCITE-7B-Base/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +0 -3
- lm-eval-output/RedPajama-INCITE-7B-Base/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/RedPajama-INCITE-7B-Base/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -423
- lm-eval-output/RedPajama-INCITE-7B-Base/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +0 -3
- lm-eval-output/RedPajama-INCITE-7B-Base/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/RedPajama-INCITE-7B-Base/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -248
- lm-eval-output/RedPajama-INCITE-7B-Base/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +0 -3
- lm-eval-output/allenai/OLMo-7B/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/allenai/OLMo-7B/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +21 -19
- lm-eval-output/allenai/OLMo-7B/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/allenai/OLMo-7B/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +15 -13
- lm-eval-output/allenai/OLMo-7B/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/arithmetic/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/allenai/OLMo-7B/arithmetic/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +13 -11
- lm-eval-output/allenai/OLMo-7B/arithmetic/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/arithmetic__/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/allenai/OLMo-7B/arithmetic__/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +9 -7
- lm-eval-output/allenai/OLMo-7B/arithmetic__/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/asdiv/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/allenai/OLMo-7B/asdiv/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +7 -5
- lm-eval-output/allenai/OLMo-7B/asdiv/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/allenai/OLMo-7B/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +126 -124
- lm-eval-output/allenai/OLMo-7B/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/boolq/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/allenai/OLMo-7B/boolq/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -60
- lm-eval-output/allenai/OLMo-7B/boolq/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/cb/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/allenai/OLMo-7B/cb/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +5 -3
- lm-eval-output/allenai/OLMo-7B/cb/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/ceval-valid/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/allenai/OLMo-7B/ceval-valid/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -2588
- lm-eval-output/allenai/OLMo-7B/ceval-valid/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/allenai/OLMo-7B/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +247 -245
- lm-eval-output/allenai/OLMo-7B/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/cola/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +0 -3
- lm-eval-output/allenai/OLMo-7B/cola/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +7 -5
lm-eval-output/RedPajama-INCITE-7B-Base/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:310cb302ba58221afa5b4b77eded59124462d2e404e554a396360e14e1432d64
|
3 |
-
size 5210477
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
DELETED
@@ -1,252 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"lambada_multilingual": {
|
4 |
-
"perplexity,none": 55.75634065211411,
|
5 |
-
"perplexity_stderr,none": 17.112832544800874,
|
6 |
-
"acc,none": 0.43578497962352025,
|
7 |
-
"acc_stderr,none": 0.07783182786033929,
|
8 |
-
"alias": "lambada_multilingual"
|
9 |
-
},
|
10 |
-
"lambada_openai_mt_de": {
|
11 |
-
"perplexity,none": 87.03760418597274,
|
12 |
-
"perplexity_stderr,none": 5.220743099786189,
|
13 |
-
"acc,none": 0.318067145352222,
|
14 |
-
"acc_stderr,none": 0.006488469772173893,
|
15 |
-
"alias": " - lambada_openai_mt_de"
|
16 |
-
},
|
17 |
-
"lambada_openai_mt_en": {
|
18 |
-
"perplexity,none": 4.00575099472505,
|
19 |
-
"perplexity_stderr,none": 0.08559465754530345,
|
20 |
-
"acc,none": 0.7003687172520862,
|
21 |
-
"acc_stderr,none": 0.006382179569794074,
|
22 |
-
"alias": " - lambada_openai_mt_en"
|
23 |
-
},
|
24 |
-
"lambada_openai_mt_es": {
|
25 |
-
"perplexity,none": 74.50603551865778,
|
26 |
-
"perplexity_stderr,none": 4.146635362251485,
|
27 |
-
"acc,none": 0.3483407723656123,
|
28 |
-
"acc_stderr,none": 0.006637805195772818,
|
29 |
-
"alias": " - lambada_openai_mt_es"
|
30 |
-
},
|
31 |
-
"lambada_openai_mt_fr": {
|
32 |
-
"perplexity,none": 47.60819762333609,
|
33 |
-
"perplexity_stderr,none": 2.6897251543883476,
|
34 |
-
"acc,none": 0.42227828449446925,
|
35 |
-
"acc_stderr,none": 0.006881304773376873,
|
36 |
-
"alias": " - lambada_openai_mt_fr"
|
37 |
-
},
|
38 |
-
"lambada_openai_mt_it": {
|
39 |
-
"perplexity,none": 65.62411493787893,
|
40 |
-
"perplexity_stderr,none": 3.9555857520848434,
|
41 |
-
"acc,none": 0.3898699786532117,
|
42 |
-
"acc_stderr,none": 0.006794901529888746,
|
43 |
-
"alias": " - lambada_openai_mt_it"
|
44 |
-
}
|
45 |
-
},
|
46 |
-
"groups": {
|
47 |
-
"lambada_multilingual": {
|
48 |
-
"perplexity,none": 55.75634065211411,
|
49 |
-
"perplexity_stderr,none": 17.112832544800874,
|
50 |
-
"acc,none": 0.43578497962352025,
|
51 |
-
"acc_stderr,none": 0.07783182786033929,
|
52 |
-
"alias": "lambada_multilingual"
|
53 |
-
}
|
54 |
-
},
|
55 |
-
"configs": {
|
56 |
-
"lambada_openai_mt_de": {
|
57 |
-
"task": "lambada_openai_mt_de",
|
58 |
-
"group": [
|
59 |
-
"lambada_multilingual"
|
60 |
-
],
|
61 |
-
"dataset_path": "EleutherAI/lambada_openai",
|
62 |
-
"dataset_name": "de",
|
63 |
-
"test_split": "test",
|
64 |
-
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
65 |
-
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
66 |
-
"description": "",
|
67 |
-
"target_delimiter": " ",
|
68 |
-
"fewshot_delimiter": "\n\n",
|
69 |
-
"metric_list": [
|
70 |
-
{
|
71 |
-
"metric": "perplexity",
|
72 |
-
"aggregation": "perplexity",
|
73 |
-
"higher_is_better": false
|
74 |
-
},
|
75 |
-
{
|
76 |
-
"metric": "acc",
|
77 |
-
"aggregation": "mean",
|
78 |
-
"higher_is_better": true
|
79 |
-
}
|
80 |
-
],
|
81 |
-
"output_type": "loglikelihood",
|
82 |
-
"repeats": 1,
|
83 |
-
"should_decontaminate": true,
|
84 |
-
"doc_to_decontamination_query": "{{text}}",
|
85 |
-
"metadata": {
|
86 |
-
"version": 1.0
|
87 |
-
}
|
88 |
-
},
|
89 |
-
"lambada_openai_mt_en": {
|
90 |
-
"task": "lambada_openai_mt_en",
|
91 |
-
"group": [
|
92 |
-
"lambada_multilingual"
|
93 |
-
],
|
94 |
-
"dataset_path": "EleutherAI/lambada_openai",
|
95 |
-
"dataset_name": "en",
|
96 |
-
"test_split": "test",
|
97 |
-
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
98 |
-
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
99 |
-
"description": "",
|
100 |
-
"target_delimiter": " ",
|
101 |
-
"fewshot_delimiter": "\n\n",
|
102 |
-
"metric_list": [
|
103 |
-
{
|
104 |
-
"metric": "perplexity",
|
105 |
-
"aggregation": "perplexity",
|
106 |
-
"higher_is_better": false
|
107 |
-
},
|
108 |
-
{
|
109 |
-
"metric": "acc",
|
110 |
-
"aggregation": "mean",
|
111 |
-
"higher_is_better": true
|
112 |
-
}
|
113 |
-
],
|
114 |
-
"output_type": "loglikelihood",
|
115 |
-
"repeats": 1,
|
116 |
-
"should_decontaminate": true,
|
117 |
-
"doc_to_decontamination_query": "{{text}}",
|
118 |
-
"metadata": {
|
119 |
-
"version": 1.0
|
120 |
-
}
|
121 |
-
},
|
122 |
-
"lambada_openai_mt_es": {
|
123 |
-
"task": "lambada_openai_mt_es",
|
124 |
-
"group": [
|
125 |
-
"lambada_multilingual"
|
126 |
-
],
|
127 |
-
"dataset_path": "EleutherAI/lambada_openai",
|
128 |
-
"dataset_name": "es",
|
129 |
-
"test_split": "test",
|
130 |
-
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
131 |
-
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
132 |
-
"description": "",
|
133 |
-
"target_delimiter": " ",
|
134 |
-
"fewshot_delimiter": "\n\n",
|
135 |
-
"metric_list": [
|
136 |
-
{
|
137 |
-
"metric": "perplexity",
|
138 |
-
"aggregation": "perplexity",
|
139 |
-
"higher_is_better": false
|
140 |
-
},
|
141 |
-
{
|
142 |
-
"metric": "acc",
|
143 |
-
"aggregation": "mean",
|
144 |
-
"higher_is_better": true
|
145 |
-
}
|
146 |
-
],
|
147 |
-
"output_type": "loglikelihood",
|
148 |
-
"repeats": 1,
|
149 |
-
"should_decontaminate": true,
|
150 |
-
"doc_to_decontamination_query": "{{text}}",
|
151 |
-
"metadata": {
|
152 |
-
"version": 1.0
|
153 |
-
}
|
154 |
-
},
|
155 |
-
"lambada_openai_mt_fr": {
|
156 |
-
"task": "lambada_openai_mt_fr",
|
157 |
-
"group": [
|
158 |
-
"lambada_multilingual"
|
159 |
-
],
|
160 |
-
"dataset_path": "EleutherAI/lambada_openai",
|
161 |
-
"dataset_name": "fr",
|
162 |
-
"test_split": "test",
|
163 |
-
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
164 |
-
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
165 |
-
"description": "",
|
166 |
-
"target_delimiter": " ",
|
167 |
-
"fewshot_delimiter": "\n\n",
|
168 |
-
"metric_list": [
|
169 |
-
{
|
170 |
-
"metric": "perplexity",
|
171 |
-
"aggregation": "perplexity",
|
172 |
-
"higher_is_better": false
|
173 |
-
},
|
174 |
-
{
|
175 |
-
"metric": "acc",
|
176 |
-
"aggregation": "mean",
|
177 |
-
"higher_is_better": true
|
178 |
-
}
|
179 |
-
],
|
180 |
-
"output_type": "loglikelihood",
|
181 |
-
"repeats": 1,
|
182 |
-
"should_decontaminate": true,
|
183 |
-
"doc_to_decontamination_query": "{{text}}",
|
184 |
-
"metadata": {
|
185 |
-
"version": 1.0
|
186 |
-
}
|
187 |
-
},
|
188 |
-
"lambada_openai_mt_it": {
|
189 |
-
"task": "lambada_openai_mt_it",
|
190 |
-
"group": [
|
191 |
-
"lambada_multilingual"
|
192 |
-
],
|
193 |
-
"dataset_path": "EleutherAI/lambada_openai",
|
194 |
-
"dataset_name": "it",
|
195 |
-
"test_split": "test",
|
196 |
-
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
197 |
-
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
198 |
-
"description": "",
|
199 |
-
"target_delimiter": " ",
|
200 |
-
"fewshot_delimiter": "\n\n",
|
201 |
-
"metric_list": [
|
202 |
-
{
|
203 |
-
"metric": "perplexity",
|
204 |
-
"aggregation": "perplexity",
|
205 |
-
"higher_is_better": false
|
206 |
-
},
|
207 |
-
{
|
208 |
-
"metric": "acc",
|
209 |
-
"aggregation": "mean",
|
210 |
-
"higher_is_better": true
|
211 |
-
}
|
212 |
-
],
|
213 |
-
"output_type": "loglikelihood",
|
214 |
-
"repeats": 1,
|
215 |
-
"should_decontaminate": true,
|
216 |
-
"doc_to_decontamination_query": "{{text}}",
|
217 |
-
"metadata": {
|
218 |
-
"version": 1.0
|
219 |
-
}
|
220 |
-
}
|
221 |
-
},
|
222 |
-
"versions": {
|
223 |
-
"lambada_multilingual": "N/A",
|
224 |
-
"lambada_openai_mt_de": 1.0,
|
225 |
-
"lambada_openai_mt_en": 1.0,
|
226 |
-
"lambada_openai_mt_es": 1.0,
|
227 |
-
"lambada_openai_mt_fr": 1.0,
|
228 |
-
"lambada_openai_mt_it": 1.0
|
229 |
-
},
|
230 |
-
"n-shot": {
|
231 |
-
"lambada_multilingual": 0,
|
232 |
-
"lambada_openai_mt_de": 0,
|
233 |
-
"lambada_openai_mt_en": 0,
|
234 |
-
"lambada_openai_mt_es": 0,
|
235 |
-
"lambada_openai_mt_fr": 0,
|
236 |
-
"lambada_openai_mt_it": 0
|
237 |
-
},
|
238 |
-
"config": {
|
239 |
-
"model": "hf",
|
240 |
-
"model_args": "pretrained=togethercomputer/RedPajama-INCITE-7B-Base,dtype=bfloat16,trust_remote_code=True",
|
241 |
-
"batch_size": "auto",
|
242 |
-
"batch_sizes": [
|
243 |
-
16
|
244 |
-
],
|
245 |
-
"device": null,
|
246 |
-
"use_cache": null,
|
247 |
-
"limit": null,
|
248 |
-
"bootstrap_iters": 100000,
|
249 |
-
"gen_kwargs": null
|
250 |
-
},
|
251 |
-
"git_hash": "2c0a875"
|
252 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:82e89447db6627b75a9e38192365c5c94b7c889a1bd3fbc15efae6c880c35cb8
|
3 |
-
size 189167
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:04f23a0163c17bec0e2b07f28182ec884262d5d00b34ed2e5bb793d22657a6c6
|
3 |
-
size 2133469
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
DELETED
@@ -1,283 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"pawsx": {
|
4 |
-
"acc,none": 0.4830714285714286,
|
5 |
-
"acc_stderr,none": 0.032587798080603594,
|
6 |
-
"alias": "pawsx"
|
7 |
-
},
|
8 |
-
"paws_de": {
|
9 |
-
"acc,none": 0.4565,
|
10 |
-
"acc_stderr,none": 0.011140733053371408,
|
11 |
-
"alias": " - paws_de"
|
12 |
-
},
|
13 |
-
"paws_en": {
|
14 |
-
"acc,none": 0.445,
|
15 |
-
"acc_stderr,none": 0.011115272135099207,
|
16 |
-
"alias": " - paws_en"
|
17 |
-
},
|
18 |
-
"paws_es": {
|
19 |
-
"acc,none": 0.412,
|
20 |
-
"acc_stderr,none": 0.011008569130325172,
|
21 |
-
"alias": " - paws_es"
|
22 |
-
},
|
23 |
-
"paws_fr": {
|
24 |
-
"acc,none": 0.531,
|
25 |
-
"acc_stderr,none": 0.011161621338114474,
|
26 |
-
"alias": " - paws_fr"
|
27 |
-
},
|
28 |
-
"paws_ja": {
|
29 |
-
"acc,none": 0.4825,
|
30 |
-
"acc_stderr,none": 0.01117628425125418,
|
31 |
-
"alias": " - paws_ja"
|
32 |
-
},
|
33 |
-
"paws_ko": {
|
34 |
-
"acc,none": 0.524,
|
35 |
-
"acc_stderr,none": 0.011170245619215438,
|
36 |
-
"alias": " - paws_ko"
|
37 |
-
},
|
38 |
-
"paws_zh": {
|
39 |
-
"acc,none": 0.5305,
|
40 |
-
"acc_stderr,none": 0.011162310405413182,
|
41 |
-
"alias": " - paws_zh"
|
42 |
-
}
|
43 |
-
},
|
44 |
-
"groups": {
|
45 |
-
"pawsx": {
|
46 |
-
"acc,none": 0.4830714285714286,
|
47 |
-
"acc_stderr,none": 0.032587798080603594,
|
48 |
-
"alias": "pawsx"
|
49 |
-
}
|
50 |
-
},
|
51 |
-
"configs": {
|
52 |
-
"paws_de": {
|
53 |
-
"task": "paws_de",
|
54 |
-
"group": "pawsx",
|
55 |
-
"dataset_path": "paws-x",
|
56 |
-
"dataset_name": "de",
|
57 |
-
"training_split": "train",
|
58 |
-
"validation_split": "validation",
|
59 |
-
"test_split": "test",
|
60 |
-
"doc_to_text": "",
|
61 |
-
"doc_to_target": "label",
|
62 |
-
"doc_to_choice": "{{[sentence1+\", richtig? Ja, \"+sentence2, sentence1+\", richtig? Nein, \"+sentence2]}}",
|
63 |
-
"description": "",
|
64 |
-
"target_delimiter": " ",
|
65 |
-
"fewshot_delimiter": "\n\n",
|
66 |
-
"metric_list": [
|
67 |
-
{
|
68 |
-
"metric": "acc",
|
69 |
-
"aggregation": "mean",
|
70 |
-
"higher_is_better": true
|
71 |
-
}
|
72 |
-
],
|
73 |
-
"output_type": "multiple_choice",
|
74 |
-
"repeats": 1,
|
75 |
-
"should_decontaminate": false,
|
76 |
-
"metadata": {
|
77 |
-
"version": 0.0
|
78 |
-
}
|
79 |
-
},
|
80 |
-
"paws_en": {
|
81 |
-
"task": "paws_en",
|
82 |
-
"group": "pawsx",
|
83 |
-
"dataset_path": "paws-x",
|
84 |
-
"dataset_name": "en",
|
85 |
-
"training_split": "train",
|
86 |
-
"validation_split": "validation",
|
87 |
-
"test_split": "test",
|
88 |
-
"doc_to_text": "",
|
89 |
-
"doc_to_target": "label",
|
90 |
-
"doc_to_choice": "{{[sentence1+\", right? Yes, \"+sentence2, sentence1+\", right? No, \"+sentence2]}}",
|
91 |
-
"description": "",
|
92 |
-
"target_delimiter": " ",
|
93 |
-
"fewshot_delimiter": "\n\n",
|
94 |
-
"metric_list": [
|
95 |
-
{
|
96 |
-
"metric": "acc",
|
97 |
-
"aggregation": "mean",
|
98 |
-
"higher_is_better": true
|
99 |
-
}
|
100 |
-
],
|
101 |
-
"output_type": "multiple_choice",
|
102 |
-
"repeats": 1,
|
103 |
-
"should_decontaminate": false,
|
104 |
-
"metadata": {
|
105 |
-
"version": 0.0
|
106 |
-
}
|
107 |
-
},
|
108 |
-
"paws_es": {
|
109 |
-
"task": "paws_es",
|
110 |
-
"group": "pawsx",
|
111 |
-
"dataset_path": "paws-x",
|
112 |
-
"dataset_name": "es",
|
113 |
-
"training_split": "train",
|
114 |
-
"validation_split": "validation",
|
115 |
-
"test_split": "test",
|
116 |
-
"doc_to_text": "",
|
117 |
-
"doc_to_target": "label",
|
118 |
-
"doc_to_choice": "{{[sentence1+\", verdad? Sí, \"+sentence2, sentence1+\", verdad? No, \"+sentence2]}}",
|
119 |
-
"description": "",
|
120 |
-
"target_delimiter": " ",
|
121 |
-
"fewshot_delimiter": "\n\n",
|
122 |
-
"metric_list": [
|
123 |
-
{
|
124 |
-
"metric": "acc",
|
125 |
-
"aggregation": "mean",
|
126 |
-
"higher_is_better": true
|
127 |
-
}
|
128 |
-
],
|
129 |
-
"output_type": "multiple_choice",
|
130 |
-
"repeats": 1,
|
131 |
-
"should_decontaminate": false,
|
132 |
-
"metadata": {
|
133 |
-
"version": 0.0
|
134 |
-
}
|
135 |
-
},
|
136 |
-
"paws_fr": {
|
137 |
-
"task": "paws_fr",
|
138 |
-
"group": "pawsx",
|
139 |
-
"dataset_path": "paws-x",
|
140 |
-
"dataset_name": "fr",
|
141 |
-
"training_split": "train",
|
142 |
-
"validation_split": "validation",
|
143 |
-
"test_split": "test",
|
144 |
-
"doc_to_text": "",
|
145 |
-
"doc_to_target": "label",
|
146 |
-
"doc_to_choice": "{{[sentence1+\", n'est-ce pas? Oui, \"+sentence2, sentence1+\", n'est-ce pas? No, \"+sentence2]}}",
|
147 |
-
"description": "",
|
148 |
-
"target_delimiter": " ",
|
149 |
-
"fewshot_delimiter": "\n\n",
|
150 |
-
"metric_list": [
|
151 |
-
{
|
152 |
-
"metric": "acc",
|
153 |
-
"aggregation": "mean",
|
154 |
-
"higher_is_better": true
|
155 |
-
}
|
156 |
-
],
|
157 |
-
"output_type": "multiple_choice",
|
158 |
-
"repeats": 1,
|
159 |
-
"should_decontaminate": false,
|
160 |
-
"metadata": {
|
161 |
-
"version": 0.0
|
162 |
-
}
|
163 |
-
},
|
164 |
-
"paws_ja": {
|
165 |
-
"task": "paws_ja",
|
166 |
-
"group": "pawsx",
|
167 |
-
"dataset_path": "paws-x",
|
168 |
-
"dataset_name": "ja",
|
169 |
-
"training_split": "train",
|
170 |
-
"validation_split": "validation",
|
171 |
-
"test_split": "test",
|
172 |
-
"doc_to_text": "",
|
173 |
-
"doc_to_target": "label",
|
174 |
-
"doc_to_choice": "{{[sentence1+\", ですね? はい, \"+sentence2, sentence1+\", ですね? いいえ, \"+sentence2]}}",
|
175 |
-
"description": "",
|
176 |
-
"target_delimiter": " ",
|
177 |
-
"fewshot_delimiter": "\n\n",
|
178 |
-
"metric_list": [
|
179 |
-
{
|
180 |
-
"metric": "acc",
|
181 |
-
"aggregation": "mean",
|
182 |
-
"higher_is_better": true
|
183 |
-
}
|
184 |
-
],
|
185 |
-
"output_type": "multiple_choice",
|
186 |
-
"repeats": 1,
|
187 |
-
"should_decontaminate": false,
|
188 |
-
"metadata": {
|
189 |
-
"version": 0.0
|
190 |
-
}
|
191 |
-
},
|
192 |
-
"paws_ko": {
|
193 |
-
"task": "paws_ko",
|
194 |
-
"group": "pawsx",
|
195 |
-
"dataset_path": "paws-x",
|
196 |
-
"dataset_name": "ko",
|
197 |
-
"training_split": "train",
|
198 |
-
"validation_split": "validation",
|
199 |
-
"test_split": "test",
|
200 |
-
"doc_to_text": "",
|
201 |
-
"doc_to_target": "label",
|
202 |
-
"doc_to_choice": "{{[sentence1+\", 맞죠? 예, \"+sentence2, sentence1+\", 맞죠? 아니요, \"+sentence2]}}",
|
203 |
-
"description": "",
|
204 |
-
"target_delimiter": " ",
|
205 |
-
"fewshot_delimiter": "\n\n",
|
206 |
-
"metric_list": [
|
207 |
-
{
|
208 |
-
"metric": "acc",
|
209 |
-
"aggregation": "mean",
|
210 |
-
"higher_is_better": true
|
211 |
-
}
|
212 |
-
],
|
213 |
-
"output_type": "multiple_choice",
|
214 |
-
"repeats": 1,
|
215 |
-
"should_decontaminate": false,
|
216 |
-
"metadata": {
|
217 |
-
"version": 0.0
|
218 |
-
}
|
219 |
-
},
|
220 |
-
"paws_zh": {
|
221 |
-
"task": "paws_zh",
|
222 |
-
"group": "pawsx",
|
223 |
-
"dataset_path": "paws-x",
|
224 |
-
"dataset_name": "zh",
|
225 |
-
"training_split": "train",
|
226 |
-
"validation_split": "validation",
|
227 |
-
"test_split": "test",
|
228 |
-
"doc_to_text": "",
|
229 |
-
"doc_to_target": "label",
|
230 |
-
"doc_to_choice": "{{[sentence1+\", 对吧? 是, \"+sentence2, sentence1+\", 对吧? 不是, \"+sentence2]}}",
|
231 |
-
"description": "",
|
232 |
-
"target_delimiter": " ",
|
233 |
-
"fewshot_delimiter": "\n\n",
|
234 |
-
"metric_list": [
|
235 |
-
{
|
236 |
-
"metric": "acc",
|
237 |
-
"aggregation": "mean",
|
238 |
-
"higher_is_better": true
|
239 |
-
}
|
240 |
-
],
|
241 |
-
"output_type": "multiple_choice",
|
242 |
-
"repeats": 1,
|
243 |
-
"should_decontaminate": false,
|
244 |
-
"metadata": {
|
245 |
-
"version": 0.0
|
246 |
-
}
|
247 |
-
}
|
248 |
-
},
|
249 |
-
"versions": {
|
250 |
-
"paws_de": 0.0,
|
251 |
-
"paws_en": 0.0,
|
252 |
-
"paws_es": 0.0,
|
253 |
-
"paws_fr": 0.0,
|
254 |
-
"paws_ja": 0.0,
|
255 |
-
"paws_ko": 0.0,
|
256 |
-
"paws_zh": 0.0,
|
257 |
-
"pawsx": "N/A"
|
258 |
-
},
|
259 |
-
"n-shot": {
|
260 |
-
"paws_de": 0,
|
261 |
-
"paws_en": 0,
|
262 |
-
"paws_es": 0,
|
263 |
-
"paws_fr": 0,
|
264 |
-
"paws_ja": 0,
|
265 |
-
"paws_ko": 0,
|
266 |
-
"paws_zh": 0,
|
267 |
-
"pawsx": 0
|
268 |
-
},
|
269 |
-
"config": {
|
270 |
-
"model": "hf",
|
271 |
-
"model_args": "pretrained=togethercomputer/RedPajama-INCITE-7B-Base,dtype=bfloat16,trust_remote_code=True",
|
272 |
-
"batch_size": "auto",
|
273 |
-
"batch_sizes": [
|
274 |
-
16
|
275 |
-
],
|
276 |
-
"device": null,
|
277 |
-
"use_cache": null,
|
278 |
-
"limit": null,
|
279 |
-
"bootstrap_iters": 100000,
|
280 |
-
"gen_kwargs": null
|
281 |
-
},
|
282 |
-
"git_hash": "2c0a875"
|
283 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:edb8d10109c30a134c04094c23d91f0598a09cc74c21c12cc8180f20db55a520
|
3 |
-
size 170261
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:87474ecc21f8109f1b039f37e49d45a577e1a9d22ca1cda05cd8fdd45512d25b
|
3 |
-
size 534066
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
DELETED
@@ -1,390 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"xcopa": {
|
4 |
-
"acc,none": 0.5254545454545455,
|
5 |
-
"acc_stderr,none": 0.036407165846333675,
|
6 |
-
"alias": "xcopa"
|
7 |
-
},
|
8 |
-
"xcopa_et": {
|
9 |
-
"acc,none": 0.492,
|
10 |
-
"acc_stderr,none": 0.022380208834928035,
|
11 |
-
"alias": " - xcopa_et"
|
12 |
-
},
|
13 |
-
"xcopa_ht": {
|
14 |
-
"acc,none": 0.502,
|
15 |
-
"acc_stderr,none": 0.022382894986483524,
|
16 |
-
"alias": " - xcopa_ht"
|
17 |
-
},
|
18 |
-
"xcopa_id": {
|
19 |
-
"acc,none": 0.54,
|
20 |
-
"acc_stderr,none": 0.02231133324528966,
|
21 |
-
"alias": " - xcopa_id"
|
22 |
-
},
|
23 |
-
"xcopa_it": {
|
24 |
-
"acc,none": 0.604,
|
25 |
-
"acc_stderr,none": 0.021893529941665813,
|
26 |
-
"alias": " - xcopa_it"
|
27 |
-
},
|
28 |
-
"xcopa_qu": {
|
29 |
-
"acc,none": 0.478,
|
30 |
-
"acc_stderr,none": 0.02236139673920788,
|
31 |
-
"alias": " - xcopa_qu"
|
32 |
-
},
|
33 |
-
"xcopa_sw": {
|
34 |
-
"acc,none": 0.522,
|
35 |
-
"acc_stderr,none": 0.02236139673920788,
|
36 |
-
"alias": " - xcopa_sw"
|
37 |
-
},
|
38 |
-
"xcopa_ta": {
|
39 |
-
"acc,none": 0.546,
|
40 |
-
"acc_stderr,none": 0.02228814759117695,
|
41 |
-
"alias": " - xcopa_ta"
|
42 |
-
},
|
43 |
-
"xcopa_th": {
|
44 |
-
"acc,none": 0.532,
|
45 |
-
"acc_stderr,none": 0.022337186479044292,
|
46 |
-
"alias": " - xcopa_th"
|
47 |
-
},
|
48 |
-
"xcopa_tr": {
|
49 |
-
"acc,none": 0.514,
|
50 |
-
"acc_stderr,none": 0.02237429816635319,
|
51 |
-
"alias": " - xcopa_tr"
|
52 |
-
},
|
53 |
-
"xcopa_vi": {
|
54 |
-
"acc,none": 0.494,
|
55 |
-
"acc_stderr,none": 0.022381462412439324,
|
56 |
-
"alias": " - xcopa_vi"
|
57 |
-
},
|
58 |
-
"xcopa_zh": {
|
59 |
-
"acc,none": 0.556,
|
60 |
-
"acc_stderr,none": 0.02224224437573102,
|
61 |
-
"alias": " - xcopa_zh"
|
62 |
-
}
|
63 |
-
},
|
64 |
-
"groups": {
|
65 |
-
"xcopa": {
|
66 |
-
"acc,none": 0.5254545454545455,
|
67 |
-
"acc_stderr,none": 0.036407165846333675,
|
68 |
-
"alias": "xcopa"
|
69 |
-
}
|
70 |
-
},
|
71 |
-
"configs": {
|
72 |
-
"xcopa_et": {
|
73 |
-
"task": "xcopa_et",
|
74 |
-
"group": "xcopa",
|
75 |
-
"dataset_path": "xcopa",
|
76 |
-
"dataset_name": "et",
|
77 |
-
"validation_split": "validation",
|
78 |
-
"test_split": "test",
|
79 |
-
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f1a7c4837e0>, connector={'cause': 'sest', 'effect': 'seetõttu'})",
|
80 |
-
"doc_to_target": "label",
|
81 |
-
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
82 |
-
"description": "",
|
83 |
-
"target_delimiter": " ",
|
84 |
-
"fewshot_delimiter": "\n\n",
|
85 |
-
"metric_list": [
|
86 |
-
{
|
87 |
-
"metric": "acc"
|
88 |
-
}
|
89 |
-
],
|
90 |
-
"output_type": "multiple_choice",
|
91 |
-
"repeats": 1,
|
92 |
-
"should_decontaminate": false,
|
93 |
-
"metadata": {
|
94 |
-
"version": 1.0
|
95 |
-
}
|
96 |
-
},
|
97 |
-
"xcopa_ht": {
|
98 |
-
"task": "xcopa_ht",
|
99 |
-
"group": "xcopa",
|
100 |
-
"dataset_path": "xcopa",
|
101 |
-
"dataset_name": "ht",
|
102 |
-
"validation_split": "validation",
|
103 |
-
"test_split": "test",
|
104 |
-
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f1a7c3d36a0>, connector={'cause': 'poukisa', 'effect': 'donk sa'})",
|
105 |
-
"doc_to_target": "label",
|
106 |
-
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
107 |
-
"description": "",
|
108 |
-
"target_delimiter": " ",
|
109 |
-
"fewshot_delimiter": "\n\n",
|
110 |
-
"metric_list": [
|
111 |
-
{
|
112 |
-
"metric": "acc"
|
113 |
-
}
|
114 |
-
],
|
115 |
-
"output_type": "multiple_choice",
|
116 |
-
"repeats": 1,
|
117 |
-
"should_decontaminate": false,
|
118 |
-
"metadata": {
|
119 |
-
"version": 1.0
|
120 |
-
}
|
121 |
-
},
|
122 |
-
"xcopa_id": {
|
123 |
-
"task": "xcopa_id",
|
124 |
-
"group": "xcopa",
|
125 |
-
"dataset_path": "xcopa",
|
126 |
-
"dataset_name": "id",
|
127 |
-
"validation_split": "validation",
|
128 |
-
"test_split": "test",
|
129 |
-
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f1a7c4825c0>, connector={'cause': 'karena', 'effect': 'maka'})",
|
130 |
-
"doc_to_target": "label",
|
131 |
-
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
132 |
-
"description": "",
|
133 |
-
"target_delimiter": " ",
|
134 |
-
"fewshot_delimiter": "\n\n",
|
135 |
-
"metric_list": [
|
136 |
-
{
|
137 |
-
"metric": "acc"
|
138 |
-
}
|
139 |
-
],
|
140 |
-
"output_type": "multiple_choice",
|
141 |
-
"repeats": 1,
|
142 |
-
"should_decontaminate": false,
|
143 |
-
"metadata": {
|
144 |
-
"version": 1.0
|
145 |
-
}
|
146 |
-
},
|
147 |
-
"xcopa_it": {
|
148 |
-
"task": "xcopa_it",
|
149 |
-
"group": "xcopa",
|
150 |
-
"dataset_path": "xcopa",
|
151 |
-
"dataset_name": "it",
|
152 |
-
"validation_split": "validation",
|
153 |
-
"test_split": "test",
|
154 |
-
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f1a7c3d2ac0>, connector={'cause': 'perché', 'effect': 'quindi'})",
|
155 |
-
"doc_to_target": "label",
|
156 |
-
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
157 |
-
"description": "",
|
158 |
-
"target_delimiter": " ",
|
159 |
-
"fewshot_delimiter": "\n\n",
|
160 |
-
"metric_list": [
|
161 |
-
{
|
162 |
-
"metric": "acc"
|
163 |
-
}
|
164 |
-
],
|
165 |
-
"output_type": "multiple_choice",
|
166 |
-
"repeats": 1,
|
167 |
-
"should_decontaminate": false,
|
168 |
-
"metadata": {
|
169 |
-
"version": 1.0
|
170 |
-
}
|
171 |
-
},
|
172 |
-
"xcopa_qu": {
|
173 |
-
"task": "xcopa_qu",
|
174 |
-
"group": "xcopa",
|
175 |
-
"dataset_path": "xcopa",
|
176 |
-
"dataset_name": "qu",
|
177 |
-
"validation_split": "validation",
|
178 |
-
"test_split": "test",
|
179 |
-
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f1a7c3579c0>, connector={'cause': 'imataq', 'effect': 'chaymi'})",
|
180 |
-
"doc_to_target": "label",
|
181 |
-
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
182 |
-
"description": "",
|
183 |
-
"target_delimiter": " ",
|
184 |
-
"fewshot_delimiter": "\n\n",
|
185 |
-
"metric_list": [
|
186 |
-
{
|
187 |
-
"metric": "acc"
|
188 |
-
}
|
189 |
-
],
|
190 |
-
"output_type": "multiple_choice",
|
191 |
-
"repeats": 1,
|
192 |
-
"should_decontaminate": false,
|
193 |
-
"metadata": {
|
194 |
-
"version": 1.0
|
195 |
-
}
|
196 |
-
},
|
197 |
-
"xcopa_sw": {
|
198 |
-
"task": "xcopa_sw",
|
199 |
-
"group": "xcopa",
|
200 |
-
"dataset_path": "xcopa",
|
201 |
-
"dataset_name": "sw",
|
202 |
-
"validation_split": "validation",
|
203 |
-
"test_split": "test",
|
204 |
-
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f1a7c3d2e80>, connector={'cause': 'kwa sababu', 'effect': 'kwa hiyo'})",
|
205 |
-
"doc_to_target": "label",
|
206 |
-
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
207 |
-
"description": "",
|
208 |
-
"target_delimiter": " ",
|
209 |
-
"fewshot_delimiter": "\n\n",
|
210 |
-
"metric_list": [
|
211 |
-
{
|
212 |
-
"metric": "acc"
|
213 |
-
}
|
214 |
-
],
|
215 |
-
"output_type": "multiple_choice",
|
216 |
-
"repeats": 1,
|
217 |
-
"should_decontaminate": false,
|
218 |
-
"metadata": {
|
219 |
-
"version": 1.0
|
220 |
-
}
|
221 |
-
},
|
222 |
-
"xcopa_ta": {
|
223 |
-
"task": "xcopa_ta",
|
224 |
-
"group": "xcopa",
|
225 |
-
"dataset_path": "xcopa",
|
226 |
-
"dataset_name": "ta",
|
227 |
-
"validation_split": "validation",
|
228 |
-
"test_split": "test",
|
229 |
-
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f1a7c3d2d40>, connector={'cause': 'காரணமாக', 'effect': 'எனவே'})",
|
230 |
-
"doc_to_target": "label",
|
231 |
-
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
232 |
-
"description": "",
|
233 |
-
"target_delimiter": " ",
|
234 |
-
"fewshot_delimiter": "\n\n",
|
235 |
-
"metric_list": [
|
236 |
-
{
|
237 |
-
"metric": "acc"
|
238 |
-
}
|
239 |
-
],
|
240 |
-
"output_type": "multiple_choice",
|
241 |
-
"repeats": 1,
|
242 |
-
"should_decontaminate": false,
|
243 |
-
"metadata": {
|
244 |
-
"version": 1.0
|
245 |
-
}
|
246 |
-
},
|
247 |
-
"xcopa_th": {
|
248 |
-
"task": "xcopa_th",
|
249 |
-
"group": "xcopa",
|
250 |
-
"dataset_path": "xcopa",
|
251 |
-
"dataset_name": "th",
|
252 |
-
"validation_split": "validation",
|
253 |
-
"test_split": "test",
|
254 |
-
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f1a7c4816c0>, connector={'cause': 'เพราะ', 'effect': 'ดังนั้น'})",
|
255 |
-
"doc_to_target": "label",
|
256 |
-
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
257 |
-
"description": "",
|
258 |
-
"target_delimiter": " ",
|
259 |
-
"fewshot_delimiter": "\n\n",
|
260 |
-
"metric_list": [
|
261 |
-
{
|
262 |
-
"metric": "acc"
|
263 |
-
}
|
264 |
-
],
|
265 |
-
"output_type": "multiple_choice",
|
266 |
-
"repeats": 1,
|
267 |
-
"should_decontaminate": false,
|
268 |
-
"metadata": {
|
269 |
-
"version": 1.0
|
270 |
-
}
|
271 |
-
},
|
272 |
-
"xcopa_tr": {
|
273 |
-
"task": "xcopa_tr",
|
274 |
-
"group": "xcopa",
|
275 |
-
"dataset_path": "xcopa",
|
276 |
-
"dataset_name": "tr",
|
277 |
-
"validation_split": "validation",
|
278 |
-
"test_split": "test",
|
279 |
-
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f1a7c357b00>, connector={'cause': 'çünkü', 'effect': 'bu yüzden'})",
|
280 |
-
"doc_to_target": "label",
|
281 |
-
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
282 |
-
"description": "",
|
283 |
-
"target_delimiter": " ",
|
284 |
-
"fewshot_delimiter": "\n\n",
|
285 |
-
"metric_list": [
|
286 |
-
{
|
287 |
-
"metric": "acc"
|
288 |
-
}
|
289 |
-
],
|
290 |
-
"output_type": "multiple_choice",
|
291 |
-
"repeats": 1,
|
292 |
-
"should_decontaminate": false,
|
293 |
-
"metadata": {
|
294 |
-
"version": 1.0
|
295 |
-
}
|
296 |
-
},
|
297 |
-
"xcopa_vi": {
|
298 |
-
"task": "xcopa_vi",
|
299 |
-
"group": "xcopa",
|
300 |
-
"dataset_path": "xcopa",
|
301 |
-
"dataset_name": "vi",
|
302 |
-
"validation_split": "validation",
|
303 |
-
"test_split": "test",
|
304 |
-
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f1a90202f20>, connector={'cause': 'bởi vì', 'effect': 'vì vậy'})",
|
305 |
-
"doc_to_target": "label",
|
306 |
-
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
307 |
-
"description": "",
|
308 |
-
"target_delimiter": " ",
|
309 |
-
"fewshot_delimiter": "\n\n",
|
310 |
-
"metric_list": [
|
311 |
-
{
|
312 |
-
"metric": "acc"
|
313 |
-
}
|
314 |
-
],
|
315 |
-
"output_type": "multiple_choice",
|
316 |
-
"repeats": 1,
|
317 |
-
"should_decontaminate": false,
|
318 |
-
"metadata": {
|
319 |
-
"version": 1.0
|
320 |
-
}
|
321 |
-
},
|
322 |
-
"xcopa_zh": {
|
323 |
-
"task": "xcopa_zh",
|
324 |
-
"group": "xcopa",
|
325 |
-
"dataset_path": "xcopa",
|
326 |
-
"dataset_name": "zh",
|
327 |
-
"validation_split": "validation",
|
328 |
-
"test_split": "test",
|
329 |
-
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f1a9edd3380>, connector={'cause': '因为', 'effect': '所以'})",
|
330 |
-
"doc_to_target": "label",
|
331 |
-
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
332 |
-
"description": "",
|
333 |
-
"target_delimiter": " ",
|
334 |
-
"fewshot_delimiter": "\n\n",
|
335 |
-
"metric_list": [
|
336 |
-
{
|
337 |
-
"metric": "acc"
|
338 |
-
}
|
339 |
-
],
|
340 |
-
"output_type": "multiple_choice",
|
341 |
-
"repeats": 1,
|
342 |
-
"should_decontaminate": false,
|
343 |
-
"metadata": {
|
344 |
-
"version": 1.0
|
345 |
-
}
|
346 |
-
}
|
347 |
-
},
|
348 |
-
"versions": {
|
349 |
-
"xcopa": "N/A",
|
350 |
-
"xcopa_et": 1.0,
|
351 |
-
"xcopa_ht": 1.0,
|
352 |
-
"xcopa_id": 1.0,
|
353 |
-
"xcopa_it": 1.0,
|
354 |
-
"xcopa_qu": 1.0,
|
355 |
-
"xcopa_sw": 1.0,
|
356 |
-
"xcopa_ta": 1.0,
|
357 |
-
"xcopa_th": 1.0,
|
358 |
-
"xcopa_tr": 1.0,
|
359 |
-
"xcopa_vi": 1.0,
|
360 |
-
"xcopa_zh": 1.0
|
361 |
-
},
|
362 |
-
"n-shot": {
|
363 |
-
"xcopa": 0,
|
364 |
-
"xcopa_et": 0,
|
365 |
-
"xcopa_ht": 0,
|
366 |
-
"xcopa_id": 0,
|
367 |
-
"xcopa_it": 0,
|
368 |
-
"xcopa_qu": 0,
|
369 |
-
"xcopa_sw": 0,
|
370 |
-
"xcopa_ta": 0,
|
371 |
-
"xcopa_th": 0,
|
372 |
-
"xcopa_tr": 0,
|
373 |
-
"xcopa_vi": 0,
|
374 |
-
"xcopa_zh": 0
|
375 |
-
},
|
376 |
-
"config": {
|
377 |
-
"model": "hf",
|
378 |
-
"model_args": "pretrained=togethercomputer/RedPajama-INCITE-7B-Base,dtype=bfloat16,trust_remote_code=True",
|
379 |
-
"batch_size": "auto",
|
380 |
-
"batch_sizes": [
|
381 |
-
16
|
382 |
-
],
|
383 |
-
"device": null,
|
384 |
-
"use_cache": null,
|
385 |
-
"limit": null,
|
386 |
-
"bootstrap_iters": 100000,
|
387 |
-
"gen_kwargs": null
|
388 |
-
},
|
389 |
-
"git_hash": "2c0a875"
|
390 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f9a66a8543cd345001ca68fc23fa022eccb3bfb1e5ab51f497c9c70e925df6c3
|
3 |
-
size 198557
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:84455d99a0f886ce1dc7c7fbfd5a73a3cb9467281241066bb2d1a572c792c3dc
|
3 |
-
size 6010130
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
DELETED
@@ -1,548 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"xnli": {
|
4 |
-
"acc,none": 0.3827309236947791,
|
5 |
-
"acc_stderr,none": 0.05194928176239464,
|
6 |
-
"alias": "xnli"
|
7 |
-
},
|
8 |
-
"xnli_ar": {
|
9 |
-
"acc,none": 0.344578313253012,
|
10 |
-
"acc_stderr,none": 0.00952559090011065,
|
11 |
-
"alias": " - xnli_ar"
|
12 |
-
},
|
13 |
-
"xnli_bg": {
|
14 |
-
"acc,none": 0.37028112449799194,
|
15 |
-
"acc_stderr,none": 0.00967891540984029,
|
16 |
-
"alias": " - xnli_bg"
|
17 |
-
},
|
18 |
-
"xnli_de": {
|
19 |
-
"acc,none": 0.4461847389558233,
|
20 |
-
"acc_stderr,none": 0.00996385427413916,
|
21 |
-
"alias": " - xnli_de"
|
22 |
-
},
|
23 |
-
"xnli_el": {
|
24 |
-
"acc,none": 0.3481927710843373,
|
25 |
-
"acc_stderr,none": 0.009548980649153386,
|
26 |
-
"alias": " - xnli_el"
|
27 |
-
},
|
28 |
-
"xnli_en": {
|
29 |
-
"acc,none": 0.5357429718875502,
|
30 |
-
"acc_stderr,none": 0.009996432468510355,
|
31 |
-
"alias": " - xnli_en"
|
32 |
-
},
|
33 |
-
"xnli_es": {
|
34 |
-
"acc,none": 0.41967871485943775,
|
35 |
-
"acc_stderr,none": 0.009891912665432372,
|
36 |
-
"alias": " - xnli_es"
|
37 |
-
},
|
38 |
-
"xnli_fr": {
|
39 |
-
"acc,none": 0.46947791164658637,
|
40 |
-
"acc_stderr,none": 0.010003382355314755,
|
41 |
-
"alias": " - xnli_fr"
|
42 |
-
},
|
43 |
-
"xnli_hi": {
|
44 |
-
"acc,none": 0.3405622489959839,
|
45 |
-
"acc_stderr,none": 0.009498886690274447,
|
46 |
-
"alias": " - xnli_hi"
|
47 |
-
},
|
48 |
-
"xnli_ru": {
|
49 |
-
"acc,none": 0.4433734939759036,
|
50 |
-
"acc_stderr,none": 0.009957592660538648,
|
51 |
-
"alias": " - xnli_ru"
|
52 |
-
},
|
53 |
-
"xnli_sw": {
|
54 |
-
"acc,none": 0.3369477911646586,
|
55 |
-
"acc_stderr,none": 0.009474203778757722,
|
56 |
-
"alias": " - xnli_sw"
|
57 |
-
},
|
58 |
-
"xnli_th": {
|
59 |
-
"acc,none": 0.3405622489959839,
|
60 |
-
"acc_stderr,none": 0.009498886690274442,
|
61 |
-
"alias": " - xnli_th"
|
62 |
-
},
|
63 |
-
"xnli_tr": {
|
64 |
-
"acc,none": 0.3437751004016064,
|
65 |
-
"acc_stderr,none": 0.009520310502882934,
|
66 |
-
"alias": " - xnli_tr"
|
67 |
-
},
|
68 |
-
"xnli_ur": {
|
69 |
-
"acc,none": 0.3321285140562249,
|
70 |
-
"acc_stderr,none": 0.009440328001240636,
|
71 |
-
"alias": " - xnli_ur"
|
72 |
-
},
|
73 |
-
"xnli_vi": {
|
74 |
-
"acc,none": 0.3309236947791165,
|
75 |
-
"acc_stderr,none": 0.009431685461463288,
|
76 |
-
"alias": " - xnli_vi"
|
77 |
-
},
|
78 |
-
"xnli_zh": {
|
79 |
-
"acc,none": 0.3385542168674699,
|
80 |
-
"acc_stderr,none": 0.009485250208516876,
|
81 |
-
"alias": " - xnli_zh"
|
82 |
-
}
|
83 |
-
},
|
84 |
-
"groups": {
|
85 |
-
"xnli": {
|
86 |
-
"acc,none": 0.3827309236947791,
|
87 |
-
"acc_stderr,none": 0.05194928176239464,
|
88 |
-
"alias": "xnli"
|
89 |
-
}
|
90 |
-
},
|
91 |
-
"configs": {
|
92 |
-
"xnli_ar": {
|
93 |
-
"task": "xnli_ar",
|
94 |
-
"group": "xnli",
|
95 |
-
"dataset_path": "xnli",
|
96 |
-
"dataset_name": "ar",
|
97 |
-
"training_split": "train",
|
98 |
-
"validation_split": "validation",
|
99 |
-
"doc_to_text": "",
|
100 |
-
"doc_to_target": "label",
|
101 |
-
"doc_to_choice": "{{[premise+\", صحيح? نعم, \"+hypothesis,premise+\", صحيح? لذا, \"+hypothesis,premise+\", صحيح? رقم, \"+hypothesis]}}",
|
102 |
-
"description": "",
|
103 |
-
"target_delimiter": " ",
|
104 |
-
"fewshot_delimiter": "\n\n",
|
105 |
-
"metric_list": [
|
106 |
-
{
|
107 |
-
"metric": "acc",
|
108 |
-
"aggregation": "mean",
|
109 |
-
"higher_is_better": true
|
110 |
-
}
|
111 |
-
],
|
112 |
-
"output_type": "multiple_choice",
|
113 |
-
"repeats": 1,
|
114 |
-
"should_decontaminate": false,
|
115 |
-
"metadata": {
|
116 |
-
"version": 1.0
|
117 |
-
}
|
118 |
-
},
|
119 |
-
"xnli_bg": {
|
120 |
-
"task": "xnli_bg",
|
121 |
-
"group": "xnli",
|
122 |
-
"dataset_path": "xnli",
|
123 |
-
"dataset_name": "bg",
|
124 |
-
"training_split": "train",
|
125 |
-
"validation_split": "validation",
|
126 |
-
"doc_to_text": "",
|
127 |
-
"doc_to_target": "label",
|
128 |
-
"doc_to_choice": "{{[premise+\", правилно? да, \"+hypothesis,premise+\", правилно? така, \"+hypothesis,premise+\", правилно? не, \"+hypothesis]}}",
|
129 |
-
"description": "",
|
130 |
-
"target_delimiter": " ",
|
131 |
-
"fewshot_delimiter": "\n\n",
|
132 |
-
"metric_list": [
|
133 |
-
{
|
134 |
-
"metric": "acc",
|
135 |
-
"aggregation": "mean",
|
136 |
-
"higher_is_better": true
|
137 |
-
}
|
138 |
-
],
|
139 |
-
"output_type": "multiple_choice",
|
140 |
-
"repeats": 1,
|
141 |
-
"should_decontaminate": false,
|
142 |
-
"metadata": {
|
143 |
-
"version": 1.0
|
144 |
-
}
|
145 |
-
},
|
146 |
-
"xnli_de": {
|
147 |
-
"task": "xnli_de",
|
148 |
-
"group": "xnli",
|
149 |
-
"dataset_path": "xnli",
|
150 |
-
"dataset_name": "de",
|
151 |
-
"training_split": "train",
|
152 |
-
"validation_split": "validation",
|
153 |
-
"doc_to_text": "",
|
154 |
-
"doc_to_target": "label",
|
155 |
-
"doc_to_choice": "{{[premise+\", richtig? Ja, \"+hypothesis,premise+\", richtig? Auch, \"+hypothesis,premise+\", richtig? Nein, \"+hypothesis]}}",
|
156 |
-
"description": "",
|
157 |
-
"target_delimiter": " ",
|
158 |
-
"fewshot_delimiter": "\n\n",
|
159 |
-
"metric_list": [
|
160 |
-
{
|
161 |
-
"metric": "acc",
|
162 |
-
"aggregation": "mean",
|
163 |
-
"higher_is_better": true
|
164 |
-
}
|
165 |
-
],
|
166 |
-
"output_type": "multiple_choice",
|
167 |
-
"repeats": 1,
|
168 |
-
"should_decontaminate": false,
|
169 |
-
"metadata": {
|
170 |
-
"version": 1.0
|
171 |
-
}
|
172 |
-
},
|
173 |
-
"xnli_el": {
|
174 |
-
"task": "xnli_el",
|
175 |
-
"group": "xnli",
|
176 |
-
"dataset_path": "xnli",
|
177 |
-
"dataset_name": "el",
|
178 |
-
"training_split": "train",
|
179 |
-
"validation_split": "validation",
|
180 |
-
"doc_to_text": "",
|
181 |
-
"doc_to_target": "label",
|
182 |
-
"doc_to_choice": "{{[premise+\", σωστός? Ναί, \"+hypothesis,premise+\", σωστός? Έτσι, \"+hypothesis,premise+\", σωστός? όχι, \"+hypothesis]}}",
|
183 |
-
"description": "",
|
184 |
-
"target_delimiter": " ",
|
185 |
-
"fewshot_delimiter": "\n\n",
|
186 |
-
"metric_list": [
|
187 |
-
{
|
188 |
-
"metric": "acc",
|
189 |
-
"aggregation": "mean",
|
190 |
-
"higher_is_better": true
|
191 |
-
}
|
192 |
-
],
|
193 |
-
"output_type": "multiple_choice",
|
194 |
-
"repeats": 1,
|
195 |
-
"should_decontaminate": false,
|
196 |
-
"metadata": {
|
197 |
-
"version": 1.0
|
198 |
-
}
|
199 |
-
},
|
200 |
-
"xnli_en": {
|
201 |
-
"task": "xnli_en",
|
202 |
-
"group": "xnli",
|
203 |
-
"dataset_path": "xnli",
|
204 |
-
"dataset_name": "en",
|
205 |
-
"training_split": "train",
|
206 |
-
"validation_split": "validation",
|
207 |
-
"doc_to_text": "",
|
208 |
-
"doc_to_target": "label",
|
209 |
-
"doc_to_choice": "{{[premise+\", right? Yes, \"+hypothesis,premise+\", right? Also, \"+hypothesis,premise+\", right? No, \"+hypothesis]}}",
|
210 |
-
"description": "",
|
211 |
-
"target_delimiter": " ",
|
212 |
-
"fewshot_delimiter": "\n\n",
|
213 |
-
"metric_list": [
|
214 |
-
{
|
215 |
-
"metric": "acc",
|
216 |
-
"aggregation": "mean",
|
217 |
-
"higher_is_better": true
|
218 |
-
}
|
219 |
-
],
|
220 |
-
"output_type": "multiple_choice",
|
221 |
-
"repeats": 1,
|
222 |
-
"should_decontaminate": false,
|
223 |
-
"metadata": {
|
224 |
-
"version": 1.0
|
225 |
-
}
|
226 |
-
},
|
227 |
-
"xnli_es": {
|
228 |
-
"task": "xnli_es",
|
229 |
-
"group": "xnli",
|
230 |
-
"dataset_path": "xnli",
|
231 |
-
"dataset_name": "es",
|
232 |
-
"training_split": "train",
|
233 |
-
"validation_split": "validation",
|
234 |
-
"doc_to_text": "",
|
235 |
-
"doc_to_target": "label",
|
236 |
-
"doc_to_choice": "{{[premise+\", correcto? Sí, \"+hypothesis,premise+\", correcto? Asi que, \"+hypothesis,premise+\", correcto? No, \"+hypothesis]}}",
|
237 |
-
"description": "",
|
238 |
-
"target_delimiter": " ",
|
239 |
-
"fewshot_delimiter": "\n\n",
|
240 |
-
"metric_list": [
|
241 |
-
{
|
242 |
-
"metric": "acc",
|
243 |
-
"aggregation": "mean",
|
244 |
-
"higher_is_better": true
|
245 |
-
}
|
246 |
-
],
|
247 |
-
"output_type": "multiple_choice",
|
248 |
-
"repeats": 1,
|
249 |
-
"should_decontaminate": false,
|
250 |
-
"metadata": {
|
251 |
-
"version": 1.0
|
252 |
-
}
|
253 |
-
},
|
254 |
-
"xnli_fr": {
|
255 |
-
"task": "xnli_fr",
|
256 |
-
"group": "xnli",
|
257 |
-
"dataset_path": "xnli",
|
258 |
-
"dataset_name": "fr",
|
259 |
-
"training_split": "train",
|
260 |
-
"validation_split": "validation",
|
261 |
-
"doc_to_text": "",
|
262 |
-
"doc_to_target": "label",
|
263 |
-
"doc_to_choice": "{{[premise+\", correct? Oui, \"+hypothesis,premise+\", correct? Aussi, \"+hypothesis,premise+\", correct? Non, \"+hypothesis]}}",
|
264 |
-
"description": "",
|
265 |
-
"target_delimiter": " ",
|
266 |
-
"fewshot_delimiter": "\n\n",
|
267 |
-
"metric_list": [
|
268 |
-
{
|
269 |
-
"metric": "acc",
|
270 |
-
"aggregation": "mean",
|
271 |
-
"higher_is_better": true
|
272 |
-
}
|
273 |
-
],
|
274 |
-
"output_type": "multiple_choice",
|
275 |
-
"repeats": 1,
|
276 |
-
"should_decontaminate": false,
|
277 |
-
"metadata": {
|
278 |
-
"version": 1.0
|
279 |
-
}
|
280 |
-
},
|
281 |
-
"xnli_hi": {
|
282 |
-
"task": "xnli_hi",
|
283 |
-
"group": "xnli",
|
284 |
-
"dataset_path": "xnli",
|
285 |
-
"dataset_name": "hi",
|
286 |
-
"training_split": "train",
|
287 |
-
"validation_split": "validation",
|
288 |
-
"doc_to_text": "",
|
289 |
-
"doc_to_target": "label",
|
290 |
-
"doc_to_choice": "{{[premise+\", सही? हाँ, \"+hypothesis,premise+\", सही? इसलिए, \"+hypothesis,premise+\", सही? नहीं, \"+hypothesis]}}",
|
291 |
-
"description": "",
|
292 |
-
"target_delimiter": " ",
|
293 |
-
"fewshot_delimiter": "\n\n",
|
294 |
-
"metric_list": [
|
295 |
-
{
|
296 |
-
"metric": "acc",
|
297 |
-
"aggregation": "mean",
|
298 |
-
"higher_is_better": true
|
299 |
-
}
|
300 |
-
],
|
301 |
-
"output_type": "multiple_choice",
|
302 |
-
"repeats": 1,
|
303 |
-
"should_decontaminate": false,
|
304 |
-
"metadata": {
|
305 |
-
"version": 1.0
|
306 |
-
}
|
307 |
-
},
|
308 |
-
"xnli_ru": {
|
309 |
-
"task": "xnli_ru",
|
310 |
-
"group": "xnli",
|
311 |
-
"dataset_path": "xnli",
|
312 |
-
"dataset_name": "ru",
|
313 |
-
"training_split": "train",
|
314 |
-
"validation_split": "validation",
|
315 |
-
"doc_to_text": "",
|
316 |
-
"doc_to_target": "label",
|
317 |
-
"doc_to_choice": "{{[premise+\", правильно? Да, \"+hypothesis,premise+\", правильно? Так, \"+hypothesis,premise+\", правильно? Нет, \"+hypothesis]}}",
|
318 |
-
"description": "",
|
319 |
-
"target_delimiter": " ",
|
320 |
-
"fewshot_delimiter": "\n\n",
|
321 |
-
"metric_list": [
|
322 |
-
{
|
323 |
-
"metric": "acc",
|
324 |
-
"aggregation": "mean",
|
325 |
-
"higher_is_better": true
|
326 |
-
}
|
327 |
-
],
|
328 |
-
"output_type": "multiple_choice",
|
329 |
-
"repeats": 1,
|
330 |
-
"should_decontaminate": false,
|
331 |
-
"metadata": {
|
332 |
-
"version": 1.0
|
333 |
-
}
|
334 |
-
},
|
335 |
-
"xnli_sw": {
|
336 |
-
"task": "xnli_sw",
|
337 |
-
"group": "xnli",
|
338 |
-
"dataset_path": "xnli",
|
339 |
-
"dataset_name": "sw",
|
340 |
-
"training_split": "train",
|
341 |
-
"validation_split": "validation",
|
342 |
-
"doc_to_text": "",
|
343 |
-
"doc_to_target": "label",
|
344 |
-
"doc_to_choice": "{{[premise+\", sahihi? Ndiyo, \"+hypothesis,premise+\", sahihi? Hivyo, \"+hypothesis,premise+\", sahihi? Hapana, \"+hypothesis]}}",
|
345 |
-
"description": "",
|
346 |
-
"target_delimiter": " ",
|
347 |
-
"fewshot_delimiter": "\n\n",
|
348 |
-
"metric_list": [
|
349 |
-
{
|
350 |
-
"metric": "acc",
|
351 |
-
"aggregation": "mean",
|
352 |
-
"higher_is_better": true
|
353 |
-
}
|
354 |
-
],
|
355 |
-
"output_type": "multiple_choice",
|
356 |
-
"repeats": 1,
|
357 |
-
"should_decontaminate": false,
|
358 |
-
"metadata": {
|
359 |
-
"version": 1.0
|
360 |
-
}
|
361 |
-
},
|
362 |
-
"xnli_th": {
|
363 |
-
"task": "xnli_th",
|
364 |
-
"group": "xnli",
|
365 |
-
"dataset_path": "xnli",
|
366 |
-
"dataset_name": "th",
|
367 |
-
"training_split": "train",
|
368 |
-
"validation_split": "validation",
|
369 |
-
"doc_to_text": "",
|
370 |
-
"doc_to_target": "label",
|
371 |
-
"doc_to_choice": "{{[premise+\", ถูกต้อง? ใช่, \"+hypothesis,premise+\", ถูกต้อง? ดังนั้น, \"+hypothesis,premise+\", ถูกต้อง? ไม่, \"+hypothesis]}}",
|
372 |
-
"description": "",
|
373 |
-
"target_delimiter": " ",
|
374 |
-
"fewshot_delimiter": "\n\n",
|
375 |
-
"metric_list": [
|
376 |
-
{
|
377 |
-
"metric": "acc",
|
378 |
-
"aggregation": "mean",
|
379 |
-
"higher_is_better": true
|
380 |
-
}
|
381 |
-
],
|
382 |
-
"output_type": "multiple_choice",
|
383 |
-
"repeats": 1,
|
384 |
-
"should_decontaminate": false,
|
385 |
-
"metadata": {
|
386 |
-
"version": 1.0
|
387 |
-
}
|
388 |
-
},
|
389 |
-
"xnli_tr": {
|
390 |
-
"task": "xnli_tr",
|
391 |
-
"group": "xnli",
|
392 |
-
"dataset_path": "xnli",
|
393 |
-
"dataset_name": "tr",
|
394 |
-
"training_split": "train",
|
395 |
-
"validation_split": "validation",
|
396 |
-
"doc_to_text": "",
|
397 |
-
"doc_to_target": "label",
|
398 |
-
"doc_to_choice": "{{[premise+\", doğru? Evet, \"+hypothesis,premise+\", doğru? Böylece, \"+hypothesis,premise+\", doğru? Hayır, \"+hypothesis]}}",
|
399 |
-
"description": "",
|
400 |
-
"target_delimiter": " ",
|
401 |
-
"fewshot_delimiter": "\n\n",
|
402 |
-
"metric_list": [
|
403 |
-
{
|
404 |
-
"metric": "acc",
|
405 |
-
"aggregation": "mean",
|
406 |
-
"higher_is_better": true
|
407 |
-
}
|
408 |
-
],
|
409 |
-
"output_type": "multiple_choice",
|
410 |
-
"repeats": 1,
|
411 |
-
"should_decontaminate": false,
|
412 |
-
"metadata": {
|
413 |
-
"version": 1.0
|
414 |
-
}
|
415 |
-
},
|
416 |
-
"xnli_ur": {
|
417 |
-
"task": "xnli_ur",
|
418 |
-
"group": "xnli",
|
419 |
-
"dataset_path": "xnli",
|
420 |
-
"dataset_name": "ur",
|
421 |
-
"training_split": "train",
|
422 |
-
"validation_split": "validation",
|
423 |
-
"doc_to_text": "",
|
424 |
-
"doc_to_target": "label",
|
425 |
-
"doc_to_choice": "{{[premise+\", صحیح? جی ہاں, \"+hypothesis,premise+\", صحیح? اس لئے, \"+hypothesis,premise+\", صحیح? نہیں, \"+hypothesis]}}",
|
426 |
-
"description": "",
|
427 |
-
"target_delimiter": " ",
|
428 |
-
"fewshot_delimiter": "\n\n",
|
429 |
-
"metric_list": [
|
430 |
-
{
|
431 |
-
"metric": "acc",
|
432 |
-
"aggregation": "mean",
|
433 |
-
"higher_is_better": true
|
434 |
-
}
|
435 |
-
],
|
436 |
-
"output_type": "multiple_choice",
|
437 |
-
"repeats": 1,
|
438 |
-
"should_decontaminate": false,
|
439 |
-
"metadata": {
|
440 |
-
"version": 1.0
|
441 |
-
}
|
442 |
-
},
|
443 |
-
"xnli_vi": {
|
444 |
-
"task": "xnli_vi",
|
445 |
-
"group": "xnli",
|
446 |
-
"dataset_path": "xnli",
|
447 |
-
"dataset_name": "vi",
|
448 |
-
"training_split": "train",
|
449 |
-
"validation_split": "validation",
|
450 |
-
"doc_to_text": "",
|
451 |
-
"doc_to_target": "label",
|
452 |
-
"doc_to_choice": "{{[premise+\", đúng? Vâng, \"+hypothesis,premise+\", đúng? Vì vậy, \"+hypothesis,premise+\", đúng? Không, \"+hypothesis]}}",
|
453 |
-
"description": "",
|
454 |
-
"target_delimiter": " ",
|
455 |
-
"fewshot_delimiter": "\n\n",
|
456 |
-
"metric_list": [
|
457 |
-
{
|
458 |
-
"metric": "acc",
|
459 |
-
"aggregation": "mean",
|
460 |
-
"higher_is_better": true
|
461 |
-
}
|
462 |
-
],
|
463 |
-
"output_type": "multiple_choice",
|
464 |
-
"repeats": 1,
|
465 |
-
"should_decontaminate": false,
|
466 |
-
"metadata": {
|
467 |
-
"version": 1.0
|
468 |
-
}
|
469 |
-
},
|
470 |
-
"xnli_zh": {
|
471 |
-
"task": "xnli_zh",
|
472 |
-
"group": "xnli",
|
473 |
-
"dataset_path": "xnli",
|
474 |
-
"dataset_name": "zh",
|
475 |
-
"training_split": "train",
|
476 |
-
"validation_split": "validation",
|
477 |
-
"doc_to_text": "",
|
478 |
-
"doc_to_target": "label",
|
479 |
-
"doc_to_choice": "{{[premise+\", 正确? 是的, \"+hypothesis,premise+\", 正确? 所以, \"+hypothesis,premise+\", 正确? 不是的, \"+hypothesis]}}",
|
480 |
-
"description": "",
|
481 |
-
"target_delimiter": " ",
|
482 |
-
"fewshot_delimiter": "\n\n",
|
483 |
-
"metric_list": [
|
484 |
-
{
|
485 |
-
"metric": "acc",
|
486 |
-
"aggregation": "mean",
|
487 |
-
"higher_is_better": true
|
488 |
-
}
|
489 |
-
],
|
490 |
-
"output_type": "multiple_choice",
|
491 |
-
"repeats": 1,
|
492 |
-
"should_decontaminate": false,
|
493 |
-
"metadata": {
|
494 |
-
"version": 1.0
|
495 |
-
}
|
496 |
-
}
|
497 |
-
},
|
498 |
-
"versions": {
|
499 |
-
"xnli": "N/A",
|
500 |
-
"xnli_ar": 1.0,
|
501 |
-
"xnli_bg": 1.0,
|
502 |
-
"xnli_de": 1.0,
|
503 |
-
"xnli_el": 1.0,
|
504 |
-
"xnli_en": 1.0,
|
505 |
-
"xnli_es": 1.0,
|
506 |
-
"xnli_fr": 1.0,
|
507 |
-
"xnli_hi": 1.0,
|
508 |
-
"xnli_ru": 1.0,
|
509 |
-
"xnli_sw": 1.0,
|
510 |
-
"xnli_th": 1.0,
|
511 |
-
"xnli_tr": 1.0,
|
512 |
-
"xnli_ur": 1.0,
|
513 |
-
"xnli_vi": 1.0,
|
514 |
-
"xnli_zh": 1.0
|
515 |
-
},
|
516 |
-
"n-shot": {
|
517 |
-
"xnli": 0,
|
518 |
-
"xnli_ar": 0,
|
519 |
-
"xnli_bg": 0,
|
520 |
-
"xnli_de": 0,
|
521 |
-
"xnli_el": 0,
|
522 |
-
"xnli_en": 0,
|
523 |
-
"xnli_es": 0,
|
524 |
-
"xnli_fr": 0,
|
525 |
-
"xnli_hi": 0,
|
526 |
-
"xnli_ru": 0,
|
527 |
-
"xnli_sw": 0,
|
528 |
-
"xnli_th": 0,
|
529 |
-
"xnli_tr": 0,
|
530 |
-
"xnli_ur": 0,
|
531 |
-
"xnli_vi": 0,
|
532 |
-
"xnli_zh": 0
|
533 |
-
},
|
534 |
-
"config": {
|
535 |
-
"model": "hf",
|
536 |
-
"model_args": "pretrained=togethercomputer/RedPajama-INCITE-7B-Base,dtype=bfloat16,trust_remote_code=True",
|
537 |
-
"batch_size": "auto",
|
538 |
-
"batch_sizes": [
|
539 |
-
8
|
540 |
-
],
|
541 |
-
"device": null,
|
542 |
-
"use_cache": null,
|
543 |
-
"limit": null,
|
544 |
-
"bootstrap_iters": 100000,
|
545 |
-
"gen_kwargs": null
|
546 |
-
},
|
547 |
-
"git_hash": "2c0a875"
|
548 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cfe49c26553fc37efb6944cdf331e11215c8f870ff6c85a92c9f460560f3348b
|
3 |
-
size 128783
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:56d33ec3d4d975e330cf2e7f94a5c0309d5c4a0cbbfcbb7405b27a7db626c574
|
3 |
-
size 4064576
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
DELETED
@@ -1,423 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"xstorycloze": {
|
4 |
-
"acc,none": 0.5524336682510078,
|
5 |
-
"acc_stderr,none": 0.06791399332607427,
|
6 |
-
"alias": "xstorycloze"
|
7 |
-
},
|
8 |
-
"xstorycloze_ar": {
|
9 |
-
"acc,none": 0.4798146922567836,
|
10 |
-
"acc_stderr,none": 0.01285663570649829,
|
11 |
-
"alias": " - xstorycloze_ar"
|
12 |
-
},
|
13 |
-
"xstorycloze_en": {
|
14 |
-
"acc,none": 0.7485109199205824,
|
15 |
-
"acc_stderr,none": 0.011165293988715807,
|
16 |
-
"alias": " - xstorycloze_en"
|
17 |
-
},
|
18 |
-
"xstorycloze_es": {
|
19 |
-
"acc,none": 0.6393117140966248,
|
20 |
-
"acc_stderr,none": 0.012357592682139025,
|
21 |
-
"alias": " - xstorycloze_es"
|
22 |
-
},
|
23 |
-
"xstorycloze_eu": {
|
24 |
-
"acc,none": 0.514228987425546,
|
25 |
-
"acc_stderr,none": 0.012861913999596127,
|
26 |
-
"alias": " - xstorycloze_eu"
|
27 |
-
},
|
28 |
-
"xstorycloze_hi": {
|
29 |
-
"acc,none": 0.513567174056916,
|
30 |
-
"acc_stderr,none": 0.01286238758665008,
|
31 |
-
"alias": " - xstorycloze_hi"
|
32 |
-
},
|
33 |
-
"xstorycloze_id": {
|
34 |
-
"acc,none": 0.513567174056916,
|
35 |
-
"acc_stderr,none": 0.01286238758665008,
|
36 |
-
"alias": " - xstorycloze_id"
|
37 |
-
},
|
38 |
-
"xstorycloze_my": {
|
39 |
-
"acc,none": 0.48974189278623426,
|
40 |
-
"acc_stderr,none": 0.012864417047980477,
|
41 |
-
"alias": " - xstorycloze_my"
|
42 |
-
},
|
43 |
-
"xstorycloze_ru": {
|
44 |
-
"acc,none": 0.5823957643944407,
|
45 |
-
"acc_stderr,none": 0.012691211382848643,
|
46 |
-
"alias": " - xstorycloze_ru"
|
47 |
-
},
|
48 |
-
"xstorycloze_sw": {
|
49 |
-
"acc,none": 0.514228987425546,
|
50 |
-
"acc_stderr,none": 0.012861913999596127,
|
51 |
-
"alias": " - xstorycloze_sw"
|
52 |
-
},
|
53 |
-
"xstorycloze_te": {
|
54 |
-
"acc,none": 0.5327597617471873,
|
55 |
-
"acc_stderr,none": 0.012839477563855927,
|
56 |
-
"alias": " - xstorycloze_te"
|
57 |
-
},
|
58 |
-
"xstorycloze_zh": {
|
59 |
-
"acc,none": 0.5486432825943084,
|
60 |
-
"acc_stderr,none": 0.0128060889661224,
|
61 |
-
"alias": " - xstorycloze_zh"
|
62 |
-
}
|
63 |
-
},
|
64 |
-
"groups": {
|
65 |
-
"xstorycloze": {
|
66 |
-
"acc,none": 0.5524336682510078,
|
67 |
-
"acc_stderr,none": 0.06791399332607427,
|
68 |
-
"alias": "xstorycloze"
|
69 |
-
}
|
70 |
-
},
|
71 |
-
"configs": {
|
72 |
-
"xstorycloze_ar": {
|
73 |
-
"task": "xstorycloze_ar",
|
74 |
-
"group": "xstorycloze",
|
75 |
-
"dataset_path": "juletxara/xstory_cloze",
|
76 |
-
"dataset_name": "ar",
|
77 |
-
"training_split": "train",
|
78 |
-
"validation_split": "eval",
|
79 |
-
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
80 |
-
"doc_to_target": "{{answer_right_ending-1}}",
|
81 |
-
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
82 |
-
"description": "",
|
83 |
-
"target_delimiter": " ",
|
84 |
-
"fewshot_delimiter": "\n\n",
|
85 |
-
"metric_list": [
|
86 |
-
{
|
87 |
-
"metric": "acc",
|
88 |
-
"aggregation": "mean",
|
89 |
-
"higher_is_better": true
|
90 |
-
}
|
91 |
-
],
|
92 |
-
"output_type": "multiple_choice",
|
93 |
-
"repeats": 1,
|
94 |
-
"should_decontaminate": true,
|
95 |
-
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
96 |
-
"metadata": {
|
97 |
-
"version": 1.0
|
98 |
-
}
|
99 |
-
},
|
100 |
-
"xstorycloze_en": {
|
101 |
-
"task": "xstorycloze_en",
|
102 |
-
"group": "xstorycloze",
|
103 |
-
"dataset_path": "juletxara/xstory_cloze",
|
104 |
-
"dataset_name": "en",
|
105 |
-
"training_split": "train",
|
106 |
-
"validation_split": "eval",
|
107 |
-
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
108 |
-
"doc_to_target": "{{answer_right_ending-1}}",
|
109 |
-
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
110 |
-
"description": "",
|
111 |
-
"target_delimiter": " ",
|
112 |
-
"fewshot_delimiter": "\n\n",
|
113 |
-
"metric_list": [
|
114 |
-
{
|
115 |
-
"metric": "acc",
|
116 |
-
"aggregation": "mean",
|
117 |
-
"higher_is_better": true
|
118 |
-
}
|
119 |
-
],
|
120 |
-
"output_type": "multiple_choice",
|
121 |
-
"repeats": 1,
|
122 |
-
"should_decontaminate": true,
|
123 |
-
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
124 |
-
"metadata": {
|
125 |
-
"version": 1.0
|
126 |
-
}
|
127 |
-
},
|
128 |
-
"xstorycloze_es": {
|
129 |
-
"task": "xstorycloze_es",
|
130 |
-
"group": "xstorycloze",
|
131 |
-
"dataset_path": "juletxara/xstory_cloze",
|
132 |
-
"dataset_name": "es",
|
133 |
-
"training_split": "train",
|
134 |
-
"validation_split": "eval",
|
135 |
-
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
136 |
-
"doc_to_target": "{{answer_right_ending-1}}",
|
137 |
-
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
138 |
-
"description": "",
|
139 |
-
"target_delimiter": " ",
|
140 |
-
"fewshot_delimiter": "\n\n",
|
141 |
-
"metric_list": [
|
142 |
-
{
|
143 |
-
"metric": "acc",
|
144 |
-
"aggregation": "mean",
|
145 |
-
"higher_is_better": true
|
146 |
-
}
|
147 |
-
],
|
148 |
-
"output_type": "multiple_choice",
|
149 |
-
"repeats": 1,
|
150 |
-
"should_decontaminate": true,
|
151 |
-
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
152 |
-
"metadata": {
|
153 |
-
"version": 1.0
|
154 |
-
}
|
155 |
-
},
|
156 |
-
"xstorycloze_eu": {
|
157 |
-
"task": "xstorycloze_eu",
|
158 |
-
"group": "xstorycloze",
|
159 |
-
"dataset_path": "juletxara/xstory_cloze",
|
160 |
-
"dataset_name": "eu",
|
161 |
-
"training_split": "train",
|
162 |
-
"validation_split": "eval",
|
163 |
-
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
164 |
-
"doc_to_target": "{{answer_right_ending-1}}",
|
165 |
-
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
166 |
-
"description": "",
|
167 |
-
"target_delimiter": " ",
|
168 |
-
"fewshot_delimiter": "\n\n",
|
169 |
-
"metric_list": [
|
170 |
-
{
|
171 |
-
"metric": "acc",
|
172 |
-
"aggregation": "mean",
|
173 |
-
"higher_is_better": true
|
174 |
-
}
|
175 |
-
],
|
176 |
-
"output_type": "multiple_choice",
|
177 |
-
"repeats": 1,
|
178 |
-
"should_decontaminate": true,
|
179 |
-
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
180 |
-
"metadata": {
|
181 |
-
"version": 1.0
|
182 |
-
}
|
183 |
-
},
|
184 |
-
"xstorycloze_hi": {
|
185 |
-
"task": "xstorycloze_hi",
|
186 |
-
"group": "xstorycloze",
|
187 |
-
"dataset_path": "juletxara/xstory_cloze",
|
188 |
-
"dataset_name": "hi",
|
189 |
-
"training_split": "train",
|
190 |
-
"validation_split": "eval",
|
191 |
-
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
192 |
-
"doc_to_target": "{{answer_right_ending-1}}",
|
193 |
-
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
194 |
-
"description": "",
|
195 |
-
"target_delimiter": " ",
|
196 |
-
"fewshot_delimiter": "\n\n",
|
197 |
-
"metric_list": [
|
198 |
-
{
|
199 |
-
"metric": "acc",
|
200 |
-
"aggregation": "mean",
|
201 |
-
"higher_is_better": true
|
202 |
-
}
|
203 |
-
],
|
204 |
-
"output_type": "multiple_choice",
|
205 |
-
"repeats": 1,
|
206 |
-
"should_decontaminate": true,
|
207 |
-
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
208 |
-
"metadata": {
|
209 |
-
"version": 1.0
|
210 |
-
}
|
211 |
-
},
|
212 |
-
"xstorycloze_id": {
|
213 |
-
"task": "xstorycloze_id",
|
214 |
-
"group": "xstorycloze",
|
215 |
-
"dataset_path": "juletxara/xstory_cloze",
|
216 |
-
"dataset_name": "id",
|
217 |
-
"training_split": "train",
|
218 |
-
"validation_split": "eval",
|
219 |
-
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
220 |
-
"doc_to_target": "{{answer_right_ending-1}}",
|
221 |
-
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
222 |
-
"description": "",
|
223 |
-
"target_delimiter": " ",
|
224 |
-
"fewshot_delimiter": "\n\n",
|
225 |
-
"metric_list": [
|
226 |
-
{
|
227 |
-
"metric": "acc",
|
228 |
-
"aggregation": "mean",
|
229 |
-
"higher_is_better": true
|
230 |
-
}
|
231 |
-
],
|
232 |
-
"output_type": "multiple_choice",
|
233 |
-
"repeats": 1,
|
234 |
-
"should_decontaminate": true,
|
235 |
-
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
236 |
-
"metadata": {
|
237 |
-
"version": 1.0
|
238 |
-
}
|
239 |
-
},
|
240 |
-
"xstorycloze_my": {
|
241 |
-
"task": "xstorycloze_my",
|
242 |
-
"group": "xstorycloze",
|
243 |
-
"dataset_path": "juletxara/xstory_cloze",
|
244 |
-
"dataset_name": "my",
|
245 |
-
"training_split": "train",
|
246 |
-
"validation_split": "eval",
|
247 |
-
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
248 |
-
"doc_to_target": "{{answer_right_ending-1}}",
|
249 |
-
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
250 |
-
"description": "",
|
251 |
-
"target_delimiter": " ",
|
252 |
-
"fewshot_delimiter": "\n\n",
|
253 |
-
"metric_list": [
|
254 |
-
{
|
255 |
-
"metric": "acc",
|
256 |
-
"aggregation": "mean",
|
257 |
-
"higher_is_better": true
|
258 |
-
}
|
259 |
-
],
|
260 |
-
"output_type": "multiple_choice",
|
261 |
-
"repeats": 1,
|
262 |
-
"should_decontaminate": true,
|
263 |
-
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
264 |
-
"metadata": {
|
265 |
-
"version": 1.0
|
266 |
-
}
|
267 |
-
},
|
268 |
-
"xstorycloze_ru": {
|
269 |
-
"task": "xstorycloze_ru",
|
270 |
-
"group": "xstorycloze",
|
271 |
-
"dataset_path": "juletxara/xstory_cloze",
|
272 |
-
"dataset_name": "ru",
|
273 |
-
"training_split": "train",
|
274 |
-
"validation_split": "eval",
|
275 |
-
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
276 |
-
"doc_to_target": "{{answer_right_ending-1}}",
|
277 |
-
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
278 |
-
"description": "",
|
279 |
-
"target_delimiter": " ",
|
280 |
-
"fewshot_delimiter": "\n\n",
|
281 |
-
"metric_list": [
|
282 |
-
{
|
283 |
-
"metric": "acc",
|
284 |
-
"aggregation": "mean",
|
285 |
-
"higher_is_better": true
|
286 |
-
}
|
287 |
-
],
|
288 |
-
"output_type": "multiple_choice",
|
289 |
-
"repeats": 1,
|
290 |
-
"should_decontaminate": true,
|
291 |
-
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
292 |
-
"metadata": {
|
293 |
-
"version": 1.0
|
294 |
-
}
|
295 |
-
},
|
296 |
-
"xstorycloze_sw": {
|
297 |
-
"task": "xstorycloze_sw",
|
298 |
-
"group": "xstorycloze",
|
299 |
-
"dataset_path": "juletxara/xstory_cloze",
|
300 |
-
"dataset_name": "sw",
|
301 |
-
"training_split": "train",
|
302 |
-
"validation_split": "eval",
|
303 |
-
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
304 |
-
"doc_to_target": "{{answer_right_ending-1}}",
|
305 |
-
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
306 |
-
"description": "",
|
307 |
-
"target_delimiter": " ",
|
308 |
-
"fewshot_delimiter": "\n\n",
|
309 |
-
"metric_list": [
|
310 |
-
{
|
311 |
-
"metric": "acc",
|
312 |
-
"aggregation": "mean",
|
313 |
-
"higher_is_better": true
|
314 |
-
}
|
315 |
-
],
|
316 |
-
"output_type": "multiple_choice",
|
317 |
-
"repeats": 1,
|
318 |
-
"should_decontaminate": true,
|
319 |
-
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
320 |
-
"metadata": {
|
321 |
-
"version": 1.0
|
322 |
-
}
|
323 |
-
},
|
324 |
-
"xstorycloze_te": {
|
325 |
-
"task": "xstorycloze_te",
|
326 |
-
"group": "xstorycloze",
|
327 |
-
"dataset_path": "juletxara/xstory_cloze",
|
328 |
-
"dataset_name": "te",
|
329 |
-
"training_split": "train",
|
330 |
-
"validation_split": "eval",
|
331 |
-
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
332 |
-
"doc_to_target": "{{answer_right_ending-1}}",
|
333 |
-
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
334 |
-
"description": "",
|
335 |
-
"target_delimiter": " ",
|
336 |
-
"fewshot_delimiter": "\n\n",
|
337 |
-
"metric_list": [
|
338 |
-
{
|
339 |
-
"metric": "acc",
|
340 |
-
"aggregation": "mean",
|
341 |
-
"higher_is_better": true
|
342 |
-
}
|
343 |
-
],
|
344 |
-
"output_type": "multiple_choice",
|
345 |
-
"repeats": 1,
|
346 |
-
"should_decontaminate": true,
|
347 |
-
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
348 |
-
"metadata": {
|
349 |
-
"version": 1.0
|
350 |
-
}
|
351 |
-
},
|
352 |
-
"xstorycloze_zh": {
|
353 |
-
"task": "xstorycloze_zh",
|
354 |
-
"group": "xstorycloze",
|
355 |
-
"dataset_path": "juletxara/xstory_cloze",
|
356 |
-
"dataset_name": "zh",
|
357 |
-
"training_split": "train",
|
358 |
-
"validation_split": "eval",
|
359 |
-
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
360 |
-
"doc_to_target": "{{answer_right_ending-1}}",
|
361 |
-
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
362 |
-
"description": "",
|
363 |
-
"target_delimiter": " ",
|
364 |
-
"fewshot_delimiter": "\n\n",
|
365 |
-
"metric_list": [
|
366 |
-
{
|
367 |
-
"metric": "acc",
|
368 |
-
"aggregation": "mean",
|
369 |
-
"higher_is_better": true
|
370 |
-
}
|
371 |
-
],
|
372 |
-
"output_type": "multiple_choice",
|
373 |
-
"repeats": 1,
|
374 |
-
"should_decontaminate": true,
|
375 |
-
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
376 |
-
"metadata": {
|
377 |
-
"version": 1.0
|
378 |
-
}
|
379 |
-
}
|
380 |
-
},
|
381 |
-
"versions": {
|
382 |
-
"xstorycloze": "N/A",
|
383 |
-
"xstorycloze_ar": 1.0,
|
384 |
-
"xstorycloze_en": 1.0,
|
385 |
-
"xstorycloze_es": 1.0,
|
386 |
-
"xstorycloze_eu": 1.0,
|
387 |
-
"xstorycloze_hi": 1.0,
|
388 |
-
"xstorycloze_id": 1.0,
|
389 |
-
"xstorycloze_my": 1.0,
|
390 |
-
"xstorycloze_ru": 1.0,
|
391 |
-
"xstorycloze_sw": 1.0,
|
392 |
-
"xstorycloze_te": 1.0,
|
393 |
-
"xstorycloze_zh": 1.0
|
394 |
-
},
|
395 |
-
"n-shot": {
|
396 |
-
"xstorycloze": 0,
|
397 |
-
"xstorycloze_ar": 0,
|
398 |
-
"xstorycloze_en": 0,
|
399 |
-
"xstorycloze_es": 0,
|
400 |
-
"xstorycloze_eu": 0,
|
401 |
-
"xstorycloze_hi": 0,
|
402 |
-
"xstorycloze_id": 0,
|
403 |
-
"xstorycloze_my": 0,
|
404 |
-
"xstorycloze_ru": 0,
|
405 |
-
"xstorycloze_sw": 0,
|
406 |
-
"xstorycloze_te": 0,
|
407 |
-
"xstorycloze_zh": 0
|
408 |
-
},
|
409 |
-
"config": {
|
410 |
-
"model": "hf",
|
411 |
-
"model_args": "pretrained=togethercomputer/RedPajama-INCITE-7B-Base,dtype=bfloat16,trust_remote_code=True",
|
412 |
-
"batch_size": "auto",
|
413 |
-
"batch_sizes": [
|
414 |
-
4
|
415 |
-
],
|
416 |
-
"device": null,
|
417 |
-
"use_cache": null,
|
418 |
-
"limit": null,
|
419 |
-
"bootstrap_iters": 100000,
|
420 |
-
"gen_kwargs": null
|
421 |
-
},
|
422 |
-
"git_hash": "2c0a875"
|
423 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6e9f5ba42ffa2ea898c14805d192629b5e27ca22869b18fe497db1c273ad30d8
|
3 |
-
size 57015
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e7db16581994b54191b3fb5565ec9226fdb81757903fac634d148eb37ebcd4a0
|
3 |
-
size 513604
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
DELETED
@@ -1,248 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"xwinograd": {
|
4 |
-
"acc,none": 0.74331310406833,
|
5 |
-
"acc_stderr,none": 0.08408219267029617,
|
6 |
-
"alias": "xwinograd"
|
7 |
-
},
|
8 |
-
"xwinograd_en": {
|
9 |
-
"acc,none": 0.8718279569892473,
|
10 |
-
"acc_stderr,none": 0.006934162057729827,
|
11 |
-
"alias": " - xwinograd_en"
|
12 |
-
},
|
13 |
-
"xwinograd_fr": {
|
14 |
-
"acc,none": 0.6385542168674698,
|
15 |
-
"acc_stderr,none": 0.053053439348320096,
|
16 |
-
"alias": " - xwinograd_fr"
|
17 |
-
},
|
18 |
-
"xwinograd_jp": {
|
19 |
-
"acc,none": 0.5620437956204379,
|
20 |
-
"acc_stderr,none": 0.016029414748731596,
|
21 |
-
"alias": " - xwinograd_jp"
|
22 |
-
},
|
23 |
-
"xwinograd_pt": {
|
24 |
-
"acc,none": 0.6653992395437263,
|
25 |
-
"acc_stderr,none": 0.02915103415331038,
|
26 |
-
"alias": " - xwinograd_pt"
|
27 |
-
},
|
28 |
-
"xwinograd_ru": {
|
29 |
-
"acc,none": 0.6222222222222222,
|
30 |
-
"acc_stderr,none": 0.0273606328610564,
|
31 |
-
"alias": " - xwinograd_ru"
|
32 |
-
},
|
33 |
-
"xwinograd_zh": {
|
34 |
-
"acc,none": 0.628968253968254,
|
35 |
-
"acc_stderr,none": 0.02153951426767635,
|
36 |
-
"alias": " - xwinograd_zh"
|
37 |
-
}
|
38 |
-
},
|
39 |
-
"groups": {
|
40 |
-
"xwinograd": {
|
41 |
-
"acc,none": 0.74331310406833,
|
42 |
-
"acc_stderr,none": 0.08408219267029617,
|
43 |
-
"alias": "xwinograd"
|
44 |
-
}
|
45 |
-
},
|
46 |
-
"configs": {
|
47 |
-
"xwinograd_en": {
|
48 |
-
"task": "xwinograd_en",
|
49 |
-
"group": [
|
50 |
-
"xwinograd"
|
51 |
-
],
|
52 |
-
"dataset_path": "Muennighoff/xwinograd",
|
53 |
-
"dataset_name": "en",
|
54 |
-
"test_split": "test",
|
55 |
-
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
56 |
-
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
57 |
-
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
58 |
-
"description": "",
|
59 |
-
"target_delimiter": " ",
|
60 |
-
"fewshot_delimiter": "\n\n",
|
61 |
-
"metric_list": [
|
62 |
-
{
|
63 |
-
"metric": "acc",
|
64 |
-
"aggregation": "mean",
|
65 |
-
"higher_is_better": true
|
66 |
-
}
|
67 |
-
],
|
68 |
-
"output_type": "multiple_choice",
|
69 |
-
"repeats": 1,
|
70 |
-
"should_decontaminate": false,
|
71 |
-
"metadata": {
|
72 |
-
"version": 1.0
|
73 |
-
}
|
74 |
-
},
|
75 |
-
"xwinograd_fr": {
|
76 |
-
"task": "xwinograd_fr",
|
77 |
-
"group": [
|
78 |
-
"xwinograd"
|
79 |
-
],
|
80 |
-
"dataset_path": "Muennighoff/xwinograd",
|
81 |
-
"dataset_name": "fr",
|
82 |
-
"test_split": "test",
|
83 |
-
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
84 |
-
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
85 |
-
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
86 |
-
"description": "",
|
87 |
-
"target_delimiter": " ",
|
88 |
-
"fewshot_delimiter": "\n\n",
|
89 |
-
"metric_list": [
|
90 |
-
{
|
91 |
-
"metric": "acc",
|
92 |
-
"aggregation": "mean",
|
93 |
-
"higher_is_better": true
|
94 |
-
}
|
95 |
-
],
|
96 |
-
"output_type": "multiple_choice",
|
97 |
-
"repeats": 1,
|
98 |
-
"should_decontaminate": false,
|
99 |
-
"metadata": {
|
100 |
-
"version": 1.0
|
101 |
-
}
|
102 |
-
},
|
103 |
-
"xwinograd_jp": {
|
104 |
-
"task": "xwinograd_jp",
|
105 |
-
"group": [
|
106 |
-
"xwinograd"
|
107 |
-
],
|
108 |
-
"dataset_path": "Muennighoff/xwinograd",
|
109 |
-
"dataset_name": "jp",
|
110 |
-
"test_split": "test",
|
111 |
-
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
112 |
-
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
113 |
-
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
114 |
-
"description": "",
|
115 |
-
"target_delimiter": " ",
|
116 |
-
"fewshot_delimiter": "\n\n",
|
117 |
-
"metric_list": [
|
118 |
-
{
|
119 |
-
"metric": "acc",
|
120 |
-
"aggregation": "mean",
|
121 |
-
"higher_is_better": true
|
122 |
-
}
|
123 |
-
],
|
124 |
-
"output_type": "multiple_choice",
|
125 |
-
"repeats": 1,
|
126 |
-
"should_decontaminate": false,
|
127 |
-
"metadata": {
|
128 |
-
"version": 1.0
|
129 |
-
}
|
130 |
-
},
|
131 |
-
"xwinograd_pt": {
|
132 |
-
"task": "xwinograd_pt",
|
133 |
-
"group": [
|
134 |
-
"xwinograd"
|
135 |
-
],
|
136 |
-
"dataset_path": "Muennighoff/xwinograd",
|
137 |
-
"dataset_name": "pt",
|
138 |
-
"test_split": "test",
|
139 |
-
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
140 |
-
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
141 |
-
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
142 |
-
"description": "",
|
143 |
-
"target_delimiter": " ",
|
144 |
-
"fewshot_delimiter": "\n\n",
|
145 |
-
"metric_list": [
|
146 |
-
{
|
147 |
-
"metric": "acc",
|
148 |
-
"aggregation": "mean",
|
149 |
-
"higher_is_better": true
|
150 |
-
}
|
151 |
-
],
|
152 |
-
"output_type": "multiple_choice",
|
153 |
-
"repeats": 1,
|
154 |
-
"should_decontaminate": false,
|
155 |
-
"metadata": {
|
156 |
-
"version": 1.0
|
157 |
-
}
|
158 |
-
},
|
159 |
-
"xwinograd_ru": {
|
160 |
-
"task": "xwinograd_ru",
|
161 |
-
"group": [
|
162 |
-
"xwinograd"
|
163 |
-
],
|
164 |
-
"dataset_path": "Muennighoff/xwinograd",
|
165 |
-
"dataset_name": "ru",
|
166 |
-
"test_split": "test",
|
167 |
-
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
168 |
-
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
169 |
-
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
170 |
-
"description": "",
|
171 |
-
"target_delimiter": " ",
|
172 |
-
"fewshot_delimiter": "\n\n",
|
173 |
-
"metric_list": [
|
174 |
-
{
|
175 |
-
"metric": "acc",
|
176 |
-
"aggregation": "mean",
|
177 |
-
"higher_is_better": true
|
178 |
-
}
|
179 |
-
],
|
180 |
-
"output_type": "multiple_choice",
|
181 |
-
"repeats": 1,
|
182 |
-
"should_decontaminate": false,
|
183 |
-
"metadata": {
|
184 |
-
"version": 1.0
|
185 |
-
}
|
186 |
-
},
|
187 |
-
"xwinograd_zh": {
|
188 |
-
"task": "xwinograd_zh",
|
189 |
-
"group": [
|
190 |
-
"xwinograd"
|
191 |
-
],
|
192 |
-
"dataset_path": "Muennighoff/xwinograd",
|
193 |
-
"dataset_name": "zh",
|
194 |
-
"test_split": "test",
|
195 |
-
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
196 |
-
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
197 |
-
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
198 |
-
"description": "",
|
199 |
-
"target_delimiter": " ",
|
200 |
-
"fewshot_delimiter": "\n\n",
|
201 |
-
"metric_list": [
|
202 |
-
{
|
203 |
-
"metric": "acc",
|
204 |
-
"aggregation": "mean",
|
205 |
-
"higher_is_better": true
|
206 |
-
}
|
207 |
-
],
|
208 |
-
"output_type": "multiple_choice",
|
209 |
-
"repeats": 1,
|
210 |
-
"should_decontaminate": false,
|
211 |
-
"metadata": {
|
212 |
-
"version": 1.0
|
213 |
-
}
|
214 |
-
}
|
215 |
-
},
|
216 |
-
"versions": {
|
217 |
-
"xwinograd": "N/A",
|
218 |
-
"xwinograd_en": 1.0,
|
219 |
-
"xwinograd_fr": 1.0,
|
220 |
-
"xwinograd_jp": 1.0,
|
221 |
-
"xwinograd_pt": 1.0,
|
222 |
-
"xwinograd_ru": 1.0,
|
223 |
-
"xwinograd_zh": 1.0
|
224 |
-
},
|
225 |
-
"n-shot": {
|
226 |
-
"xwinograd": 0,
|
227 |
-
"xwinograd_en": 0,
|
228 |
-
"xwinograd_fr": 0,
|
229 |
-
"xwinograd_jp": 0,
|
230 |
-
"xwinograd_pt": 0,
|
231 |
-
"xwinograd_ru": 0,
|
232 |
-
"xwinograd_zh": 0
|
233 |
-
},
|
234 |
-
"config": {
|
235 |
-
"model": "hf",
|
236 |
-
"model_args": "pretrained=togethercomputer/RedPajama-INCITE-7B-Base,dtype=bfloat16,trust_remote_code=True",
|
237 |
-
"batch_size": "auto",
|
238 |
-
"batch_sizes": [
|
239 |
-
16
|
240 |
-
],
|
241 |
-
"device": null,
|
242 |
-
"use_cache": null,
|
243 |
-
"limit": null,
|
244 |
-
"bootstrap_iters": 100000,
|
245 |
-
"gen_kwargs": null
|
246 |
-
},
|
247 |
-
"git_hash": "2c0a875"
|
248 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lm-eval-output/RedPajama-INCITE-7B-Base/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6e89625fbf308af1fff3236b77553d7bffe3d2d7c54cab2b132c43f2ff9e0992
|
3 |
-
size 40851
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a7b6162eaecf35e40162218a7076222880e68797aaeb567a8713ff06ca3b6935
|
3 |
-
size 681726
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,33 +1,33 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"ai2_arc": {
|
4 |
-
"acc,none": 0.
|
5 |
-
"acc_stderr,none": 0.
|
6 |
-
"acc_norm,none": 0.
|
7 |
-
"acc_norm_stderr,none": 0.
|
8 |
"alias": "ai2_arc"
|
9 |
},
|
10 |
"arc_challenge": {
|
11 |
-
"acc,none": 0.
|
12 |
-
"acc_stderr,none": 0.
|
13 |
-
"acc_norm,none": 0.
|
14 |
-
"acc_norm_stderr,none": 0.
|
15 |
"alias": " - arc_challenge"
|
16 |
},
|
17 |
"arc_easy": {
|
18 |
-
"acc,none": 0.
|
19 |
-
"acc_stderr,none": 0.
|
20 |
-
"acc_norm,none": 0.
|
21 |
-
"acc_norm_stderr,none": 0.
|
22 |
"alias": " - arc_easy"
|
23 |
}
|
24 |
},
|
25 |
"groups": {
|
26 |
"ai2_arc": {
|
27 |
-
"acc,none": 0.
|
28 |
-
"acc_stderr,none": 0.
|
29 |
-
"acc_norm,none": 0.
|
30 |
-
"acc_norm_stderr,none": 0.
|
31 |
"alias": "ai2_arc"
|
32 |
}
|
33 |
},
|
@@ -118,13 +118,15 @@
|
|
118 |
"config": {
|
119 |
"model": "hf",
|
120 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
121 |
-
"batch_size": "
|
122 |
-
"batch_sizes": [
|
|
|
|
|
123 |
"device": null,
|
124 |
"use_cache": null,
|
125 |
"limit": null,
|
126 |
"bootstrap_iters": 100000,
|
127 |
"gen_kwargs": null
|
128 |
},
|
129 |
-
"git_hash": "
|
130 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"ai2_arc": {
|
4 |
+
"acc,none": 0.6141488162344984,
|
5 |
+
"acc_stderr,none": 0.11602553865195812,
|
6 |
+
"acc_norm,none": 0.5944193912063134,
|
7 |
+
"acc_norm_stderr,none": 0.09008281087077372,
|
8 |
"alias": "ai2_arc"
|
9 |
},
|
10 |
"arc_challenge": {
|
11 |
+
"acc,none": 0.36860068259385664,
|
12 |
+
"acc_stderr,none": 0.014097810678042187,
|
13 |
+
"acc_norm,none": 0.4044368600682594,
|
14 |
+
"acc_norm_stderr,none": 0.014342036483436174,
|
15 |
"alias": " - arc_challenge"
|
16 |
},
|
17 |
"arc_easy": {
|
18 |
+
"acc,none": 0.7352693602693603,
|
19 |
+
"acc_stderr,none": 0.009053021086173977,
|
20 |
+
"acc_norm,none": 0.6881313131313131,
|
21 |
+
"acc_norm_stderr,none": 0.00950582334581765,
|
22 |
"alias": " - arc_easy"
|
23 |
}
|
24 |
},
|
25 |
"groups": {
|
26 |
"ai2_arc": {
|
27 |
+
"acc,none": 0.6141488162344984,
|
28 |
+
"acc_stderr,none": 0.11602553865195812,
|
29 |
+
"acc_norm,none": 0.5944193912063134,
|
30 |
+
"acc_norm_stderr,none": 0.09008281087077372,
|
31 |
"alias": "ai2_arc"
|
32 |
}
|
33 |
},
|
|
|
118 |
"config": {
|
119 |
"model": "hf",
|
120 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
121 |
+
"batch_size": "auto",
|
122 |
+
"batch_sizes": [
|
123 |
+
32
|
124 |
+
],
|
125 |
"device": null,
|
126 |
"use_cache": null,
|
127 |
"limit": null,
|
128 |
"bootstrap_iters": 100000,
|
129 |
"gen_kwargs": null
|
130 |
},
|
131 |
+
"git_hash": "2e3ceb0"
|
132 |
}
|
lm-eval-output/allenai/OLMo-7B/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:feda1a9a8d31385965b7cd26c524ddba7445b789e2a118919a275c549d0cea1e
|
3 |
+
size 16263
|
lm-eval-output/allenai/OLMo-7B/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:30daa66193be9558d1965ef1f9bb9c02d4a91213fb3a14fac0879bcf930e1e4b
|
3 |
-
size 1070250
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,30 +1,30 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"anli": {
|
4 |
-
"acc,none": 0.
|
5 |
-
"acc_stderr,none": 0.
|
6 |
"alias": "anli"
|
7 |
},
|
8 |
"anli_r1": {
|
9 |
-
"acc,none": 0.
|
10 |
-
"acc_stderr,none": 0.
|
11 |
"alias": " - anli_r1"
|
12 |
},
|
13 |
"anli_r2": {
|
14 |
-
"acc,none": 0.
|
15 |
-
"acc_stderr,none": 0.
|
16 |
"alias": " - anli_r2"
|
17 |
},
|
18 |
"anli_r3": {
|
19 |
-
"acc,none": 0.
|
20 |
-
"acc_stderr,none": 0.
|
21 |
"alias": " - anli_r3"
|
22 |
}
|
23 |
},
|
24 |
"groups": {
|
25 |
"anli": {
|
26 |
-
"acc,none": 0.
|
27 |
-
"acc_stderr,none": 0.
|
28 |
"alias": "anli"
|
29 |
}
|
30 |
},
|
@@ -147,13 +147,15 @@
|
|
147 |
"config": {
|
148 |
"model": "hf",
|
149 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
150 |
-
"batch_size": "
|
151 |
-
"batch_sizes": [
|
|
|
|
|
152 |
"device": null,
|
153 |
"use_cache": null,
|
154 |
"limit": null,
|
155 |
"bootstrap_iters": 100000,
|
156 |
"gen_kwargs": null
|
157 |
},
|
158 |
-
"git_hash": "
|
159 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"anli": {
|
4 |
+
"acc,none": 0.3465625,
|
5 |
+
"acc_stderr,none": 0.016792339011968412,
|
6 |
"alias": "anli"
|
7 |
},
|
8 |
"anli_r1": {
|
9 |
+
"acc,none": 0.325,
|
10 |
+
"acc_stderr,none": 0.014818724459095526,
|
11 |
"alias": " - anli_r1"
|
12 |
},
|
13 |
"anli_r2": {
|
14 |
+
"acc,none": 0.356,
|
15 |
+
"acc_stderr,none": 0.015149042659306626,
|
16 |
"alias": " - anli_r2"
|
17 |
},
|
18 |
"anli_r3": {
|
19 |
+
"acc,none": 0.3566666666666667,
|
20 |
+
"acc_stderr,none": 0.013833742805050717,
|
21 |
"alias": " - anli_r3"
|
22 |
}
|
23 |
},
|
24 |
"groups": {
|
25 |
"anli": {
|
26 |
+
"acc,none": 0.3465625,
|
27 |
+
"acc_stderr,none": 0.016792339011968412,
|
28 |
"alias": "anli"
|
29 |
}
|
30 |
},
|
|
|
147 |
"config": {
|
148 |
"model": "hf",
|
149 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
150 |
+
"batch_size": "auto",
|
151 |
+
"batch_sizes": [
|
152 |
+
32
|
153 |
+
],
|
154 |
"device": null,
|
155 |
"use_cache": null,
|
156 |
"limit": null,
|
157 |
"bootstrap_iters": 100000,
|
158 |
"gen_kwargs": null
|
159 |
},
|
160 |
+
"git_hash": "2e3ceb0"
|
161 |
}
|
lm-eval-output/allenai/OLMo-7B/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df4971e214a122144a0bdc530721b0e62f5d9807f2626826442b773b85ceb849
|
3 |
+
size 14676
|
lm-eval-output/allenai/OLMo-7B/arithmetic/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:54f3c8990eb96dc7ac5c4e5586ce6ed5d89feec36cad016d2e19582657216f69
|
3 |
-
size 571330
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/arithmetic/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"arithmetic": {
|
4 |
-
"acc,none": 0.
|
5 |
-
"acc_stderr,none": 0.
|
6 |
"alias": "arithmetic"
|
7 |
},
|
8 |
"arithmetic_1dc": {
|
9 |
-
"acc,none": 0.
|
10 |
-
"acc_stderr,none": 0.
|
11 |
"alias": " - arithmetic_1dc"
|
12 |
},
|
13 |
"arithmetic_2da": {
|
@@ -16,8 +16,8 @@
|
|
16 |
"alias": " - arithmetic_2da"
|
17 |
},
|
18 |
"arithmetic_2dm": {
|
19 |
-
"acc,none": 0.
|
20 |
-
"acc_stderr,none": 0.
|
21 |
"alias": " - arithmetic_2dm"
|
22 |
},
|
23 |
"arithmetic_2ds": {
|
@@ -58,8 +58,8 @@
|
|
58 |
},
|
59 |
"groups": {
|
60 |
"arithmetic": {
|
61 |
-
"acc,none": 0.
|
62 |
-
"acc_stderr,none": 0.
|
63 |
"alias": "arithmetic"
|
64 |
}
|
65 |
},
|
@@ -364,13 +364,15 @@
|
|
364 |
"config": {
|
365 |
"model": "hf",
|
366 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
367 |
-
"batch_size": "
|
368 |
-
"batch_sizes": [
|
|
|
|
|
369 |
"device": null,
|
370 |
"use_cache": null,
|
371 |
"limit": null,
|
372 |
"bootstrap_iters": 100000,
|
373 |
"gen_kwargs": null
|
374 |
},
|
375 |
-
"git_hash": "
|
376 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"arithmetic": {
|
4 |
+
"acc,none": 0.007,
|
5 |
+
"acc_stderr,none": 0.006724488098523242,
|
6 |
"alias": "arithmetic"
|
7 |
},
|
8 |
"arithmetic_1dc": {
|
9 |
+
"acc,none": 0.0065,
|
10 |
+
"acc_stderr,none": 0.0017973564602277768,
|
11 |
"alias": " - arithmetic_1dc"
|
12 |
},
|
13 |
"arithmetic_2da": {
|
|
|
16 |
"alias": " - arithmetic_2da"
|
17 |
},
|
18 |
"arithmetic_2dm": {
|
19 |
+
"acc,none": 0.029,
|
20 |
+
"acc_stderr,none": 0.0037532044004605246,
|
21 |
"alias": " - arithmetic_2dm"
|
22 |
},
|
23 |
"arithmetic_2ds": {
|
|
|
58 |
},
|
59 |
"groups": {
|
60 |
"arithmetic": {
|
61 |
+
"acc,none": 0.007,
|
62 |
+
"acc_stderr,none": 0.006724488098523242,
|
63 |
"alias": "arithmetic"
|
64 |
}
|
65 |
},
|
|
|
364 |
"config": {
|
365 |
"model": "hf",
|
366 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
367 |
+
"batch_size": "auto",
|
368 |
+
"batch_sizes": [
|
369 |
+
64
|
370 |
+
],
|
371 |
"device": null,
|
372 |
"use_cache": null,
|
373 |
"limit": null,
|
374 |
"bootstrap_iters": 100000,
|
375 |
"gen_kwargs": null
|
376 |
},
|
377 |
+
"git_hash": "2e3ceb0"
|
378 |
}
|
lm-eval-output/allenai/OLMo-7B/arithmetic/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:336d5042f526e0b5a3e6045ddb2334d66ffc6ba7c4f85d38364256c924609891
|
3 |
+
size 25619
|
lm-eval-output/allenai/OLMo-7B/arithmetic__/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:4e36726446be44a4ca03fdd234a83b2cf7fb9884d27cb2ab737c41c9d9dae9f5
|
3 |
-
size 571331
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/arithmetic__/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -36,8 +36,8 @@
|
|
36 |
"alias": "arithmetic_2ds"
|
37 |
},
|
38 |
"arithmetic_2dm": {
|
39 |
-
"acc,none": 0.
|
40 |
-
"acc_stderr,none": 0.
|
41 |
"alias": "arithmetic_2dm"
|
42 |
},
|
43 |
"arithmetic_2da": {
|
@@ -46,8 +46,8 @@
|
|
46 |
"alias": "arithmetic_2da"
|
47 |
},
|
48 |
"arithmetic_1dc": {
|
49 |
-
"acc,none": 0.
|
50 |
-
"acc_stderr,none": 0.
|
51 |
"alias": "arithmetic_1dc"
|
52 |
}
|
53 |
},
|
@@ -350,13 +350,15 @@
|
|
350 |
"config": {
|
351 |
"model": "hf",
|
352 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
353 |
-
"batch_size": "
|
354 |
-
"batch_sizes": [
|
|
|
|
|
355 |
"device": null,
|
356 |
"use_cache": null,
|
357 |
"limit": null,
|
358 |
"bootstrap_iters": 100000,
|
359 |
"gen_kwargs": null
|
360 |
},
|
361 |
-
"git_hash": "
|
362 |
}
|
|
|
36 |
"alias": "arithmetic_2ds"
|
37 |
},
|
38 |
"arithmetic_2dm": {
|
39 |
+
"acc,none": 0.029,
|
40 |
+
"acc_stderr,none": 0.0037532044004605246,
|
41 |
"alias": "arithmetic_2dm"
|
42 |
},
|
43 |
"arithmetic_2da": {
|
|
|
46 |
"alias": "arithmetic_2da"
|
47 |
},
|
48 |
"arithmetic_1dc": {
|
49 |
+
"acc,none": 0.0065,
|
50 |
+
"acc_stderr,none": 0.0017973564602277768,
|
51 |
"alias": "arithmetic_1dc"
|
52 |
}
|
53 |
},
|
|
|
350 |
"config": {
|
351 |
"model": "hf",
|
352 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
353 |
+
"batch_size": "auto",
|
354 |
+
"batch_sizes": [
|
355 |
+
64
|
356 |
+
],
|
357 |
"device": null,
|
358 |
"use_cache": null,
|
359 |
"limit": null,
|
360 |
"bootstrap_iters": 100000,
|
361 |
"gen_kwargs": null
|
362 |
},
|
363 |
+
"git_hash": "2e3ceb0"
|
364 |
}
|
lm-eval-output/allenai/OLMo-7B/arithmetic__/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c280fce1e1826f134c773e5a830152245f71f8505f03d4c5cfcb4af0ff0f9df8
|
3 |
+
size 21272
|
lm-eval-output/allenai/OLMo-7B/asdiv/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8d9004ca282c30e0451d79151305ebe50933d491576bde59f97ec09f2d20999a
|
3 |
-
size 265321
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/asdiv/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"asdiv": {
|
4 |
-
"acc,none": 0.
|
5 |
-
"acc_stderr,none": 0.
|
6 |
"alias": "asdiv"
|
7 |
}
|
8 |
},
|
@@ -41,13 +41,15 @@
|
|
41 |
"config": {
|
42 |
"model": "hf",
|
43 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
44 |
-
"batch_size": "
|
45 |
-
"batch_sizes": [
|
|
|
|
|
46 |
"device": null,
|
47 |
"use_cache": null,
|
48 |
"limit": null,
|
49 |
"bootstrap_iters": 100000,
|
50 |
"gen_kwargs": null
|
51 |
},
|
52 |
-
"git_hash": "
|
53 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"asdiv": {
|
4 |
+
"acc,none": 0.015618221258134491,
|
5 |
+
"acc_stderr,none": 0.002583189883690767,
|
6 |
"alias": "asdiv"
|
7 |
}
|
8 |
},
|
|
|
41 |
"config": {
|
42 |
"model": "hf",
|
43 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
44 |
+
"batch_size": "auto",
|
45 |
+
"batch_sizes": [
|
46 |
+
64
|
47 |
+
],
|
48 |
"device": null,
|
49 |
"use_cache": null,
|
50 |
"limit": null,
|
51 |
"bootstrap_iters": 100000,
|
52 |
"gen_kwargs": null
|
53 |
},
|
54 |
+
"git_hash": "2e3ceb0"
|
55 |
}
|
lm-eval-output/allenai/OLMo-7B/asdiv/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc981690a7e19989d96bb07b4c91f750b1d9921eca7d50386cdc5233a531770c
|
3 |
+
size 16390
|
lm-eval-output/allenai/OLMo-7B/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:bd87668d838a678fe98acd570f4f888ebadc3a001ba22cf884b87023aceebbc5
|
3 |
-
size 4244097
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"blimp": {
|
4 |
-
"acc,none": 0.
|
5 |
-
"acc_stderr,none": 0.
|
6 |
"alias": "blimp"
|
7 |
},
|
8 |
"blimp_adjunct_island": {
|
9 |
-
"acc,none": 0.
|
10 |
-
"acc_stderr,none": 0.
|
11 |
"alias": " - blimp_adjunct_island"
|
12 |
},
|
13 |
"blimp_anaphor_gender_agreement": {
|
@@ -16,23 +16,23 @@
|
|
16 |
"alias": " - blimp_anaphor_gender_agreement"
|
17 |
},
|
18 |
"blimp_anaphor_number_agreement": {
|
19 |
-
"acc,none": 0.
|
20 |
-
"acc_stderr,none": 0.
|
21 |
"alias": " - blimp_anaphor_number_agreement"
|
22 |
},
|
23 |
"blimp_animate_subject_passive": {
|
24 |
-
"acc,none": 0.
|
25 |
-
"acc_stderr,none": 0.
|
26 |
"alias": " - blimp_animate_subject_passive"
|
27 |
},
|
28 |
"blimp_animate_subject_trans": {
|
29 |
-
"acc,none": 0.
|
30 |
-
"acc_stderr,none": 0.
|
31 |
"alias": " - blimp_animate_subject_trans"
|
32 |
},
|
33 |
"blimp_causative": {
|
34 |
-
"acc,none": 0.
|
35 |
-
"acc_stderr,none": 0.
|
36 |
"alias": " - blimp_causative"
|
37 |
},
|
38 |
"blimp_complex_NP_island": {
|
@@ -41,113 +41,113 @@
|
|
41 |
"alias": " - blimp_complex_NP_island"
|
42 |
},
|
43 |
"blimp_coordinate_structure_constraint_complex_left_branch": {
|
44 |
-
"acc,none": 0.
|
45 |
-
"acc_stderr,none": 0.
|
46 |
"alias": " - blimp_coordinate_structure_constraint_complex_left_branch"
|
47 |
},
|
48 |
"blimp_coordinate_structure_constraint_object_extraction": {
|
49 |
-
"acc,none": 0.
|
50 |
-
"acc_stderr,none": 0.
|
51 |
"alias": " - blimp_coordinate_structure_constraint_object_extraction"
|
52 |
},
|
53 |
"blimp_determiner_noun_agreement_1": {
|
54 |
"acc,none": 0.986,
|
55 |
-
"acc_stderr,none": 0.
|
56 |
"alias": " - blimp_determiner_noun_agreement_1"
|
57 |
},
|
58 |
"blimp_determiner_noun_agreement_2": {
|
59 |
-
"acc,none": 0.
|
60 |
-
"acc_stderr,none": 0.
|
61 |
"alias": " - blimp_determiner_noun_agreement_2"
|
62 |
},
|
63 |
"blimp_determiner_noun_agreement_irregular_1": {
|
64 |
-
"acc,none": 0.
|
65 |
-
"acc_stderr,none": 0.
|
66 |
"alias": " - blimp_determiner_noun_agreement_irregular_1"
|
67 |
},
|
68 |
"blimp_determiner_noun_agreement_irregular_2": {
|
69 |
-
"acc,none": 0.
|
70 |
-
"acc_stderr,none": 0.
|
71 |
"alias": " - blimp_determiner_noun_agreement_irregular_2"
|
72 |
},
|
73 |
"blimp_determiner_noun_agreement_with_adj_2": {
|
74 |
-
"acc,none": 0.
|
75 |
-
"acc_stderr,none": 0.
|
76 |
"alias": " - blimp_determiner_noun_agreement_with_adj_2"
|
77 |
},
|
78 |
"blimp_determiner_noun_agreement_with_adj_irregular_1": {
|
79 |
-
"acc,none": 0.
|
80 |
-
"acc_stderr,none": 0.
|
81 |
"alias": " - blimp_determiner_noun_agreement_with_adj_irregular_1"
|
82 |
},
|
83 |
"blimp_determiner_noun_agreement_with_adj_irregular_2": {
|
84 |
-
"acc,none": 0.
|
85 |
-
"acc_stderr,none": 0.
|
86 |
"alias": " - blimp_determiner_noun_agreement_with_adj_irregular_2"
|
87 |
},
|
88 |
"blimp_determiner_noun_agreement_with_adjective_1": {
|
89 |
-
"acc,none": 0.
|
90 |
-
"acc_stderr,none": 0.
|
91 |
"alias": " - blimp_determiner_noun_agreement_with_adjective_1"
|
92 |
},
|
93 |
"blimp_distractor_agreement_relational_noun": {
|
94 |
-
"acc,none": 0.
|
95 |
-
"acc_stderr,none": 0.
|
96 |
"alias": " - blimp_distractor_agreement_relational_noun"
|
97 |
},
|
98 |
"blimp_distractor_agreement_relative_clause": {
|
99 |
-
"acc,none": 0.
|
100 |
-
"acc_stderr,none": 0.
|
101 |
"alias": " - blimp_distractor_agreement_relative_clause"
|
102 |
},
|
103 |
"blimp_drop_argument": {
|
104 |
-
"acc,none": 0.
|
105 |
-
"acc_stderr,none": 0.
|
106 |
"alias": " - blimp_drop_argument"
|
107 |
},
|
108 |
"blimp_ellipsis_n_bar_1": {
|
109 |
"acc,none": 0.812,
|
110 |
-
"acc_stderr,none": 0.
|
111 |
"alias": " - blimp_ellipsis_n_bar_1"
|
112 |
},
|
113 |
"blimp_ellipsis_n_bar_2": {
|
114 |
-
"acc,none": 0.
|
115 |
-
"acc_stderr,none": 0.
|
116 |
"alias": " - blimp_ellipsis_n_bar_2"
|
117 |
},
|
118 |
"blimp_existential_there_object_raising": {
|
119 |
-
"acc,none": 0.
|
120 |
-
"acc_stderr,none": 0.
|
121 |
"alias": " - blimp_existential_there_object_raising"
|
122 |
},
|
123 |
"blimp_existential_there_quantifiers_1": {
|
124 |
-
"acc,none": 0.
|
125 |
-
"acc_stderr,none": 0.
|
126 |
"alias": " - blimp_existential_there_quantifiers_1"
|
127 |
},
|
128 |
"blimp_existential_there_quantifiers_2": {
|
129 |
"acc,none": 0.377,
|
130 |
-
"acc_stderr,none": 0.
|
131 |
"alias": " - blimp_existential_there_quantifiers_2"
|
132 |
},
|
133 |
"blimp_existential_there_subject_raising": {
|
134 |
-
"acc,none": 0.
|
135 |
-
"acc_stderr,none": 0.
|
136 |
"alias": " - blimp_existential_there_subject_raising"
|
137 |
},
|
138 |
"blimp_expletive_it_object_raising": {
|
139 |
-
"acc,none": 0.
|
140 |
-
"acc_stderr,none": 0.
|
141 |
"alias": " - blimp_expletive_it_object_raising"
|
142 |
},
|
143 |
"blimp_inchoative": {
|
144 |
-
"acc,none": 0.
|
145 |
-
"acc_stderr,none": 0.
|
146 |
"alias": " - blimp_inchoative"
|
147 |
},
|
148 |
"blimp_intransitive": {
|
149 |
-
"acc,none": 0.
|
150 |
-
"acc_stderr,none": 0.
|
151 |
"alias": " - blimp_intransitive"
|
152 |
},
|
153 |
"blimp_irregular_past_participle_adjectives": {
|
@@ -156,68 +156,68 @@
|
|
156 |
"alias": " - blimp_irregular_past_participle_adjectives"
|
157 |
},
|
158 |
"blimp_irregular_past_participle_verbs": {
|
159 |
-
"acc,none": 0.
|
160 |
-
"acc_stderr,none": 0.
|
161 |
"alias": " - blimp_irregular_past_participle_verbs"
|
162 |
},
|
163 |
"blimp_irregular_plural_subject_verb_agreement_1": {
|
164 |
-
"acc,none": 0.
|
165 |
-
"acc_stderr,none": 0.
|
166 |
"alias": " - blimp_irregular_plural_subject_verb_agreement_1"
|
167 |
},
|
168 |
"blimp_irregular_plural_subject_verb_agreement_2": {
|
169 |
-
"acc,none": 0.
|
170 |
-
"acc_stderr,none": 0.
|
171 |
"alias": " - blimp_irregular_plural_subject_verb_agreement_2"
|
172 |
},
|
173 |
"blimp_left_branch_island_echo_question": {
|
174 |
-
"acc,none": 0.
|
175 |
-
"acc_stderr,none": 0.
|
176 |
"alias": " - blimp_left_branch_island_echo_question"
|
177 |
},
|
178 |
"blimp_left_branch_island_simple_question": {
|
179 |
-
"acc,none": 0.
|
180 |
-
"acc_stderr,none": 0.
|
181 |
"alias": " - blimp_left_branch_island_simple_question"
|
182 |
},
|
183 |
"blimp_matrix_question_npi_licensor_present": {
|
184 |
-
"acc,none": 0.
|
185 |
-
"acc_stderr,none": 0.
|
186 |
"alias": " - blimp_matrix_question_npi_licensor_present"
|
187 |
},
|
188 |
"blimp_npi_present_1": {
|
189 |
-
"acc,none": 0.
|
190 |
-
"acc_stderr,none": 0.
|
191 |
"alias": " - blimp_npi_present_1"
|
192 |
},
|
193 |
"blimp_npi_present_2": {
|
194 |
-
"acc,none": 0.
|
195 |
-
"acc_stderr,none": 0.
|
196 |
"alias": " - blimp_npi_present_2"
|
197 |
},
|
198 |
"blimp_only_npi_licensor_present": {
|
199 |
-
"acc,none": 0.
|
200 |
-
"acc_stderr,none": 0.
|
201 |
"alias": " - blimp_only_npi_licensor_present"
|
202 |
},
|
203 |
"blimp_only_npi_scope": {
|
204 |
-
"acc,none": 0.
|
205 |
-
"acc_stderr,none": 0.
|
206 |
"alias": " - blimp_only_npi_scope"
|
207 |
},
|
208 |
"blimp_passive_1": {
|
209 |
-
"acc,none": 0.
|
210 |
-
"acc_stderr,none": 0.
|
211 |
"alias": " - blimp_passive_1"
|
212 |
},
|
213 |
"blimp_passive_2": {
|
214 |
-
"acc,none": 0.
|
215 |
-
"acc_stderr,none": 0.
|
216 |
"alias": " - blimp_passive_2"
|
217 |
},
|
218 |
"blimp_principle_A_c_command": {
|
219 |
-
"acc,none": 0.
|
220 |
-
"acc_stderr,none": 0.
|
221 |
"alias": " - blimp_principle_A_c_command"
|
222 |
},
|
223 |
"blimp_principle_A_case_1": {
|
@@ -226,23 +226,23 @@
|
|
226 |
"alias": " - blimp_principle_A_case_1"
|
227 |
},
|
228 |
"blimp_principle_A_case_2": {
|
229 |
-
"acc,none": 0.
|
230 |
-
"acc_stderr,none": 0.
|
231 |
"alias": " - blimp_principle_A_case_2"
|
232 |
},
|
233 |
"blimp_principle_A_domain_1": {
|
234 |
-
"acc,none": 0.
|
235 |
-
"acc_stderr,none": 0.
|
236 |
"alias": " - blimp_principle_A_domain_1"
|
237 |
},
|
238 |
"blimp_principle_A_domain_2": {
|
239 |
-
"acc,none": 0.
|
240 |
-
"acc_stderr,none": 0.
|
241 |
"alias": " - blimp_principle_A_domain_2"
|
242 |
},
|
243 |
"blimp_principle_A_domain_3": {
|
244 |
-
"acc,none": 0.
|
245 |
-
"acc_stderr,none": 0.
|
246 |
"alias": " - blimp_principle_A_domain_3"
|
247 |
},
|
248 |
"blimp_principle_A_reconstruction": {
|
@@ -251,13 +251,13 @@
|
|
251 |
"alias": " - blimp_principle_A_reconstruction"
|
252 |
},
|
253 |
"blimp_regular_plural_subject_verb_agreement_1": {
|
254 |
-
"acc,none": 0.
|
255 |
-
"acc_stderr,none": 0.
|
256 |
"alias": " - blimp_regular_plural_subject_verb_agreement_1"
|
257 |
},
|
258 |
"blimp_regular_plural_subject_verb_agreement_2": {
|
259 |
-
"acc,none": 0.
|
260 |
-
"acc_stderr,none": 0.
|
261 |
"alias": " - blimp_regular_plural_subject_verb_agreement_2"
|
262 |
},
|
263 |
"blimp_sentential_negation_npi_licensor_present": {
|
@@ -266,73 +266,73 @@
|
|
266 |
"alias": " - blimp_sentential_negation_npi_licensor_present"
|
267 |
},
|
268 |
"blimp_sentential_negation_npi_scope": {
|
269 |
-
"acc,none": 0.
|
270 |
-
"acc_stderr,none": 0.
|
271 |
"alias": " - blimp_sentential_negation_npi_scope"
|
272 |
},
|
273 |
"blimp_sentential_subject_island": {
|
274 |
-
"acc,none": 0.
|
275 |
-
"acc_stderr,none": 0.
|
276 |
"alias": " - blimp_sentential_subject_island"
|
277 |
},
|
278 |
"blimp_superlative_quantifiers_1": {
|
279 |
-
"acc,none": 0.
|
280 |
-
"acc_stderr,none": 0.
|
281 |
"alias": " - blimp_superlative_quantifiers_1"
|
282 |
},
|
283 |
"blimp_superlative_quantifiers_2": {
|
284 |
-
"acc,none": 0.
|
285 |
-
"acc_stderr,none": 0.
|
286 |
"alias": " - blimp_superlative_quantifiers_2"
|
287 |
},
|
288 |
"blimp_tough_vs_raising_1": {
|
289 |
-
"acc,none": 0.
|
290 |
-
"acc_stderr,none": 0.
|
291 |
"alias": " - blimp_tough_vs_raising_1"
|
292 |
},
|
293 |
"blimp_tough_vs_raising_2": {
|
294 |
-
"acc,none": 0.
|
295 |
-
"acc_stderr,none": 0.
|
296 |
"alias": " - blimp_tough_vs_raising_2"
|
297 |
},
|
298 |
"blimp_transitive": {
|
299 |
-
"acc,none": 0.
|
300 |
-
"acc_stderr,none": 0.
|
301 |
"alias": " - blimp_transitive"
|
302 |
},
|
303 |
"blimp_wh_island": {
|
304 |
-
"acc,none": 0.
|
305 |
-
"acc_stderr,none": 0.
|
306 |
"alias": " - blimp_wh_island"
|
307 |
},
|
308 |
"blimp_wh_questions_object_gap": {
|
309 |
-
"acc,none": 0.
|
310 |
-
"acc_stderr,none": 0.
|
311 |
"alias": " - blimp_wh_questions_object_gap"
|
312 |
},
|
313 |
"blimp_wh_questions_subject_gap": {
|
314 |
-
"acc,none": 0.
|
315 |
-
"acc_stderr,none": 0.
|
316 |
"alias": " - blimp_wh_questions_subject_gap"
|
317 |
},
|
318 |
"blimp_wh_questions_subject_gap_long_distance": {
|
319 |
-
"acc,none": 0.
|
320 |
-
"acc_stderr,none": 0.
|
321 |
"alias": " - blimp_wh_questions_subject_gap_long_distance"
|
322 |
},
|
323 |
"blimp_wh_vs_that_no_gap": {
|
324 |
-
"acc,none": 0.
|
325 |
-
"acc_stderr,none": 0.
|
326 |
"alias": " - blimp_wh_vs_that_no_gap"
|
327 |
},
|
328 |
"blimp_wh_vs_that_no_gap_long_distance": {
|
329 |
-
"acc,none": 0.
|
330 |
-
"acc_stderr,none": 0.
|
331 |
"alias": " - blimp_wh_vs_that_no_gap_long_distance"
|
332 |
},
|
333 |
"blimp_wh_vs_that_with_gap": {
|
334 |
-
"acc,none": 0.
|
335 |
-
"acc_stderr,none": 0.
|
336 |
"alias": " - blimp_wh_vs_that_with_gap"
|
337 |
},
|
338 |
"blimp_wh_vs_that_with_gap_long_distance": {
|
@@ -343,8 +343,8 @@
|
|
343 |
},
|
344 |
"groups": {
|
345 |
"blimp": {
|
346 |
-
"acc,none": 0.
|
347 |
-
"acc_stderr,none": 0.
|
348 |
"alias": "blimp"
|
349 |
}
|
350 |
},
|
@@ -2235,13 +2235,15 @@
|
|
2235 |
"config": {
|
2236 |
"model": "hf",
|
2237 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
2238 |
-
"batch_size": "
|
2239 |
-
"batch_sizes": [
|
|
|
|
|
2240 |
"device": null,
|
2241 |
"use_cache": null,
|
2242 |
"limit": null,
|
2243 |
"bootstrap_iters": 100000,
|
2244 |
"gen_kwargs": null
|
2245 |
},
|
2246 |
-
"git_hash": "
|
2247 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"blimp": {
|
4 |
+
"acc,none": 0.8316865671641791,
|
5 |
+
"acc_stderr,none": 0.1603584899107365,
|
6 |
"alias": "blimp"
|
7 |
},
|
8 |
"blimp_adjunct_island": {
|
9 |
+
"acc,none": 0.904,
|
10 |
+
"acc_stderr,none": 0.009320454434783215,
|
11 |
"alias": " - blimp_adjunct_island"
|
12 |
},
|
13 |
"blimp_anaphor_gender_agreement": {
|
|
|
16 |
"alias": " - blimp_anaphor_gender_agreement"
|
17 |
},
|
18 |
"blimp_anaphor_number_agreement": {
|
19 |
+
"acc,none": 0.994,
|
20 |
+
"acc_stderr,none": 0.0024433521993298428,
|
21 |
"alias": " - blimp_anaphor_number_agreement"
|
22 |
},
|
23 |
"blimp_animate_subject_passive": {
|
24 |
+
"acc,none": 0.807,
|
25 |
+
"acc_stderr,none": 0.012486268734370145,
|
26 |
"alias": " - blimp_animate_subject_passive"
|
27 |
},
|
28 |
"blimp_animate_subject_trans": {
|
29 |
+
"acc,none": 0.913,
|
30 |
+
"acc_stderr,none": 0.008916866630745918,
|
31 |
"alias": " - blimp_animate_subject_trans"
|
32 |
},
|
33 |
"blimp_causative": {
|
34 |
+
"acc,none": 0.728,
|
35 |
+
"acc_stderr,none": 0.014078856992462623,
|
36 |
"alias": " - blimp_causative"
|
37 |
},
|
38 |
"blimp_complex_NP_island": {
|
|
|
41 |
"alias": " - blimp_complex_NP_island"
|
42 |
},
|
43 |
"blimp_coordinate_structure_constraint_complex_left_branch": {
|
44 |
+
"acc,none": 0.82,
|
45 |
+
"acc_stderr,none": 0.012155153135511949,
|
46 |
"alias": " - blimp_coordinate_structure_constraint_complex_left_branch"
|
47 |
},
|
48 |
"blimp_coordinate_structure_constraint_object_extraction": {
|
49 |
+
"acc,none": 0.891,
|
50 |
+
"acc_stderr,none": 0.009859828407037188,
|
51 |
"alias": " - blimp_coordinate_structure_constraint_object_extraction"
|
52 |
},
|
53 |
"blimp_determiner_noun_agreement_1": {
|
54 |
"acc,none": 0.986,
|
55 |
+
"acc_stderr,none": 0.0037172325482565877,
|
56 |
"alias": " - blimp_determiner_noun_agreement_1"
|
57 |
},
|
58 |
"blimp_determiner_noun_agreement_2": {
|
59 |
+
"acc,none": 0.973,
|
60 |
+
"acc_stderr,none": 0.005128089049275288,
|
61 |
"alias": " - blimp_determiner_noun_agreement_2"
|
62 |
},
|
63 |
"blimp_determiner_noun_agreement_irregular_1": {
|
64 |
+
"acc,none": 0.933,
|
65 |
+
"acc_stderr,none": 0.00791034598317755,
|
66 |
"alias": " - blimp_determiner_noun_agreement_irregular_1"
|
67 |
},
|
68 |
"blimp_determiner_noun_agreement_irregular_2": {
|
69 |
+
"acc,none": 0.954,
|
70 |
+
"acc_stderr,none": 0.006627814717380719,
|
71 |
"alias": " - blimp_determiner_noun_agreement_irregular_2"
|
72 |
},
|
73 |
"blimp_determiner_noun_agreement_with_adj_2": {
|
74 |
+
"acc,none": 0.95,
|
75 |
+
"acc_stderr,none": 0.0068954729748979,
|
76 |
"alias": " - blimp_determiner_noun_agreement_with_adj_2"
|
77 |
},
|
78 |
"blimp_determiner_noun_agreement_with_adj_irregular_1": {
|
79 |
+
"acc,none": 0.879,
|
80 |
+
"acc_stderr,none": 0.010318210380946088,
|
81 |
"alias": " - blimp_determiner_noun_agreement_with_adj_irregular_1"
|
82 |
},
|
83 |
"blimp_determiner_noun_agreement_with_adj_irregular_2": {
|
84 |
+
"acc,none": 0.931,
|
85 |
+
"acc_stderr,none": 0.00801893405031516,
|
86 |
"alias": " - blimp_determiner_noun_agreement_with_adj_irregular_2"
|
87 |
},
|
88 |
"blimp_determiner_noun_agreement_with_adjective_1": {
|
89 |
+
"acc,none": 0.973,
|
90 |
+
"acc_stderr,none": 0.00512808904927529,
|
91 |
"alias": " - blimp_determiner_noun_agreement_with_adjective_1"
|
92 |
},
|
93 |
"blimp_distractor_agreement_relational_noun": {
|
94 |
+
"acc,none": 0.923,
|
95 |
+
"acc_stderr,none": 0.008434580140240648,
|
96 |
"alias": " - blimp_distractor_agreement_relational_noun"
|
97 |
},
|
98 |
"blimp_distractor_agreement_relative_clause": {
|
99 |
+
"acc,none": 0.717,
|
100 |
+
"acc_stderr,none": 0.014251810906481728,
|
101 |
"alias": " - blimp_distractor_agreement_relative_clause"
|
102 |
},
|
103 |
"blimp_drop_argument": {
|
104 |
+
"acc,none": 0.747,
|
105 |
+
"acc_stderr,none": 0.01375427861358708,
|
106 |
"alias": " - blimp_drop_argument"
|
107 |
},
|
108 |
"blimp_ellipsis_n_bar_1": {
|
109 |
"acc,none": 0.812,
|
110 |
+
"acc_stderr,none": 0.012361586015103744,
|
111 |
"alias": " - blimp_ellipsis_n_bar_1"
|
112 |
},
|
113 |
"blimp_ellipsis_n_bar_2": {
|
114 |
+
"acc,none": 0.949,
|
115 |
+
"acc_stderr,none": 0.006960420062571421,
|
116 |
"alias": " - blimp_ellipsis_n_bar_2"
|
117 |
},
|
118 |
"blimp_existential_there_object_raising": {
|
119 |
+
"acc,none": 0.864,
|
120 |
+
"acc_stderr,none": 0.010845350230472988,
|
121 |
"alias": " - blimp_existential_there_object_raising"
|
122 |
},
|
123 |
"blimp_existential_there_quantifiers_1": {
|
124 |
+
"acc,none": 0.985,
|
125 |
+
"acc_stderr,none": 0.0038457495745030067,
|
126 |
"alias": " - blimp_existential_there_quantifiers_1"
|
127 |
},
|
128 |
"blimp_existential_there_quantifiers_2": {
|
129 |
"acc,none": 0.377,
|
130 |
+
"acc_stderr,none": 0.015333170125779847,
|
131 |
"alias": " - blimp_existential_there_quantifiers_2"
|
132 |
},
|
133 |
"blimp_existential_there_subject_raising": {
|
134 |
+
"acc,none": 0.911,
|
135 |
+
"acc_stderr,none": 0.009008893392651523,
|
136 |
"alias": " - blimp_existential_there_subject_raising"
|
137 |
},
|
138 |
"blimp_expletive_it_object_raising": {
|
139 |
+
"acc,none": 0.826,
|
140 |
+
"acc_stderr,none": 0.01199449323097343,
|
141 |
"alias": " - blimp_expletive_it_object_raising"
|
142 |
},
|
143 |
"blimp_inchoative": {
|
144 |
+
"acc,none": 0.68,
|
145 |
+
"acc_stderr,none": 0.014758652303574874,
|
146 |
"alias": " - blimp_inchoative"
|
147 |
},
|
148 |
"blimp_intransitive": {
|
149 |
+
"acc,none": 0.791,
|
150 |
+
"acc_stderr,none": 0.012864077288499321,
|
151 |
"alias": " - blimp_intransitive"
|
152 |
},
|
153 |
"blimp_irregular_past_participle_adjectives": {
|
|
|
156 |
"alias": " - blimp_irregular_past_participle_adjectives"
|
157 |
},
|
158 |
"blimp_irregular_past_participle_verbs": {
|
159 |
+
"acc,none": 0.906,
|
160 |
+
"acc_stderr,none": 0.009233052000787736,
|
161 |
"alias": " - blimp_irregular_past_participle_verbs"
|
162 |
},
|
163 |
"blimp_irregular_plural_subject_verb_agreement_1": {
|
164 |
+
"acc,none": 0.928,
|
165 |
+
"acc_stderr,none": 0.008178195576218681,
|
166 |
"alias": " - blimp_irregular_plural_subject_verb_agreement_1"
|
167 |
},
|
168 |
"blimp_irregular_plural_subject_verb_agreement_2": {
|
169 |
+
"acc,none": 0.932,
|
170 |
+
"acc_stderr,none": 0.007964887911291603,
|
171 |
"alias": " - blimp_irregular_plural_subject_verb_agreement_2"
|
172 |
},
|
173 |
"blimp_left_branch_island_echo_question": {
|
174 |
+
"acc,none": 0.648,
|
175 |
+
"acc_stderr,none": 0.015110404505648661,
|
176 |
"alias": " - blimp_left_branch_island_echo_question"
|
177 |
},
|
178 |
"blimp_left_branch_island_simple_question": {
|
179 |
+
"acc,none": 0.911,
|
180 |
+
"acc_stderr,none": 0.009008893392651526,
|
181 |
"alias": " - blimp_left_branch_island_simple_question"
|
182 |
},
|
183 |
"blimp_matrix_question_npi_licensor_present": {
|
184 |
+
"acc,none": 0.607,
|
185 |
+
"acc_stderr,none": 0.015452824654081496,
|
186 |
"alias": " - blimp_matrix_question_npi_licensor_present"
|
187 |
},
|
188 |
"blimp_npi_present_1": {
|
189 |
+
"acc,none": 0.674,
|
190 |
+
"acc_stderr,none": 0.014830507204541038,
|
191 |
"alias": " - blimp_npi_present_1"
|
192 |
},
|
193 |
"blimp_npi_present_2": {
|
194 |
+
"acc,none": 0.73,
|
195 |
+
"acc_stderr,none": 0.014046255632633915,
|
196 |
"alias": " - blimp_npi_present_2"
|
197 |
},
|
198 |
"blimp_only_npi_licensor_present": {
|
199 |
+
"acc,none": 0.974,
|
200 |
+
"acc_stderr,none": 0.005034813735318216,
|
201 |
"alias": " - blimp_only_npi_licensor_present"
|
202 |
},
|
203 |
"blimp_only_npi_scope": {
|
204 |
+
"acc,none": 0.706,
|
205 |
+
"acc_stderr,none": 0.01441429054000822,
|
206 |
"alias": " - blimp_only_npi_scope"
|
207 |
},
|
208 |
"blimp_passive_1": {
|
209 |
+
"acc,none": 0.895,
|
210 |
+
"acc_stderr,none": 0.009698921026024971,
|
211 |
"alias": " - blimp_passive_1"
|
212 |
},
|
213 |
"blimp_passive_2": {
|
214 |
+
"acc,none": 0.906,
|
215 |
+
"acc_stderr,none": 0.009233052000787728,
|
216 |
"alias": " - blimp_passive_2"
|
217 |
},
|
218 |
"blimp_principle_A_c_command": {
|
219 |
+
"acc,none": 0.741,
|
220 |
+
"acc_stderr,none": 0.01386041525752791,
|
221 |
"alias": " - blimp_principle_A_c_command"
|
222 |
},
|
223 |
"blimp_principle_A_case_1": {
|
|
|
226 |
"alias": " - blimp_principle_A_case_1"
|
227 |
},
|
228 |
"blimp_principle_A_case_2": {
|
229 |
+
"acc,none": 0.963,
|
230 |
+
"acc_stderr,none": 0.005972157622389646,
|
231 |
"alias": " - blimp_principle_A_case_2"
|
232 |
},
|
233 |
"blimp_principle_A_domain_1": {
|
234 |
+
"acc,none": 0.999,
|
235 |
+
"acc_stderr,none": 0.0010000000000000124,
|
236 |
"alias": " - blimp_principle_A_domain_1"
|
237 |
},
|
238 |
"blimp_principle_A_domain_2": {
|
239 |
+
"acc,none": 0.835,
|
240 |
+
"acc_stderr,none": 0.011743632866916164,
|
241 |
"alias": " - blimp_principle_A_domain_2"
|
242 |
},
|
243 |
"blimp_principle_A_domain_3": {
|
244 |
+
"acc,none": 0.739,
|
245 |
+
"acc_stderr,none": 0.013895037677965136,
|
246 |
"alias": " - blimp_principle_A_domain_3"
|
247 |
},
|
248 |
"blimp_principle_A_reconstruction": {
|
|
|
251 |
"alias": " - blimp_principle_A_reconstruction"
|
252 |
},
|
253 |
"blimp_regular_plural_subject_verb_agreement_1": {
|
254 |
+
"acc,none": 0.965,
|
255 |
+
"acc_stderr,none": 0.005814534272734963,
|
256 |
"alias": " - blimp_regular_plural_subject_verb_agreement_1"
|
257 |
},
|
258 |
"blimp_regular_plural_subject_verb_agreement_2": {
|
259 |
+
"acc,none": 0.931,
|
260 |
+
"acc_stderr,none": 0.008018934050315146,
|
261 |
"alias": " - blimp_regular_plural_subject_verb_agreement_2"
|
262 |
},
|
263 |
"blimp_sentential_negation_npi_licensor_present": {
|
|
|
266 |
"alias": " - blimp_sentential_negation_npi_licensor_present"
|
267 |
},
|
268 |
"blimp_sentential_negation_npi_scope": {
|
269 |
+
"acc,none": 0.759,
|
270 |
+
"acc_stderr,none": 0.013531522534515419,
|
271 |
"alias": " - blimp_sentential_negation_npi_scope"
|
272 |
},
|
273 |
"blimp_sentential_subject_island": {
|
274 |
+
"acc,none": 0.559,
|
275 |
+
"acc_stderr,none": 0.01570877989424268,
|
276 |
"alias": " - blimp_sentential_subject_island"
|
277 |
},
|
278 |
"blimp_superlative_quantifiers_1": {
|
279 |
+
"acc,none": 0.892,
|
280 |
+
"acc_stderr,none": 0.009820001651345714,
|
281 |
"alias": " - blimp_superlative_quantifiers_1"
|
282 |
},
|
283 |
"blimp_superlative_quantifiers_2": {
|
284 |
+
"acc,none": 0.877,
|
285 |
+
"acc_stderr,none": 0.010391293421849879,
|
286 |
"alias": " - blimp_superlative_quantifiers_2"
|
287 |
},
|
288 |
"blimp_tough_vs_raising_1": {
|
289 |
+
"acc,none": 0.663,
|
290 |
+
"acc_stderr,none": 0.014955087918653603,
|
291 |
"alias": " - blimp_tough_vs_raising_1"
|
292 |
},
|
293 |
"blimp_tough_vs_raising_2": {
|
294 |
+
"acc,none": 0.853,
|
295 |
+
"acc_stderr,none": 0.011203415395160335,
|
296 |
"alias": " - blimp_tough_vs_raising_2"
|
297 |
},
|
298 |
"blimp_transitive": {
|
299 |
+
"acc,none": 0.867,
|
300 |
+
"acc_stderr,none": 0.010743669132397346,
|
301 |
"alias": " - blimp_transitive"
|
302 |
},
|
303 |
"blimp_wh_island": {
|
304 |
+
"acc,none": 0.877,
|
305 |
+
"acc_stderr,none": 0.010391293421849877,
|
306 |
"alias": " - blimp_wh_island"
|
307 |
},
|
308 |
"blimp_wh_questions_object_gap": {
|
309 |
+
"acc,none": 0.841,
|
310 |
+
"acc_stderr,none": 0.011569479368271296,
|
311 |
"alias": " - blimp_wh_questions_object_gap"
|
312 |
},
|
313 |
"blimp_wh_questions_subject_gap": {
|
314 |
+
"acc,none": 0.933,
|
315 |
+
"acc_stderr,none": 0.007910345983177547,
|
316 |
"alias": " - blimp_wh_questions_subject_gap"
|
317 |
},
|
318 |
"blimp_wh_questions_subject_gap_long_distance": {
|
319 |
+
"acc,none": 0.922,
|
320 |
+
"acc_stderr,none": 0.008484573530118588,
|
321 |
"alias": " - blimp_wh_questions_subject_gap_long_distance"
|
322 |
},
|
323 |
"blimp_wh_vs_that_no_gap": {
|
324 |
+
"acc,none": 0.974,
|
325 |
+
"acc_stderr,none": 0.0050348137353182325,
|
326 |
"alias": " - blimp_wh_vs_that_no_gap"
|
327 |
},
|
328 |
"blimp_wh_vs_that_no_gap_long_distance": {
|
329 |
+
"acc,none": 0.962,
|
330 |
+
"acc_stderr,none": 0.006049181150584946,
|
331 |
"alias": " - blimp_wh_vs_that_no_gap_long_distance"
|
332 |
},
|
333 |
"blimp_wh_vs_that_with_gap": {
|
334 |
+
"acc,none": 0.341,
|
335 |
+
"acc_stderr,none": 0.0149981313484027,
|
336 |
"alias": " - blimp_wh_vs_that_with_gap"
|
337 |
},
|
338 |
"blimp_wh_vs_that_with_gap_long_distance": {
|
|
|
343 |
},
|
344 |
"groups": {
|
345 |
"blimp": {
|
346 |
+
"acc,none": 0.8316865671641791,
|
347 |
+
"acc_stderr,none": 0.1603584899107365,
|
348 |
"alias": "blimp"
|
349 |
}
|
350 |
},
|
|
|
2235 |
"config": {
|
2236 |
"model": "hf",
|
2237 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
2238 |
+
"batch_size": "auto",
|
2239 |
+
"batch_sizes": [
|
2240 |
+
64
|
2241 |
+
],
|
2242 |
"device": null,
|
2243 |
"use_cache": null,
|
2244 |
"limit": null,
|
2245 |
"bootstrap_iters": 100000,
|
2246 |
"gen_kwargs": null
|
2247 |
},
|
2248 |
+
"git_hash": "2e3ceb0"
|
2249 |
}
|
lm-eval-output/allenai/OLMo-7B/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a3b311b45000c90305578cb19f065bec59f430e131dab0963128cb73e9786b4
|
3 |
+
size 294489
|
lm-eval-output/allenai/OLMo-7B/boolq/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7d9982cba484eea117460519dd137bac296cc134391704e329d1546044840296
|
3 |
-
size 1134661
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/boolq/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"boolq": {
|
4 |
-
"acc,none": 0.7253822629969419,
|
5 |
-
"acc_stderr,none": 0.007806211211206189,
|
6 |
-
"alias": "boolq"
|
7 |
-
}
|
8 |
-
},
|
9 |
-
"configs": {
|
10 |
-
"boolq": {
|
11 |
-
"task": "boolq",
|
12 |
-
"group": [
|
13 |
-
"super-glue-lm-eval-v1"
|
14 |
-
],
|
15 |
-
"dataset_path": "super_glue",
|
16 |
-
"dataset_name": "boolq",
|
17 |
-
"training_split": "train",
|
18 |
-
"validation_split": "validation",
|
19 |
-
"doc_to_text": "{{passage}}\nQuestion: {{question}}?\nAnswer:",
|
20 |
-
"doc_to_target": "label",
|
21 |
-
"doc_to_choice": [
|
22 |
-
"no",
|
23 |
-
"yes"
|
24 |
-
],
|
25 |
-
"description": "",
|
26 |
-
"target_delimiter": " ",
|
27 |
-
"fewshot_delimiter": "\n\n",
|
28 |
-
"metric_list": [
|
29 |
-
{
|
30 |
-
"metric": "acc"
|
31 |
-
}
|
32 |
-
],
|
33 |
-
"output_type": "multiple_choice",
|
34 |
-
"repeats": 1,
|
35 |
-
"should_decontaminate": true,
|
36 |
-
"doc_to_decontamination_query": "passage",
|
37 |
-
"metadata": {
|
38 |
-
"version": 2.0
|
39 |
-
}
|
40 |
-
}
|
41 |
-
},
|
42 |
-
"versions": {
|
43 |
-
"boolq": 2.0
|
44 |
-
},
|
45 |
-
"n-shot": {
|
46 |
-
"boolq": 0
|
47 |
-
},
|
48 |
-
"config": {
|
49 |
-
"model": "hf",
|
50 |
-
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
51 |
-
"batch_size": "2",
|
52 |
-
"batch_sizes": [],
|
53 |
-
"device": null,
|
54 |
-
"use_cache": null,
|
55 |
-
"limit": null,
|
56 |
-
"bootstrap_iters": 100000,
|
57 |
-
"gen_kwargs": null
|
58 |
-
},
|
59 |
-
"git_hash": "4701655"
|
60 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/boolq/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:444fe6f0cbaf5443ee1dfa05e3d4f1806c4556054ceabcfea74b2c4eb6ee803a
|
3 |
+
size 21711
|
lm-eval-output/allenai/OLMo-7B/cb/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cf8a16d333c03f7ae4e6f988588806b8dc0483568c8f000306fd1e55cc7779ce
|
3 |
-
size 13905
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/cb/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -54,13 +54,15 @@
|
|
54 |
"config": {
|
55 |
"model": "hf",
|
56 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
57 |
-
"batch_size": "
|
58 |
-
"batch_sizes": [
|
|
|
|
|
59 |
"device": null,
|
60 |
"use_cache": null,
|
61 |
"limit": null,
|
62 |
"bootstrap_iters": 100000,
|
63 |
"gen_kwargs": null
|
64 |
},
|
65 |
-
"git_hash": "
|
66 |
}
|
|
|
54 |
"config": {
|
55 |
"model": "hf",
|
56 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
57 |
+
"batch_size": "auto",
|
58 |
+
"batch_sizes": [
|
59 |
+
16
|
60 |
+
],
|
61 |
"device": null,
|
62 |
"use_cache": null,
|
63 |
"limit": null,
|
64 |
"bootstrap_iters": 100000,
|
65 |
"gen_kwargs": null
|
66 |
},
|
67 |
+
"git_hash": "2e3ceb0"
|
68 |
}
|
lm-eval-output/allenai/OLMo-7B/cb/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:239d0b8aec1eddb6f22bc82f54f5fa42e3a45de06aff4fc8e0aef720286f58fe
|
3 |
+
size 14061
|
lm-eval-output/allenai/OLMo-7B/ceval-valid/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:755b95da7d45b3a97ad51d88b7a6f6ab085c43413f8d7099119bf26337c959e1
|
3 |
-
size 321200
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/ceval-valid/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
DELETED
@@ -1,2588 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"ceval-valid": {
|
4 |
-
"acc,none": 0.24962852897473997,
|
5 |
-
"acc_stderr,none": 0.11387085890117267,
|
6 |
-
"acc_norm,none": 0.24962852897473997,
|
7 |
-
"acc_norm_stderr,none": 0.11387085890117267,
|
8 |
-
"alias": "ceval-valid"
|
9 |
-
},
|
10 |
-
"ceval-valid_accountant": {
|
11 |
-
"acc,none": 0.22448979591836735,
|
12 |
-
"acc_stderr,none": 0.06022425581505364,
|
13 |
-
"acc_norm,none": 0.22448979591836735,
|
14 |
-
"acc_norm_stderr,none": 0.06022425581505364,
|
15 |
-
"alias": " - ceval-valid_accountant"
|
16 |
-
},
|
17 |
-
"ceval-valid_advanced_mathematics": {
|
18 |
-
"acc,none": 0.10526315789473684,
|
19 |
-
"acc_stderr,none": 0.0723351864143449,
|
20 |
-
"acc_norm,none": 0.10526315789473684,
|
21 |
-
"acc_norm_stderr,none": 0.0723351864143449,
|
22 |
-
"alias": " - ceval-valid_advanced_mathematics"
|
23 |
-
},
|
24 |
-
"ceval-valid_art_studies": {
|
25 |
-
"acc,none": 0.30303030303030304,
|
26 |
-
"acc_stderr,none": 0.08124094920275463,
|
27 |
-
"acc_norm,none": 0.30303030303030304,
|
28 |
-
"acc_norm_stderr,none": 0.08124094920275463,
|
29 |
-
"alias": " - ceval-valid_art_studies"
|
30 |
-
},
|
31 |
-
"ceval-valid_basic_medicine": {
|
32 |
-
"acc,none": 0.15789473684210525,
|
33 |
-
"acc_stderr,none": 0.08594700851870798,
|
34 |
-
"acc_norm,none": 0.15789473684210525,
|
35 |
-
"acc_norm_stderr,none": 0.08594700851870798,
|
36 |
-
"alias": " - ceval-valid_basic_medicine"
|
37 |
-
},
|
38 |
-
"ceval-valid_business_administration": {
|
39 |
-
"acc,none": 0.21212121212121213,
|
40 |
-
"acc_stderr,none": 0.07226812131946557,
|
41 |
-
"acc_norm,none": 0.21212121212121213,
|
42 |
-
"acc_norm_stderr,none": 0.07226812131946557,
|
43 |
-
"alias": " - ceval-valid_business_administration"
|
44 |
-
},
|
45 |
-
"ceval-valid_chinese_language_and_literature": {
|
46 |
-
"acc,none": 0.2608695652173913,
|
47 |
-
"acc_stderr,none": 0.09361833424764436,
|
48 |
-
"acc_norm,none": 0.2608695652173913,
|
49 |
-
"acc_norm_stderr,none": 0.09361833424764436,
|
50 |
-
"alias": " - ceval-valid_chinese_language_and_literature"
|
51 |
-
},
|
52 |
-
"ceval-valid_civil_servant": {
|
53 |
-
"acc,none": 0.2127659574468085,
|
54 |
-
"acc_stderr,none": 0.060342609647735204,
|
55 |
-
"acc_norm,none": 0.2127659574468085,
|
56 |
-
"acc_norm_stderr,none": 0.060342609647735204,
|
57 |
-
"alias": " - ceval-valid_civil_servant"
|
58 |
-
},
|
59 |
-
"ceval-valid_clinical_medicine": {
|
60 |
-
"acc,none": 0.18181818181818182,
|
61 |
-
"acc_stderr,none": 0.08416546361568647,
|
62 |
-
"acc_norm,none": 0.18181818181818182,
|
63 |
-
"acc_norm_stderr,none": 0.08416546361568647,
|
64 |
-
"alias": " - ceval-valid_clinical_medicine"
|
65 |
-
},
|
66 |
-
"ceval-valid_college_chemistry": {
|
67 |
-
"acc,none": 0.25,
|
68 |
-
"acc_stderr,none": 0.09028938981432691,
|
69 |
-
"acc_norm,none": 0.25,
|
70 |
-
"acc_norm_stderr,none": 0.09028938981432691,
|
71 |
-
"alias": " - ceval-valid_college_chemistry"
|
72 |
-
},
|
73 |
-
"ceval-valid_college_economics": {
|
74 |
-
"acc,none": 0.32727272727272727,
|
75 |
-
"acc_stderr,none": 0.0638524469869863,
|
76 |
-
"acc_norm,none": 0.32727272727272727,
|
77 |
-
"acc_norm_stderr,none": 0.0638524469869863,
|
78 |
-
"alias": " - ceval-valid_college_economics"
|
79 |
-
},
|
80 |
-
"ceval-valid_college_physics": {
|
81 |
-
"acc,none": 0.21052631578947367,
|
82 |
-
"acc_stderr,none": 0.0960916767552923,
|
83 |
-
"acc_norm,none": 0.21052631578947367,
|
84 |
-
"acc_norm_stderr,none": 0.0960916767552923,
|
85 |
-
"alias": " - ceval-valid_college_physics"
|
86 |
-
},
|
87 |
-
"ceval-valid_college_programming": {
|
88 |
-
"acc,none": 0.24324324324324326,
|
89 |
-
"acc_stderr,none": 0.07150679219093488,
|
90 |
-
"acc_norm,none": 0.24324324324324326,
|
91 |
-
"acc_norm_stderr,none": 0.07150679219093488,
|
92 |
-
"alias": " - ceval-valid_college_programming"
|
93 |
-
},
|
94 |
-
"ceval-valid_computer_architecture": {
|
95 |
-
"acc,none": 0.2857142857142857,
|
96 |
-
"acc_stderr,none": 0.10101525445522108,
|
97 |
-
"acc_norm,none": 0.2857142857142857,
|
98 |
-
"acc_norm_stderr,none": 0.10101525445522108,
|
99 |
-
"alias": " - ceval-valid_computer_architecture"
|
100 |
-
},
|
101 |
-
"ceval-valid_computer_network": {
|
102 |
-
"acc,none": 0.42105263157894735,
|
103 |
-
"acc_stderr,none": 0.11637279966159299,
|
104 |
-
"acc_norm,none": 0.42105263157894735,
|
105 |
-
"acc_norm_stderr,none": 0.11637279966159299,
|
106 |
-
"alias": " - ceval-valid_computer_network"
|
107 |
-
},
|
108 |
-
"ceval-valid_discrete_mathematics": {
|
109 |
-
"acc,none": 0.1875,
|
110 |
-
"acc_stderr,none": 0.10077822185373188,
|
111 |
-
"acc_norm,none": 0.1875,
|
112 |
-
"acc_norm_stderr,none": 0.10077822185373188,
|
113 |
-
"alias": " - ceval-valid_discrete_mathematics"
|
114 |
-
},
|
115 |
-
"ceval-valid_education_science": {
|
116 |
-
"acc,none": 0.2413793103448276,
|
117 |
-
"acc_stderr,none": 0.080869237238335,
|
118 |
-
"acc_norm,none": 0.2413793103448276,
|
119 |
-
"acc_norm_stderr,none": 0.080869237238335,
|
120 |
-
"alias": " - ceval-valid_education_science"
|
121 |
-
},
|
122 |
-
"ceval-valid_electrical_engineer": {
|
123 |
-
"acc,none": 0.35135135135135137,
|
124 |
-
"acc_stderr,none": 0.0795654132101608,
|
125 |
-
"acc_norm,none": 0.35135135135135137,
|
126 |
-
"acc_norm_stderr,none": 0.0795654132101608,
|
127 |
-
"alias": " - ceval-valid_electrical_engineer"
|
128 |
-
},
|
129 |
-
"ceval-valid_environmental_impact_assessment_engineer": {
|
130 |
-
"acc,none": 0.25806451612903225,
|
131 |
-
"acc_stderr,none": 0.07988892740217941,
|
132 |
-
"acc_norm,none": 0.25806451612903225,
|
133 |
-
"acc_norm_stderr,none": 0.07988892740217941,
|
134 |
-
"alias": " - ceval-valid_environmental_impact_assessment_engineer"
|
135 |
-
},
|
136 |
-
"ceval-valid_fire_engineer": {
|
137 |
-
"acc,none": 0.22580645161290322,
|
138 |
-
"acc_stderr,none": 0.07633651333031763,
|
139 |
-
"acc_norm,none": 0.22580645161290322,
|
140 |
-
"acc_norm_stderr,none": 0.07633651333031763,
|
141 |
-
"alias": " - ceval-valid_fire_engineer"
|
142 |
-
},
|
143 |
-
"ceval-valid_high_school_biology": {
|
144 |
-
"acc,none": 0.21052631578947367,
|
145 |
-
"acc_stderr,none": 0.0960916767552923,
|
146 |
-
"acc_norm,none": 0.21052631578947367,
|
147 |
-
"acc_norm_stderr,none": 0.0960916767552923,
|
148 |
-
"alias": " - ceval-valid_high_school_biology"
|
149 |
-
},
|
150 |
-
"ceval-valid_high_school_chemistry": {
|
151 |
-
"acc,none": 0.3684210526315789,
|
152 |
-
"acc_stderr,none": 0.1136972052352256,
|
153 |
-
"acc_norm,none": 0.3684210526315789,
|
154 |
-
"acc_norm_stderr,none": 0.1136972052352256,
|
155 |
-
"alias": " - ceval-valid_high_school_chemistry"
|
156 |
-
},
|
157 |
-
"ceval-valid_high_school_chinese": {
|
158 |
-
"acc,none": 0.10526315789473684,
|
159 |
-
"acc_stderr,none": 0.0723351864143449,
|
160 |
-
"acc_norm,none": 0.10526315789473684,
|
161 |
-
"acc_norm_stderr,none": 0.0723351864143449,
|
162 |
-
"alias": " - ceval-valid_high_school_chinese"
|
163 |
-
},
|
164 |
-
"ceval-valid_high_school_geography": {
|
165 |
-
"acc,none": 0.3157894736842105,
|
166 |
-
"acc_stderr,none": 0.10956136839295434,
|
167 |
-
"acc_norm,none": 0.3157894736842105,
|
168 |
-
"acc_norm_stderr,none": 0.10956136839295434,
|
169 |
-
"alias": " - ceval-valid_high_school_geography"
|
170 |
-
},
|
171 |
-
"ceval-valid_high_school_history": {
|
172 |
-
"acc,none": 0.15,
|
173 |
-
"acc_stderr,none": 0.0819178021909125,
|
174 |
-
"acc_norm,none": 0.15,
|
175 |
-
"acc_norm_stderr,none": 0.0819178021909125,
|
176 |
-
"alias": " - ceval-valid_high_school_history"
|
177 |
-
},
|
178 |
-
"ceval-valid_high_school_mathematics": {
|
179 |
-
"acc,none": 0.2777777777777778,
|
180 |
-
"acc_stderr,none": 0.1086324845659782,
|
181 |
-
"acc_norm,none": 0.2777777777777778,
|
182 |
-
"acc_norm_stderr,none": 0.1086324845659782,
|
183 |
-
"alias": " - ceval-valid_high_school_mathematics"
|
184 |
-
},
|
185 |
-
"ceval-valid_high_school_physics": {
|
186 |
-
"acc,none": 0.3157894736842105,
|
187 |
-
"acc_stderr,none": 0.10956136839295433,
|
188 |
-
"acc_norm,none": 0.3157894736842105,
|
189 |
-
"acc_norm_stderr,none": 0.10956136839295433,
|
190 |
-
"alias": " - ceval-valid_high_school_physics"
|
191 |
-
},
|
192 |
-
"ceval-valid_high_school_politics": {
|
193 |
-
"acc,none": 0.10526315789473684,
|
194 |
-
"acc_stderr,none": 0.07233518641434492,
|
195 |
-
"acc_norm,none": 0.10526315789473684,
|
196 |
-
"acc_norm_stderr,none": 0.07233518641434492,
|
197 |
-
"alias": " - ceval-valid_high_school_politics"
|
198 |
-
},
|
199 |
-
"ceval-valid_ideological_and_moral_cultivation": {
|
200 |
-
"acc,none": 0.15789473684210525,
|
201 |
-
"acc_stderr,none": 0.08594700851870798,
|
202 |
-
"acc_norm,none": 0.15789473684210525,
|
203 |
-
"acc_norm_stderr,none": 0.08594700851870798,
|
204 |
-
"alias": " - ceval-valid_ideological_and_moral_cultivation"
|
205 |
-
},
|
206 |
-
"ceval-valid_law": {
|
207 |
-
"acc,none": 0.3333333333333333,
|
208 |
-
"acc_stderr,none": 0.0982946374365981,
|
209 |
-
"acc_norm,none": 0.3333333333333333,
|
210 |
-
"acc_norm_stderr,none": 0.0982946374365981,
|
211 |
-
"alias": " - ceval-valid_law"
|
212 |
-
},
|
213 |
-
"ceval-valid_legal_professional": {
|
214 |
-
"acc,none": 0.17391304347826086,
|
215 |
-
"acc_stderr,none": 0.08081046758996391,
|
216 |
-
"acc_norm,none": 0.17391304347826086,
|
217 |
-
"acc_norm_stderr,none": 0.08081046758996391,
|
218 |
-
"alias": " - ceval-valid_legal_professional"
|
219 |
-
},
|
220 |
-
"ceval-valid_logic": {
|
221 |
-
"acc,none": 0.22727272727272727,
|
222 |
-
"acc_stderr,none": 0.09144861547306321,
|
223 |
-
"acc_norm,none": 0.22727272727272727,
|
224 |
-
"acc_norm_stderr,none": 0.09144861547306321,
|
225 |
-
"alias": " - ceval-valid_logic"
|
226 |
-
},
|
227 |
-
"ceval-valid_mao_zedong_thought": {
|
228 |
-
"acc,none": 0.2916666666666667,
|
229 |
-
"acc_stderr,none": 0.09477598811252415,
|
230 |
-
"acc_norm,none": 0.2916666666666667,
|
231 |
-
"acc_norm_stderr,none": 0.09477598811252415,
|
232 |
-
"alias": " - ceval-valid_mao_zedong_thought"
|
233 |
-
},
|
234 |
-
"ceval-valid_marxism": {
|
235 |
-
"acc,none": 0.21052631578947367,
|
236 |
-
"acc_stderr,none": 0.0960916767552923,
|
237 |
-
"acc_norm,none": 0.21052631578947367,
|
238 |
-
"acc_norm_stderr,none": 0.0960916767552923,
|
239 |
-
"alias": " - ceval-valid_marxism"
|
240 |
-
},
|
241 |
-
"ceval-valid_metrology_engineer": {
|
242 |
-
"acc,none": 0.25,
|
243 |
-
"acc_stderr,none": 0.09028938981432691,
|
244 |
-
"acc_norm,none": 0.25,
|
245 |
-
"acc_norm_stderr,none": 0.09028938981432691,
|
246 |
-
"alias": " - ceval-valid_metrology_engineer"
|
247 |
-
},
|
248 |
-
"ceval-valid_middle_school_biology": {
|
249 |
-
"acc,none": 0.23809523809523808,
|
250 |
-
"acc_stderr,none": 0.09523809523809523,
|
251 |
-
"acc_norm,none": 0.23809523809523808,
|
252 |
-
"acc_norm_stderr,none": 0.09523809523809523,
|
253 |
-
"alias": " - ceval-valid_middle_school_biology"
|
254 |
-
},
|
255 |
-
"ceval-valid_middle_school_chemistry": {
|
256 |
-
"acc,none": 0.25,
|
257 |
-
"acc_stderr,none": 0.09933992677987828,
|
258 |
-
"acc_norm,none": 0.25,
|
259 |
-
"acc_norm_stderr,none": 0.09933992677987828,
|
260 |
-
"alias": " - ceval-valid_middle_school_chemistry"
|
261 |
-
},
|
262 |
-
"ceval-valid_middle_school_geography": {
|
263 |
-
"acc,none": 0.08333333333333333,
|
264 |
-
"acc_stderr,none": 0.08333333333333331,
|
265 |
-
"acc_norm,none": 0.08333333333333333,
|
266 |
-
"acc_norm_stderr,none": 0.08333333333333331,
|
267 |
-
"alias": " - ceval-valid_middle_school_geography"
|
268 |
-
},
|
269 |
-
"ceval-valid_middle_school_history": {
|
270 |
-
"acc,none": 0.45454545454545453,
|
271 |
-
"acc_stderr,none": 0.10865714630312667,
|
272 |
-
"acc_norm,none": 0.45454545454545453,
|
273 |
-
"acc_norm_stderr,none": 0.10865714630312667,
|
274 |
-
"alias": " - ceval-valid_middle_school_history"
|
275 |
-
},
|
276 |
-
"ceval-valid_middle_school_mathematics": {
|
277 |
-
"acc,none": 0.3684210526315789,
|
278 |
-
"acc_stderr,none": 0.11369720523522558,
|
279 |
-
"acc_norm,none": 0.3684210526315789,
|
280 |
-
"acc_norm_stderr,none": 0.11369720523522558,
|
281 |
-
"alias": " - ceval-valid_middle_school_mathematics"
|
282 |
-
},
|
283 |
-
"ceval-valid_middle_school_physics": {
|
284 |
-
"acc,none": 0.47368421052631576,
|
285 |
-
"acc_stderr,none": 0.11768778828946262,
|
286 |
-
"acc_norm,none": 0.47368421052631576,
|
287 |
-
"acc_norm_stderr,none": 0.11768778828946262,
|
288 |
-
"alias": " - ceval-valid_middle_school_physics"
|
289 |
-
},
|
290 |
-
"ceval-valid_middle_school_politics": {
|
291 |
-
"acc,none": 0.2857142857142857,
|
292 |
-
"acc_stderr,none": 0.10101525445522108,
|
293 |
-
"acc_norm,none": 0.2857142857142857,
|
294 |
-
"acc_norm_stderr,none": 0.10101525445522108,
|
295 |
-
"alias": " - ceval-valid_middle_school_politics"
|
296 |
-
},
|
297 |
-
"ceval-valid_modern_chinese_history": {
|
298 |
-
"acc,none": 0.21739130434782608,
|
299 |
-
"acc_stderr,none": 0.08793911249520547,
|
300 |
-
"acc_norm,none": 0.21739130434782608,
|
301 |
-
"acc_norm_stderr,none": 0.08793911249520547,
|
302 |
-
"alias": " - ceval-valid_modern_chinese_history"
|
303 |
-
},
|
304 |
-
"ceval-valid_operating_system": {
|
305 |
-
"acc,none": 0.10526315789473684,
|
306 |
-
"acc_stderr,none": 0.07233518641434492,
|
307 |
-
"acc_norm,none": 0.10526315789473684,
|
308 |
-
"acc_norm_stderr,none": 0.07233518641434492,
|
309 |
-
"alias": " - ceval-valid_operating_system"
|
310 |
-
},
|
311 |
-
"ceval-valid_physician": {
|
312 |
-
"acc,none": 0.20408163265306123,
|
313 |
-
"acc_stderr,none": 0.05817221556628253,
|
314 |
-
"acc_norm,none": 0.20408163265306123,
|
315 |
-
"acc_norm_stderr,none": 0.05817221556628253,
|
316 |
-
"alias": " - ceval-valid_physician"
|
317 |
-
},
|
318 |
-
"ceval-valid_plant_protection": {
|
319 |
-
"acc,none": 0.3181818181818182,
|
320 |
-
"acc_stderr,none": 0.10163945352271771,
|
321 |
-
"acc_norm,none": 0.3181818181818182,
|
322 |
-
"acc_norm_stderr,none": 0.10163945352271771,
|
323 |
-
"alias": " - ceval-valid_plant_protection"
|
324 |
-
},
|
325 |
-
"ceval-valid_probability_and_statistics": {
|
326 |
-
"acc,none": 0.2222222222222222,
|
327 |
-
"acc_stderr,none": 0.1008316903303367,
|
328 |
-
"acc_norm,none": 0.2222222222222222,
|
329 |
-
"acc_norm_stderr,none": 0.1008316903303367,
|
330 |
-
"alias": " - ceval-valid_probability_and_statistics"
|
331 |
-
},
|
332 |
-
"ceval-valid_professional_tour_guide": {
|
333 |
-
"acc,none": 0.4482758620689655,
|
334 |
-
"acc_stderr,none": 0.09398415777506855,
|
335 |
-
"acc_norm,none": 0.4482758620689655,
|
336 |
-
"acc_norm_stderr,none": 0.09398415777506855,
|
337 |
-
"alias": " - ceval-valid_professional_tour_guide"
|
338 |
-
},
|
339 |
-
"ceval-valid_sports_science": {
|
340 |
-
"acc,none": 0.15789473684210525,
|
341 |
-
"acc_stderr,none": 0.08594700851870798,
|
342 |
-
"acc_norm,none": 0.15789473684210525,
|
343 |
-
"acc_norm_stderr,none": 0.08594700851870798,
|
344 |
-
"alias": " - ceval-valid_sports_science"
|
345 |
-
},
|
346 |
-
"ceval-valid_tax_accountant": {
|
347 |
-
"acc,none": 0.24489795918367346,
|
348 |
-
"acc_stderr,none": 0.062069005411206316,
|
349 |
-
"acc_norm,none": 0.24489795918367346,
|
350 |
-
"acc_norm_stderr,none": 0.062069005411206316,
|
351 |
-
"alias": " - ceval-valid_tax_accountant"
|
352 |
-
},
|
353 |
-
"ceval-valid_teacher_qualification": {
|
354 |
-
"acc,none": 0.22727272727272727,
|
355 |
-
"acc_stderr,none": 0.06390760676613884,
|
356 |
-
"acc_norm,none": 0.22727272727272727,
|
357 |
-
"acc_norm_stderr,none": 0.06390760676613884,
|
358 |
-
"alias": " - ceval-valid_teacher_qualification"
|
359 |
-
},
|
360 |
-
"ceval-valid_urban_and_rural_planner": {
|
361 |
-
"acc,none": 0.21739130434782608,
|
362 |
-
"acc_stderr,none": 0.06148754619013454,
|
363 |
-
"acc_norm,none": 0.21739130434782608,
|
364 |
-
"acc_norm_stderr,none": 0.06148754619013454,
|
365 |
-
"alias": " - ceval-valid_urban_and_rural_planner"
|
366 |
-
},
|
367 |
-
"ceval-valid_veterinary_medicine": {
|
368 |
-
"acc,none": 0.13043478260869565,
|
369 |
-
"acc_stderr,none": 0.07180198468215394,
|
370 |
-
"acc_norm,none": 0.13043478260869565,
|
371 |
-
"acc_norm_stderr,none": 0.07180198468215394,
|
372 |
-
"alias": " - ceval-valid_veterinary_medicine"
|
373 |
-
}
|
374 |
-
},
|
375 |
-
"groups": {
|
376 |
-
"ceval-valid": {
|
377 |
-
"acc,none": 0.24962852897473997,
|
378 |
-
"acc_stderr,none": 0.11387085890117267,
|
379 |
-
"acc_norm,none": 0.24962852897473997,
|
380 |
-
"acc_norm_stderr,none": 0.11387085890117267,
|
381 |
-
"alias": "ceval-valid"
|
382 |
-
}
|
383 |
-
},
|
384 |
-
"configs": {
|
385 |
-
"ceval-valid_accountant": {
|
386 |
-
"task": "ceval-valid_accountant",
|
387 |
-
"group": "ceval-valid",
|
388 |
-
"dataset_path": "ceval/ceval-exam",
|
389 |
-
"dataset_name": "accountant",
|
390 |
-
"validation_split": "val",
|
391 |
-
"fewshot_split": "dev",
|
392 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
393 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
394 |
-
"doc_to_choice": [
|
395 |
-
"A",
|
396 |
-
"B",
|
397 |
-
"C",
|
398 |
-
"D"
|
399 |
-
],
|
400 |
-
"description": "以下是中国关于注册会计师的单项选择题,请选出其中的正确答案。\n\n",
|
401 |
-
"target_delimiter": " ",
|
402 |
-
"fewshot_delimiter": "\n\n",
|
403 |
-
"fewshot_config": {
|
404 |
-
"sampler": "first_n"
|
405 |
-
},
|
406 |
-
"metric_list": [
|
407 |
-
{
|
408 |
-
"metric": "acc",
|
409 |
-
"aggregation": "mean",
|
410 |
-
"higher_is_better": true
|
411 |
-
},
|
412 |
-
{
|
413 |
-
"metric": "acc_norm",
|
414 |
-
"aggregation": "mean",
|
415 |
-
"higher_is_better": true
|
416 |
-
}
|
417 |
-
],
|
418 |
-
"output_type": "multiple_choice",
|
419 |
-
"repeats": 1,
|
420 |
-
"should_decontaminate": false,
|
421 |
-
"metadata": {
|
422 |
-
"version": 1.0
|
423 |
-
}
|
424 |
-
},
|
425 |
-
"ceval-valid_advanced_mathematics": {
|
426 |
-
"task": "ceval-valid_advanced_mathematics",
|
427 |
-
"group": "ceval-valid",
|
428 |
-
"dataset_path": "ceval/ceval-exam",
|
429 |
-
"dataset_name": "advanced_mathematics",
|
430 |
-
"validation_split": "val",
|
431 |
-
"fewshot_split": "dev",
|
432 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
433 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
434 |
-
"doc_to_choice": [
|
435 |
-
"A",
|
436 |
-
"B",
|
437 |
-
"C",
|
438 |
-
"D"
|
439 |
-
],
|
440 |
-
"description": "以下是中国关于高等数学的单项选择题,请选出其中的正确答案。\n\n",
|
441 |
-
"target_delimiter": " ",
|
442 |
-
"fewshot_delimiter": "\n\n",
|
443 |
-
"fewshot_config": {
|
444 |
-
"sampler": "first_n"
|
445 |
-
},
|
446 |
-
"metric_list": [
|
447 |
-
{
|
448 |
-
"metric": "acc",
|
449 |
-
"aggregation": "mean",
|
450 |
-
"higher_is_better": true
|
451 |
-
},
|
452 |
-
{
|
453 |
-
"metric": "acc_norm",
|
454 |
-
"aggregation": "mean",
|
455 |
-
"higher_is_better": true
|
456 |
-
}
|
457 |
-
],
|
458 |
-
"output_type": "multiple_choice",
|
459 |
-
"repeats": 1,
|
460 |
-
"should_decontaminate": false,
|
461 |
-
"metadata": {
|
462 |
-
"version": 1.0
|
463 |
-
}
|
464 |
-
},
|
465 |
-
"ceval-valid_art_studies": {
|
466 |
-
"task": "ceval-valid_art_studies",
|
467 |
-
"group": "ceval-valid",
|
468 |
-
"dataset_path": "ceval/ceval-exam",
|
469 |
-
"dataset_name": "art_studies",
|
470 |
-
"validation_split": "val",
|
471 |
-
"fewshot_split": "dev",
|
472 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
473 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
474 |
-
"doc_to_choice": [
|
475 |
-
"A",
|
476 |
-
"B",
|
477 |
-
"C",
|
478 |
-
"D"
|
479 |
-
],
|
480 |
-
"description": "以下是中国关于艺术学的单项选择题,请选出其中的正确答案。\n\n",
|
481 |
-
"target_delimiter": " ",
|
482 |
-
"fewshot_delimiter": "\n\n",
|
483 |
-
"fewshot_config": {
|
484 |
-
"sampler": "first_n"
|
485 |
-
},
|
486 |
-
"metric_list": [
|
487 |
-
{
|
488 |
-
"metric": "acc",
|
489 |
-
"aggregation": "mean",
|
490 |
-
"higher_is_better": true
|
491 |
-
},
|
492 |
-
{
|
493 |
-
"metric": "acc_norm",
|
494 |
-
"aggregation": "mean",
|
495 |
-
"higher_is_better": true
|
496 |
-
}
|
497 |
-
],
|
498 |
-
"output_type": "multiple_choice",
|
499 |
-
"repeats": 1,
|
500 |
-
"should_decontaminate": false,
|
501 |
-
"metadata": {
|
502 |
-
"version": 1.0
|
503 |
-
}
|
504 |
-
},
|
505 |
-
"ceval-valid_basic_medicine": {
|
506 |
-
"task": "ceval-valid_basic_medicine",
|
507 |
-
"group": "ceval-valid",
|
508 |
-
"dataset_path": "ceval/ceval-exam",
|
509 |
-
"dataset_name": "basic_medicine",
|
510 |
-
"validation_split": "val",
|
511 |
-
"fewshot_split": "dev",
|
512 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
513 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
514 |
-
"doc_to_choice": [
|
515 |
-
"A",
|
516 |
-
"B",
|
517 |
-
"C",
|
518 |
-
"D"
|
519 |
-
],
|
520 |
-
"description": "以下是中国关于基础医学的单项选择题,请选出其中的正确答案。\n\n",
|
521 |
-
"target_delimiter": " ",
|
522 |
-
"fewshot_delimiter": "\n\n",
|
523 |
-
"fewshot_config": {
|
524 |
-
"sampler": "first_n"
|
525 |
-
},
|
526 |
-
"metric_list": [
|
527 |
-
{
|
528 |
-
"metric": "acc",
|
529 |
-
"aggregation": "mean",
|
530 |
-
"higher_is_better": true
|
531 |
-
},
|
532 |
-
{
|
533 |
-
"metric": "acc_norm",
|
534 |
-
"aggregation": "mean",
|
535 |
-
"higher_is_better": true
|
536 |
-
}
|
537 |
-
],
|
538 |
-
"output_type": "multiple_choice",
|
539 |
-
"repeats": 1,
|
540 |
-
"should_decontaminate": false,
|
541 |
-
"metadata": {
|
542 |
-
"version": 1.0
|
543 |
-
}
|
544 |
-
},
|
545 |
-
"ceval-valid_business_administration": {
|
546 |
-
"task": "ceval-valid_business_administration",
|
547 |
-
"group": "ceval-valid",
|
548 |
-
"dataset_path": "ceval/ceval-exam",
|
549 |
-
"dataset_name": "business_administration",
|
550 |
-
"validation_split": "val",
|
551 |
-
"fewshot_split": "dev",
|
552 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答���:",
|
553 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
554 |
-
"doc_to_choice": [
|
555 |
-
"A",
|
556 |
-
"B",
|
557 |
-
"C",
|
558 |
-
"D"
|
559 |
-
],
|
560 |
-
"description": "以下是中国关于工商管理的单项选择题,请选出其中的正确答案。\n\n",
|
561 |
-
"target_delimiter": " ",
|
562 |
-
"fewshot_delimiter": "\n\n",
|
563 |
-
"fewshot_config": {
|
564 |
-
"sampler": "first_n"
|
565 |
-
},
|
566 |
-
"metric_list": [
|
567 |
-
{
|
568 |
-
"metric": "acc",
|
569 |
-
"aggregation": "mean",
|
570 |
-
"higher_is_better": true
|
571 |
-
},
|
572 |
-
{
|
573 |
-
"metric": "acc_norm",
|
574 |
-
"aggregation": "mean",
|
575 |
-
"higher_is_better": true
|
576 |
-
}
|
577 |
-
],
|
578 |
-
"output_type": "multiple_choice",
|
579 |
-
"repeats": 1,
|
580 |
-
"should_decontaminate": false,
|
581 |
-
"metadata": {
|
582 |
-
"version": 1.0
|
583 |
-
}
|
584 |
-
},
|
585 |
-
"ceval-valid_chinese_language_and_literature": {
|
586 |
-
"task": "ceval-valid_chinese_language_and_literature",
|
587 |
-
"group": "ceval-valid",
|
588 |
-
"dataset_path": "ceval/ceval-exam",
|
589 |
-
"dataset_name": "chinese_language_and_literature",
|
590 |
-
"validation_split": "val",
|
591 |
-
"fewshot_split": "dev",
|
592 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
593 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
594 |
-
"doc_to_choice": [
|
595 |
-
"A",
|
596 |
-
"B",
|
597 |
-
"C",
|
598 |
-
"D"
|
599 |
-
],
|
600 |
-
"description": "以下是中国关于中国语言文学的单项选择题,请选出其中的正确答案。\n\n",
|
601 |
-
"target_delimiter": " ",
|
602 |
-
"fewshot_delimiter": "\n\n",
|
603 |
-
"fewshot_config": {
|
604 |
-
"sampler": "first_n"
|
605 |
-
},
|
606 |
-
"metric_list": [
|
607 |
-
{
|
608 |
-
"metric": "acc",
|
609 |
-
"aggregation": "mean",
|
610 |
-
"higher_is_better": true
|
611 |
-
},
|
612 |
-
{
|
613 |
-
"metric": "acc_norm",
|
614 |
-
"aggregation": "mean",
|
615 |
-
"higher_is_better": true
|
616 |
-
}
|
617 |
-
],
|
618 |
-
"output_type": "multiple_choice",
|
619 |
-
"repeats": 1,
|
620 |
-
"should_decontaminate": false,
|
621 |
-
"metadata": {
|
622 |
-
"version": 1.0
|
623 |
-
}
|
624 |
-
},
|
625 |
-
"ceval-valid_civil_servant": {
|
626 |
-
"task": "ceval-valid_civil_servant",
|
627 |
-
"group": "ceval-valid",
|
628 |
-
"dataset_path": "ceval/ceval-exam",
|
629 |
-
"dataset_name": "civil_servant",
|
630 |
-
"validation_split": "val",
|
631 |
-
"fewshot_split": "dev",
|
632 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
633 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
634 |
-
"doc_to_choice": [
|
635 |
-
"A",
|
636 |
-
"B",
|
637 |
-
"C",
|
638 |
-
"D"
|
639 |
-
],
|
640 |
-
"description": "以下是中国关于公务员的单项选择题,请选出其中的正确答案。\n\n",
|
641 |
-
"target_delimiter": " ",
|
642 |
-
"fewshot_delimiter": "\n\n",
|
643 |
-
"fewshot_config": {
|
644 |
-
"sampler": "first_n"
|
645 |
-
},
|
646 |
-
"metric_list": [
|
647 |
-
{
|
648 |
-
"metric": "acc",
|
649 |
-
"aggregation": "mean",
|
650 |
-
"higher_is_better": true
|
651 |
-
},
|
652 |
-
{
|
653 |
-
"metric": "acc_norm",
|
654 |
-
"aggregation": "mean",
|
655 |
-
"higher_is_better": true
|
656 |
-
}
|
657 |
-
],
|
658 |
-
"output_type": "multiple_choice",
|
659 |
-
"repeats": 1,
|
660 |
-
"should_decontaminate": false,
|
661 |
-
"metadata": {
|
662 |
-
"version": 1.0
|
663 |
-
}
|
664 |
-
},
|
665 |
-
"ceval-valid_clinical_medicine": {
|
666 |
-
"task": "ceval-valid_clinical_medicine",
|
667 |
-
"group": "ceval-valid",
|
668 |
-
"dataset_path": "ceval/ceval-exam",
|
669 |
-
"dataset_name": "clinical_medicine",
|
670 |
-
"validation_split": "val",
|
671 |
-
"fewshot_split": "dev",
|
672 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
673 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
674 |
-
"doc_to_choice": [
|
675 |
-
"A",
|
676 |
-
"B",
|
677 |
-
"C",
|
678 |
-
"D"
|
679 |
-
],
|
680 |
-
"description": "以下是中国关于临床医学的单项选择题,请选出其中的正确答案。\n\n",
|
681 |
-
"target_delimiter": " ",
|
682 |
-
"fewshot_delimiter": "\n\n",
|
683 |
-
"fewshot_config": {
|
684 |
-
"sampler": "first_n"
|
685 |
-
},
|
686 |
-
"metric_list": [
|
687 |
-
{
|
688 |
-
"metric": "acc",
|
689 |
-
"aggregation": "mean",
|
690 |
-
"higher_is_better": true
|
691 |
-
},
|
692 |
-
{
|
693 |
-
"metric": "acc_norm",
|
694 |
-
"aggregation": "mean",
|
695 |
-
"higher_is_better": true
|
696 |
-
}
|
697 |
-
],
|
698 |
-
"output_type": "multiple_choice",
|
699 |
-
"repeats": 1,
|
700 |
-
"should_decontaminate": false,
|
701 |
-
"metadata": {
|
702 |
-
"version": 1.0
|
703 |
-
}
|
704 |
-
},
|
705 |
-
"ceval-valid_college_chemistry": {
|
706 |
-
"task": "ceval-valid_college_chemistry",
|
707 |
-
"group": "ceval-valid",
|
708 |
-
"dataset_path": "ceval/ceval-exam",
|
709 |
-
"dataset_name": "college_chemistry",
|
710 |
-
"validation_split": "val",
|
711 |
-
"fewshot_split": "dev",
|
712 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
713 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
714 |
-
"doc_to_choice": [
|
715 |
-
"A",
|
716 |
-
"B",
|
717 |
-
"C",
|
718 |
-
"D"
|
719 |
-
],
|
720 |
-
"description": "以下是中国关于��学化学的单项选择题,请选出其中的正确答案。\n\n",
|
721 |
-
"target_delimiter": " ",
|
722 |
-
"fewshot_delimiter": "\n\n",
|
723 |
-
"fewshot_config": {
|
724 |
-
"sampler": "first_n"
|
725 |
-
},
|
726 |
-
"metric_list": [
|
727 |
-
{
|
728 |
-
"metric": "acc",
|
729 |
-
"aggregation": "mean",
|
730 |
-
"higher_is_better": true
|
731 |
-
},
|
732 |
-
{
|
733 |
-
"metric": "acc_norm",
|
734 |
-
"aggregation": "mean",
|
735 |
-
"higher_is_better": true
|
736 |
-
}
|
737 |
-
],
|
738 |
-
"output_type": "multiple_choice",
|
739 |
-
"repeats": 1,
|
740 |
-
"should_decontaminate": false,
|
741 |
-
"metadata": {
|
742 |
-
"version": 1.0
|
743 |
-
}
|
744 |
-
},
|
745 |
-
"ceval-valid_college_economics": {
|
746 |
-
"task": "ceval-valid_college_economics",
|
747 |
-
"group": "ceval-valid",
|
748 |
-
"dataset_path": "ceval/ceval-exam",
|
749 |
-
"dataset_name": "college_economics",
|
750 |
-
"validation_split": "val",
|
751 |
-
"fewshot_split": "dev",
|
752 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
753 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
754 |
-
"doc_to_choice": [
|
755 |
-
"A",
|
756 |
-
"B",
|
757 |
-
"C",
|
758 |
-
"D"
|
759 |
-
],
|
760 |
-
"description": "以下是中国关于大学经济学的单项选择题,请选出其中的正确答案。\n\n",
|
761 |
-
"target_delimiter": " ",
|
762 |
-
"fewshot_delimiter": "\n\n",
|
763 |
-
"fewshot_config": {
|
764 |
-
"sampler": "first_n"
|
765 |
-
},
|
766 |
-
"metric_list": [
|
767 |
-
{
|
768 |
-
"metric": "acc",
|
769 |
-
"aggregation": "mean",
|
770 |
-
"higher_is_better": true
|
771 |
-
},
|
772 |
-
{
|
773 |
-
"metric": "acc_norm",
|
774 |
-
"aggregation": "mean",
|
775 |
-
"higher_is_better": true
|
776 |
-
}
|
777 |
-
],
|
778 |
-
"output_type": "multiple_choice",
|
779 |
-
"repeats": 1,
|
780 |
-
"should_decontaminate": false,
|
781 |
-
"metadata": {
|
782 |
-
"version": 1.0
|
783 |
-
}
|
784 |
-
},
|
785 |
-
"ceval-valid_college_physics": {
|
786 |
-
"task": "ceval-valid_college_physics",
|
787 |
-
"group": "ceval-valid",
|
788 |
-
"dataset_path": "ceval/ceval-exam",
|
789 |
-
"dataset_name": "college_physics",
|
790 |
-
"validation_split": "val",
|
791 |
-
"fewshot_split": "dev",
|
792 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
793 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
794 |
-
"doc_to_choice": [
|
795 |
-
"A",
|
796 |
-
"B",
|
797 |
-
"C",
|
798 |
-
"D"
|
799 |
-
],
|
800 |
-
"description": "以下是中国关于大学物理的单项选择题,请选出其中的正确答案。\n\n",
|
801 |
-
"target_delimiter": " ",
|
802 |
-
"fewshot_delimiter": "\n\n",
|
803 |
-
"fewshot_config": {
|
804 |
-
"sampler": "first_n"
|
805 |
-
},
|
806 |
-
"metric_list": [
|
807 |
-
{
|
808 |
-
"metric": "acc",
|
809 |
-
"aggregation": "mean",
|
810 |
-
"higher_is_better": true
|
811 |
-
},
|
812 |
-
{
|
813 |
-
"metric": "acc_norm",
|
814 |
-
"aggregation": "mean",
|
815 |
-
"higher_is_better": true
|
816 |
-
}
|
817 |
-
],
|
818 |
-
"output_type": "multiple_choice",
|
819 |
-
"repeats": 1,
|
820 |
-
"should_decontaminate": false,
|
821 |
-
"metadata": {
|
822 |
-
"version": 1.0
|
823 |
-
}
|
824 |
-
},
|
825 |
-
"ceval-valid_college_programming": {
|
826 |
-
"task": "ceval-valid_college_programming",
|
827 |
-
"group": "ceval-valid",
|
828 |
-
"dataset_path": "ceval/ceval-exam",
|
829 |
-
"dataset_name": "college_programming",
|
830 |
-
"validation_split": "val",
|
831 |
-
"fewshot_split": "dev",
|
832 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
833 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
834 |
-
"doc_to_choice": [
|
835 |
-
"A",
|
836 |
-
"B",
|
837 |
-
"C",
|
838 |
-
"D"
|
839 |
-
],
|
840 |
-
"description": "以下是中国关于大学编程的单项选择题,请选出其中的正确答案。\n\n",
|
841 |
-
"target_delimiter": " ",
|
842 |
-
"fewshot_delimiter": "\n\n",
|
843 |
-
"fewshot_config": {
|
844 |
-
"sampler": "first_n"
|
845 |
-
},
|
846 |
-
"metric_list": [
|
847 |
-
{
|
848 |
-
"metric": "acc",
|
849 |
-
"aggregation": "mean",
|
850 |
-
"higher_is_better": true
|
851 |
-
},
|
852 |
-
{
|
853 |
-
"metric": "acc_norm",
|
854 |
-
"aggregation": "mean",
|
855 |
-
"higher_is_better": true
|
856 |
-
}
|
857 |
-
],
|
858 |
-
"output_type": "multiple_choice",
|
859 |
-
"repeats": 1,
|
860 |
-
"should_decontaminate": false,
|
861 |
-
"metadata": {
|
862 |
-
"version": 1.0
|
863 |
-
}
|
864 |
-
},
|
865 |
-
"ceval-valid_computer_architecture": {
|
866 |
-
"task": "ceval-valid_computer_architecture",
|
867 |
-
"group": "ceval-valid",
|
868 |
-
"dataset_path": "ceval/ceval-exam",
|
869 |
-
"dataset_name": "computer_architecture",
|
870 |
-
"validation_split": "val",
|
871 |
-
"fewshot_split": "dev",
|
872 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
873 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
874 |
-
"doc_to_choice": [
|
875 |
-
"A",
|
876 |
-
"B",
|
877 |
-
"C",
|
878 |
-
"D"
|
879 |
-
],
|
880 |
-
"description": "以下是中国关于计算机组成的单项选择题,请选出其中的正确答案。\n\n",
|
881 |
-
"target_delimiter": " ",
|
882 |
-
"fewshot_delimiter": "\n\n",
|
883 |
-
"fewshot_config": {
|
884 |
-
"sampler": "first_n"
|
885 |
-
},
|
886 |
-
"metric_list": [
|
887 |
-
{
|
888 |
-
"metric": "acc",
|
889 |
-
"aggregation": "mean",
|
890 |
-
"higher_is_better": true
|
891 |
-
},
|
892 |
-
{
|
893 |
-
"metric": "acc_norm",
|
894 |
-
"aggregation": "mean",
|
895 |
-
"higher_is_better": true
|
896 |
-
}
|
897 |
-
],
|
898 |
-
"output_type": "multiple_choice",
|
899 |
-
"repeats": 1,
|
900 |
-
"should_decontaminate": false,
|
901 |
-
"metadata": {
|
902 |
-
"version": 1.0
|
903 |
-
}
|
904 |
-
},
|
905 |
-
"ceval-valid_computer_network": {
|
906 |
-
"task": "ceval-valid_computer_network",
|
907 |
-
"group": "ceval-valid",
|
908 |
-
"dataset_path": "ceval/ceval-exam",
|
909 |
-
"dataset_name": "computer_network",
|
910 |
-
"validation_split": "val",
|
911 |
-
"fewshot_split": "dev",
|
912 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
913 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
914 |
-
"doc_to_choice": [
|
915 |
-
"A",
|
916 |
-
"B",
|
917 |
-
"C",
|
918 |
-
"D"
|
919 |
-
],
|
920 |
-
"description": "以下是中国关于计算机网络的单项选择题,请选出其中的正确答案。\n\n",
|
921 |
-
"target_delimiter": " ",
|
922 |
-
"fewshot_delimiter": "\n\n",
|
923 |
-
"fewshot_config": {
|
924 |
-
"sampler": "first_n"
|
925 |
-
},
|
926 |
-
"metric_list": [
|
927 |
-
{
|
928 |
-
"metric": "acc",
|
929 |
-
"aggregation": "mean",
|
930 |
-
"higher_is_better": true
|
931 |
-
},
|
932 |
-
{
|
933 |
-
"metric": "acc_norm",
|
934 |
-
"aggregation": "mean",
|
935 |
-
"higher_is_better": true
|
936 |
-
}
|
937 |
-
],
|
938 |
-
"output_type": "multiple_choice",
|
939 |
-
"repeats": 1,
|
940 |
-
"should_decontaminate": false,
|
941 |
-
"metadata": {
|
942 |
-
"version": 1.0
|
943 |
-
}
|
944 |
-
},
|
945 |
-
"ceval-valid_discrete_mathematics": {
|
946 |
-
"task": "ceval-valid_discrete_mathematics",
|
947 |
-
"group": "ceval-valid",
|
948 |
-
"dataset_path": "ceval/ceval-exam",
|
949 |
-
"dataset_name": "discrete_mathematics",
|
950 |
-
"validation_split": "val",
|
951 |
-
"fewshot_split": "dev",
|
952 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
953 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
954 |
-
"doc_to_choice": [
|
955 |
-
"A",
|
956 |
-
"B",
|
957 |
-
"C",
|
958 |
-
"D"
|
959 |
-
],
|
960 |
-
"description": "以下是中国关于离散数学的单项选择题,请选出其中的正确答案。\n\n",
|
961 |
-
"target_delimiter": " ",
|
962 |
-
"fewshot_delimiter": "\n\n",
|
963 |
-
"fewshot_config": {
|
964 |
-
"sampler": "first_n"
|
965 |
-
},
|
966 |
-
"metric_list": [
|
967 |
-
{
|
968 |
-
"metric": "acc",
|
969 |
-
"aggregation": "mean",
|
970 |
-
"higher_is_better": true
|
971 |
-
},
|
972 |
-
{
|
973 |
-
"metric": "acc_norm",
|
974 |
-
"aggregation": "mean",
|
975 |
-
"higher_is_better": true
|
976 |
-
}
|
977 |
-
],
|
978 |
-
"output_type": "multiple_choice",
|
979 |
-
"repeats": 1,
|
980 |
-
"should_decontaminate": false,
|
981 |
-
"metadata": {
|
982 |
-
"version": 1.0
|
983 |
-
}
|
984 |
-
},
|
985 |
-
"ceval-valid_education_science": {
|
986 |
-
"task": "ceval-valid_education_science",
|
987 |
-
"group": "ceval-valid",
|
988 |
-
"dataset_path": "ceval/ceval-exam",
|
989 |
-
"dataset_name": "education_science",
|
990 |
-
"validation_split": "val",
|
991 |
-
"fewshot_split": "dev",
|
992 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
993 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
994 |
-
"doc_to_choice": [
|
995 |
-
"A",
|
996 |
-
"B",
|
997 |
-
"C",
|
998 |
-
"D"
|
999 |
-
],
|
1000 |
-
"description": "以下是中国关于教育学的单项选择题,请选出其中的正确答案。\n\n",
|
1001 |
-
"target_delimiter": " ",
|
1002 |
-
"fewshot_delimiter": "\n\n",
|
1003 |
-
"fewshot_config": {
|
1004 |
-
"sampler": "first_n"
|
1005 |
-
},
|
1006 |
-
"metric_list": [
|
1007 |
-
{
|
1008 |
-
"metric": "acc",
|
1009 |
-
"aggregation": "mean",
|
1010 |
-
"higher_is_better": true
|
1011 |
-
},
|
1012 |
-
{
|
1013 |
-
"metric": "acc_norm",
|
1014 |
-
"aggregation": "mean",
|
1015 |
-
"higher_is_better": true
|
1016 |
-
}
|
1017 |
-
],
|
1018 |
-
"output_type": "multiple_choice",
|
1019 |
-
"repeats": 1,
|
1020 |
-
"should_decontaminate": false,
|
1021 |
-
"metadata": {
|
1022 |
-
"version": 1.0
|
1023 |
-
}
|
1024 |
-
},
|
1025 |
-
"ceval-valid_electrical_engineer": {
|
1026 |
-
"task": "ceval-valid_electrical_engineer",
|
1027 |
-
"group": "ceval-valid",
|
1028 |
-
"dataset_path": "ceval/ceval-exam",
|
1029 |
-
"dataset_name": "electrical_engineer",
|
1030 |
-
"validation_split": "val",
|
1031 |
-
"fewshot_split": "dev",
|
1032 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1033 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1034 |
-
"doc_to_choice": [
|
1035 |
-
"A",
|
1036 |
-
"B",
|
1037 |
-
"C",
|
1038 |
-
"D"
|
1039 |
-
],
|
1040 |
-
"description": "以下是中国关于注册电气工程师的单项选择题,请选出其中的正确答案。\n\n",
|
1041 |
-
"target_delimiter": " ",
|
1042 |
-
"fewshot_delimiter": "\n\n",
|
1043 |
-
"fewshot_config": {
|
1044 |
-
"sampler": "first_n"
|
1045 |
-
},
|
1046 |
-
"metric_list": [
|
1047 |
-
{
|
1048 |
-
"metric": "acc",
|
1049 |
-
"aggregation": "mean",
|
1050 |
-
"higher_is_better": true
|
1051 |
-
},
|
1052 |
-
{
|
1053 |
-
"metric": "acc_norm",
|
1054 |
-
"aggregation": "mean",
|
1055 |
-
"higher_is_better": true
|
1056 |
-
}
|
1057 |
-
],
|
1058 |
-
"output_type": "multiple_choice",
|
1059 |
-
"repeats": 1,
|
1060 |
-
"should_decontaminate": false,
|
1061 |
-
"metadata": {
|
1062 |
-
"version": 1.0
|
1063 |
-
}
|
1064 |
-
},
|
1065 |
-
"ceval-valid_environmental_impact_assessment_engineer": {
|
1066 |
-
"task": "ceval-valid_environmental_impact_assessment_engineer",
|
1067 |
-
"group": "ceval-valid",
|
1068 |
-
"dataset_path": "ceval/ceval-exam",
|
1069 |
-
"dataset_name": "environmental_impact_assessment_engineer",
|
1070 |
-
"validation_split": "val",
|
1071 |
-
"fewshot_split": "dev",
|
1072 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1073 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1074 |
-
"doc_to_choice": [
|
1075 |
-
"A",
|
1076 |
-
"B",
|
1077 |
-
"C",
|
1078 |
-
"D"
|
1079 |
-
],
|
1080 |
-
"description": "以下是中国关于环境影响评价工程师的单项选择题,请选出其中的正确答案。\n\n",
|
1081 |
-
"target_delimiter": " ",
|
1082 |
-
"fewshot_delimiter": "\n\n",
|
1083 |
-
"fewshot_config": {
|
1084 |
-
"sampler": "first_n"
|
1085 |
-
},
|
1086 |
-
"metric_list": [
|
1087 |
-
{
|
1088 |
-
"metric": "acc",
|
1089 |
-
"aggregation": "mean",
|
1090 |
-
"higher_is_better": true
|
1091 |
-
},
|
1092 |
-
{
|
1093 |
-
"metric": "acc_norm",
|
1094 |
-
"aggregation": "mean",
|
1095 |
-
"higher_is_better": true
|
1096 |
-
}
|
1097 |
-
],
|
1098 |
-
"output_type": "multiple_choice",
|
1099 |
-
"repeats": 1,
|
1100 |
-
"should_decontaminate": false,
|
1101 |
-
"metadata": {
|
1102 |
-
"version": 1.0
|
1103 |
-
}
|
1104 |
-
},
|
1105 |
-
"ceval-valid_fire_engineer": {
|
1106 |
-
"task": "ceval-valid_fire_engineer",
|
1107 |
-
"group": "ceval-valid",
|
1108 |
-
"dataset_path": "ceval/ceval-exam",
|
1109 |
-
"dataset_name": "fire_engineer",
|
1110 |
-
"validation_split": "val",
|
1111 |
-
"fewshot_split": "dev",
|
1112 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1113 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1114 |
-
"doc_to_choice": [
|
1115 |
-
"A",
|
1116 |
-
"B",
|
1117 |
-
"C",
|
1118 |
-
"D"
|
1119 |
-
],
|
1120 |
-
"description": "以下是中国关于注册消防工程师的单项选择题,请选出其中的正确答案。\n\n",
|
1121 |
-
"target_delimiter": " ",
|
1122 |
-
"fewshot_delimiter": "\n\n",
|
1123 |
-
"fewshot_config": {
|
1124 |
-
"sampler": "first_n"
|
1125 |
-
},
|
1126 |
-
"metric_list": [
|
1127 |
-
{
|
1128 |
-
"metric": "acc",
|
1129 |
-
"aggregation": "mean",
|
1130 |
-
"higher_is_better": true
|
1131 |
-
},
|
1132 |
-
{
|
1133 |
-
"metric": "acc_norm",
|
1134 |
-
"aggregation": "mean",
|
1135 |
-
"higher_is_better": true
|
1136 |
-
}
|
1137 |
-
],
|
1138 |
-
"output_type": "multiple_choice",
|
1139 |
-
"repeats": 1,
|
1140 |
-
"should_decontaminate": false,
|
1141 |
-
"metadata": {
|
1142 |
-
"version": 1.0
|
1143 |
-
}
|
1144 |
-
},
|
1145 |
-
"ceval-valid_high_school_biology": {
|
1146 |
-
"task": "ceval-valid_high_school_biology",
|
1147 |
-
"group": "ceval-valid",
|
1148 |
-
"dataset_path": "ceval/ceval-exam",
|
1149 |
-
"dataset_name": "high_school_biology",
|
1150 |
-
"validation_split": "val",
|
1151 |
-
"fewshot_split": "dev",
|
1152 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1153 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1154 |
-
"doc_to_choice": [
|
1155 |
-
"A",
|
1156 |
-
"B",
|
1157 |
-
"C",
|
1158 |
-
"D"
|
1159 |
-
],
|
1160 |
-
"description": "以下是中国关于高中生物的单项选择题,请选出其中的正确答案。\n\n",
|
1161 |
-
"target_delimiter": " ",
|
1162 |
-
"fewshot_delimiter": "\n\n",
|
1163 |
-
"fewshot_config": {
|
1164 |
-
"sampler": "first_n"
|
1165 |
-
},
|
1166 |
-
"metric_list": [
|
1167 |
-
{
|
1168 |
-
"metric": "acc",
|
1169 |
-
"aggregation": "mean",
|
1170 |
-
"higher_is_better": true
|
1171 |
-
},
|
1172 |
-
{
|
1173 |
-
"metric": "acc_norm",
|
1174 |
-
"aggregation": "mean",
|
1175 |
-
"higher_is_better": true
|
1176 |
-
}
|
1177 |
-
],
|
1178 |
-
"output_type": "multiple_choice",
|
1179 |
-
"repeats": 1,
|
1180 |
-
"should_decontaminate": false,
|
1181 |
-
"metadata": {
|
1182 |
-
"version": 1.0
|
1183 |
-
}
|
1184 |
-
},
|
1185 |
-
"ceval-valid_high_school_chemistry": {
|
1186 |
-
"task": "ceval-valid_high_school_chemistry",
|
1187 |
-
"group": "ceval-valid",
|
1188 |
-
"dataset_path": "ceval/ceval-exam",
|
1189 |
-
"dataset_name": "high_school_chemistry",
|
1190 |
-
"validation_split": "val",
|
1191 |
-
"fewshot_split": "dev",
|
1192 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1193 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1194 |
-
"doc_to_choice": [
|
1195 |
-
"A",
|
1196 |
-
"B",
|
1197 |
-
"C",
|
1198 |
-
"D"
|
1199 |
-
],
|
1200 |
-
"description": "以下是中国关于高中化学的单项选择题,请选出其中的正确答案。\n\n",
|
1201 |
-
"target_delimiter": " ",
|
1202 |
-
"fewshot_delimiter": "\n\n",
|
1203 |
-
"fewshot_config": {
|
1204 |
-
"sampler": "first_n"
|
1205 |
-
},
|
1206 |
-
"metric_list": [
|
1207 |
-
{
|
1208 |
-
"metric": "acc",
|
1209 |
-
"aggregation": "mean",
|
1210 |
-
"higher_is_better": true
|
1211 |
-
},
|
1212 |
-
{
|
1213 |
-
"metric": "acc_norm",
|
1214 |
-
"aggregation": "mean",
|
1215 |
-
"higher_is_better": true
|
1216 |
-
}
|
1217 |
-
],
|
1218 |
-
"output_type": "multiple_choice",
|
1219 |
-
"repeats": 1,
|
1220 |
-
"should_decontaminate": false,
|
1221 |
-
"metadata": {
|
1222 |
-
"version": 1.0
|
1223 |
-
}
|
1224 |
-
},
|
1225 |
-
"ceval-valid_high_school_chinese": {
|
1226 |
-
"task": "ceval-valid_high_school_chinese",
|
1227 |
-
"group": "ceval-valid",
|
1228 |
-
"dataset_path": "ceval/ceval-exam",
|
1229 |
-
"dataset_name": "high_school_chinese",
|
1230 |
-
"validation_split": "val",
|
1231 |
-
"fewshot_split": "dev",
|
1232 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1233 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1234 |
-
"doc_to_choice": [
|
1235 |
-
"A",
|
1236 |
-
"B",
|
1237 |
-
"C",
|
1238 |
-
"D"
|
1239 |
-
],
|
1240 |
-
"description": "以下是中国关于高中语文的单项选择题,请选出其中的正确答案。\n\n",
|
1241 |
-
"target_delimiter": " ",
|
1242 |
-
"fewshot_delimiter": "\n\n",
|
1243 |
-
"fewshot_config": {
|
1244 |
-
"sampler": "first_n"
|
1245 |
-
},
|
1246 |
-
"metric_list": [
|
1247 |
-
{
|
1248 |
-
"metric": "acc",
|
1249 |
-
"aggregation": "mean",
|
1250 |
-
"higher_is_better": true
|
1251 |
-
},
|
1252 |
-
{
|
1253 |
-
"metric": "acc_norm",
|
1254 |
-
"aggregation": "mean",
|
1255 |
-
"higher_is_better": true
|
1256 |
-
}
|
1257 |
-
],
|
1258 |
-
"output_type": "multiple_choice",
|
1259 |
-
"repeats": 1,
|
1260 |
-
"should_decontaminate": false,
|
1261 |
-
"metadata": {
|
1262 |
-
"version": 1.0
|
1263 |
-
}
|
1264 |
-
},
|
1265 |
-
"ceval-valid_high_school_geography": {
|
1266 |
-
"task": "ceval-valid_high_school_geography",
|
1267 |
-
"group": "ceval-valid",
|
1268 |
-
"dataset_path": "ceval/ceval-exam",
|
1269 |
-
"dataset_name": "high_school_geography",
|
1270 |
-
"validation_split": "val",
|
1271 |
-
"fewshot_split": "dev",
|
1272 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1273 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1274 |
-
"doc_to_choice": [
|
1275 |
-
"A",
|
1276 |
-
"B",
|
1277 |
-
"C",
|
1278 |
-
"D"
|
1279 |
-
],
|
1280 |
-
"description": "以下是中国关于高中地理的单项选择题,请选出其中的正确答案。\n\n",
|
1281 |
-
"target_delimiter": " ",
|
1282 |
-
"fewshot_delimiter": "\n\n",
|
1283 |
-
"fewshot_config": {
|
1284 |
-
"sampler": "first_n"
|
1285 |
-
},
|
1286 |
-
"metric_list": [
|
1287 |
-
{
|
1288 |
-
"metric": "acc",
|
1289 |
-
"aggregation": "mean",
|
1290 |
-
"higher_is_better": true
|
1291 |
-
},
|
1292 |
-
{
|
1293 |
-
"metric": "acc_norm",
|
1294 |
-
"aggregation": "mean",
|
1295 |
-
"higher_is_better": true
|
1296 |
-
}
|
1297 |
-
],
|
1298 |
-
"output_type": "multiple_choice",
|
1299 |
-
"repeats": 1,
|
1300 |
-
"should_decontaminate": false,
|
1301 |
-
"metadata": {
|
1302 |
-
"version": 1.0
|
1303 |
-
}
|
1304 |
-
},
|
1305 |
-
"ceval-valid_high_school_history": {
|
1306 |
-
"task": "ceval-valid_high_school_history",
|
1307 |
-
"group": "ceval-valid",
|
1308 |
-
"dataset_path": "ceval/ceval-exam",
|
1309 |
-
"dataset_name": "high_school_history",
|
1310 |
-
"validation_split": "val",
|
1311 |
-
"fewshot_split": "dev",
|
1312 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1313 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1314 |
-
"doc_to_choice": [
|
1315 |
-
"A",
|
1316 |
-
"B",
|
1317 |
-
"C",
|
1318 |
-
"D"
|
1319 |
-
],
|
1320 |
-
"description": "以下是中国关于高中历史的单项选择题,请选出其中的正确答案。\n\n",
|
1321 |
-
"target_delimiter": " ",
|
1322 |
-
"fewshot_delimiter": "\n\n",
|
1323 |
-
"fewshot_config": {
|
1324 |
-
"sampler": "first_n"
|
1325 |
-
},
|
1326 |
-
"metric_list": [
|
1327 |
-
{
|
1328 |
-
"metric": "acc",
|
1329 |
-
"aggregation": "mean",
|
1330 |
-
"higher_is_better": true
|
1331 |
-
},
|
1332 |
-
{
|
1333 |
-
"metric": "acc_norm",
|
1334 |
-
"aggregation": "mean",
|
1335 |
-
"higher_is_better": true
|
1336 |
-
}
|
1337 |
-
],
|
1338 |
-
"output_type": "multiple_choice",
|
1339 |
-
"repeats": 1,
|
1340 |
-
"should_decontaminate": false,
|
1341 |
-
"metadata": {
|
1342 |
-
"version": 1.0
|
1343 |
-
}
|
1344 |
-
},
|
1345 |
-
"ceval-valid_high_school_mathematics": {
|
1346 |
-
"task": "ceval-valid_high_school_mathematics",
|
1347 |
-
"group": "ceval-valid",
|
1348 |
-
"dataset_path": "ceval/ceval-exam",
|
1349 |
-
"dataset_name": "high_school_mathematics",
|
1350 |
-
"validation_split": "val",
|
1351 |
-
"fewshot_split": "dev",
|
1352 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1353 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1354 |
-
"doc_to_choice": [
|
1355 |
-
"A",
|
1356 |
-
"B",
|
1357 |
-
"C",
|
1358 |
-
"D"
|
1359 |
-
],
|
1360 |
-
"description": "以下是中国关于高中数学的单项选择题,请选出其中的正确答案。\n\n",
|
1361 |
-
"target_delimiter": " ",
|
1362 |
-
"fewshot_delimiter": "\n\n",
|
1363 |
-
"fewshot_config": {
|
1364 |
-
"sampler": "first_n"
|
1365 |
-
},
|
1366 |
-
"metric_list": [
|
1367 |
-
{
|
1368 |
-
"metric": "acc",
|
1369 |
-
"aggregation": "mean",
|
1370 |
-
"higher_is_better": true
|
1371 |
-
},
|
1372 |
-
{
|
1373 |
-
"metric": "acc_norm",
|
1374 |
-
"aggregation": "mean",
|
1375 |
-
"higher_is_better": true
|
1376 |
-
}
|
1377 |
-
],
|
1378 |
-
"output_type": "multiple_choice",
|
1379 |
-
"repeats": 1,
|
1380 |
-
"should_decontaminate": false,
|
1381 |
-
"metadata": {
|
1382 |
-
"version": 1.0
|
1383 |
-
}
|
1384 |
-
},
|
1385 |
-
"ceval-valid_high_school_physics": {
|
1386 |
-
"task": "ceval-valid_high_school_physics",
|
1387 |
-
"group": "ceval-valid",
|
1388 |
-
"dataset_path": "ceval/ceval-exam",
|
1389 |
-
"dataset_name": "high_school_physics",
|
1390 |
-
"validation_split": "val",
|
1391 |
-
"fewshot_split": "dev",
|
1392 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1393 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1394 |
-
"doc_to_choice": [
|
1395 |
-
"A",
|
1396 |
-
"B",
|
1397 |
-
"C",
|
1398 |
-
"D"
|
1399 |
-
],
|
1400 |
-
"description": "以下是中国关于高中物理的单项选择题,请选出其中的正确答案。\n\n",
|
1401 |
-
"target_delimiter": " ",
|
1402 |
-
"fewshot_delimiter": "\n\n",
|
1403 |
-
"fewshot_config": {
|
1404 |
-
"sampler": "first_n"
|
1405 |
-
},
|
1406 |
-
"metric_list": [
|
1407 |
-
{
|
1408 |
-
"metric": "acc",
|
1409 |
-
"aggregation": "mean",
|
1410 |
-
"higher_is_better": true
|
1411 |
-
},
|
1412 |
-
{
|
1413 |
-
"metric": "acc_norm",
|
1414 |
-
"aggregation": "mean",
|
1415 |
-
"higher_is_better": true
|
1416 |
-
}
|
1417 |
-
],
|
1418 |
-
"output_type": "multiple_choice",
|
1419 |
-
"repeats": 1,
|
1420 |
-
"should_decontaminate": false,
|
1421 |
-
"metadata": {
|
1422 |
-
"version": 1.0
|
1423 |
-
}
|
1424 |
-
},
|
1425 |
-
"ceval-valid_high_school_politics": {
|
1426 |
-
"task": "ceval-valid_high_school_politics",
|
1427 |
-
"group": "ceval-valid",
|
1428 |
-
"dataset_path": "ceval/ceval-exam",
|
1429 |
-
"dataset_name": "high_school_politics",
|
1430 |
-
"validation_split": "val",
|
1431 |
-
"fewshot_split": "dev",
|
1432 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1433 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1434 |
-
"doc_to_choice": [
|
1435 |
-
"A",
|
1436 |
-
"B",
|
1437 |
-
"C",
|
1438 |
-
"D"
|
1439 |
-
],
|
1440 |
-
"description": "以下是中国关于高中政治的单项选择题,请选出其中的正确答案。\n\n",
|
1441 |
-
"target_delimiter": " ",
|
1442 |
-
"fewshot_delimiter": "\n\n",
|
1443 |
-
"fewshot_config": {
|
1444 |
-
"sampler": "first_n"
|
1445 |
-
},
|
1446 |
-
"metric_list": [
|
1447 |
-
{
|
1448 |
-
"metric": "acc",
|
1449 |
-
"aggregation": "mean",
|
1450 |
-
"higher_is_better": true
|
1451 |
-
},
|
1452 |
-
{
|
1453 |
-
"metric": "acc_norm",
|
1454 |
-
"aggregation": "mean",
|
1455 |
-
"higher_is_better": true
|
1456 |
-
}
|
1457 |
-
],
|
1458 |
-
"output_type": "multiple_choice",
|
1459 |
-
"repeats": 1,
|
1460 |
-
"should_decontaminate": false,
|
1461 |
-
"metadata": {
|
1462 |
-
"version": 1.0
|
1463 |
-
}
|
1464 |
-
},
|
1465 |
-
"ceval-valid_ideological_and_moral_cultivation": {
|
1466 |
-
"task": "ceval-valid_ideological_and_moral_cultivation",
|
1467 |
-
"group": "ceval-valid",
|
1468 |
-
"dataset_path": "ceval/ceval-exam",
|
1469 |
-
"dataset_name": "ideological_and_moral_cultivation",
|
1470 |
-
"validation_split": "val",
|
1471 |
-
"fewshot_split": "dev",
|
1472 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1473 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1474 |
-
"doc_to_choice": [
|
1475 |
-
"A",
|
1476 |
-
"B",
|
1477 |
-
"C",
|
1478 |
-
"D"
|
1479 |
-
],
|
1480 |
-
"description": "以下是中国关于思想道德修养与法律基础的单项选择题,请选出其中的正确答案。\n\n",
|
1481 |
-
"target_delimiter": " ",
|
1482 |
-
"fewshot_delimiter": "\n\n",
|
1483 |
-
"fewshot_config": {
|
1484 |
-
"sampler": "first_n"
|
1485 |
-
},
|
1486 |
-
"metric_list": [
|
1487 |
-
{
|
1488 |
-
"metric": "acc",
|
1489 |
-
"aggregation": "mean",
|
1490 |
-
"higher_is_better": true
|
1491 |
-
},
|
1492 |
-
{
|
1493 |
-
"metric": "acc_norm",
|
1494 |
-
"aggregation": "mean",
|
1495 |
-
"higher_is_better": true
|
1496 |
-
}
|
1497 |
-
],
|
1498 |
-
"output_type": "multiple_choice",
|
1499 |
-
"repeats": 1,
|
1500 |
-
"should_decontaminate": false,
|
1501 |
-
"metadata": {
|
1502 |
-
"version": 1.0
|
1503 |
-
}
|
1504 |
-
},
|
1505 |
-
"ceval-valid_law": {
|
1506 |
-
"task": "ceval-valid_law",
|
1507 |
-
"group": "ceval-valid",
|
1508 |
-
"dataset_path": "ceval/ceval-exam",
|
1509 |
-
"dataset_name": "law",
|
1510 |
-
"validation_split": "val",
|
1511 |
-
"fewshot_split": "dev",
|
1512 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1513 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1514 |
-
"doc_to_choice": [
|
1515 |
-
"A",
|
1516 |
-
"B",
|
1517 |
-
"C",
|
1518 |
-
"D"
|
1519 |
-
],
|
1520 |
-
"description": "以下是中国关于法学的单项选择题,请选出其中的正确答案。\n\n",
|
1521 |
-
"target_delimiter": " ",
|
1522 |
-
"fewshot_delimiter": "\n\n",
|
1523 |
-
"fewshot_config": {
|
1524 |
-
"sampler": "first_n"
|
1525 |
-
},
|
1526 |
-
"metric_list": [
|
1527 |
-
{
|
1528 |
-
"metric": "acc",
|
1529 |
-
"aggregation": "mean",
|
1530 |
-
"higher_is_better": true
|
1531 |
-
},
|
1532 |
-
{
|
1533 |
-
"metric": "acc_norm",
|
1534 |
-
"aggregation": "mean",
|
1535 |
-
"higher_is_better": true
|
1536 |
-
}
|
1537 |
-
],
|
1538 |
-
"output_type": "multiple_choice",
|
1539 |
-
"repeats": 1,
|
1540 |
-
"should_decontaminate": false,
|
1541 |
-
"metadata": {
|
1542 |
-
"version": 1.0
|
1543 |
-
}
|
1544 |
-
},
|
1545 |
-
"ceval-valid_legal_professional": {
|
1546 |
-
"task": "ceval-valid_legal_professional",
|
1547 |
-
"group": "ceval-valid",
|
1548 |
-
"dataset_path": "ceval/ceval-exam",
|
1549 |
-
"dataset_name": "legal_professional",
|
1550 |
-
"validation_split": "val",
|
1551 |
-
"fewshot_split": "dev",
|
1552 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1553 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1554 |
-
"doc_to_choice": [
|
1555 |
-
"A",
|
1556 |
-
"B",
|
1557 |
-
"C",
|
1558 |
-
"D"
|
1559 |
-
],
|
1560 |
-
"description": "以下是中国关于法律职业资格的单项选择题,请选出其中的正确答案。\n\n",
|
1561 |
-
"target_delimiter": " ",
|
1562 |
-
"fewshot_delimiter": "\n\n",
|
1563 |
-
"fewshot_config": {
|
1564 |
-
"sampler": "first_n"
|
1565 |
-
},
|
1566 |
-
"metric_list": [
|
1567 |
-
{
|
1568 |
-
"metric": "acc",
|
1569 |
-
"aggregation": "mean",
|
1570 |
-
"higher_is_better": true
|
1571 |
-
},
|
1572 |
-
{
|
1573 |
-
"metric": "acc_norm",
|
1574 |
-
"aggregation": "mean",
|
1575 |
-
"higher_is_better": true
|
1576 |
-
}
|
1577 |
-
],
|
1578 |
-
"output_type": "multiple_choice",
|
1579 |
-
"repeats": 1,
|
1580 |
-
"should_decontaminate": false,
|
1581 |
-
"metadata": {
|
1582 |
-
"version": 1.0
|
1583 |
-
}
|
1584 |
-
},
|
1585 |
-
"ceval-valid_logic": {
|
1586 |
-
"task": "ceval-valid_logic",
|
1587 |
-
"group": "ceval-valid",
|
1588 |
-
"dataset_path": "ceval/ceval-exam",
|
1589 |
-
"dataset_name": "logic",
|
1590 |
-
"validation_split": "val",
|
1591 |
-
"fewshot_split": "dev",
|
1592 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1593 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1594 |
-
"doc_to_choice": [
|
1595 |
-
"A",
|
1596 |
-
"B",
|
1597 |
-
"C",
|
1598 |
-
"D"
|
1599 |
-
],
|
1600 |
-
"description": "以下是中国关于逻辑学的单项选择题,请选出其中的正确答案。\n\n",
|
1601 |
-
"target_delimiter": " ",
|
1602 |
-
"fewshot_delimiter": "\n\n",
|
1603 |
-
"fewshot_config": {
|
1604 |
-
"sampler": "first_n"
|
1605 |
-
},
|
1606 |
-
"metric_list": [
|
1607 |
-
{
|
1608 |
-
"metric": "acc",
|
1609 |
-
"aggregation": "mean",
|
1610 |
-
"higher_is_better": true
|
1611 |
-
},
|
1612 |
-
{
|
1613 |
-
"metric": "acc_norm",
|
1614 |
-
"aggregation": "mean",
|
1615 |
-
"higher_is_better": true
|
1616 |
-
}
|
1617 |
-
],
|
1618 |
-
"output_type": "multiple_choice",
|
1619 |
-
"repeats": 1,
|
1620 |
-
"should_decontaminate": false,
|
1621 |
-
"metadata": {
|
1622 |
-
"version": 1.0
|
1623 |
-
}
|
1624 |
-
},
|
1625 |
-
"ceval-valid_mao_zedong_thought": {
|
1626 |
-
"task": "ceval-valid_mao_zedong_thought",
|
1627 |
-
"group": "ceval-valid",
|
1628 |
-
"dataset_path": "ceval/ceval-exam",
|
1629 |
-
"dataset_name": "mao_zedong_thought",
|
1630 |
-
"validation_split": "val",
|
1631 |
-
"fewshot_split": "dev",
|
1632 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1633 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1634 |
-
"doc_to_choice": [
|
1635 |
-
"A",
|
1636 |
-
"B",
|
1637 |
-
"C",
|
1638 |
-
"D"
|
1639 |
-
],
|
1640 |
-
"description": "以下是中国关于毛泽东思想和中国特色社会主义理论体系概论的单项选择题,请选出其中的正确答案。\n\n",
|
1641 |
-
"target_delimiter": " ",
|
1642 |
-
"fewshot_delimiter": "\n\n",
|
1643 |
-
"fewshot_config": {
|
1644 |
-
"sampler": "first_n"
|
1645 |
-
},
|
1646 |
-
"metric_list": [
|
1647 |
-
{
|
1648 |
-
"metric": "acc",
|
1649 |
-
"aggregation": "mean",
|
1650 |
-
"higher_is_better": true
|
1651 |
-
},
|
1652 |
-
{
|
1653 |
-
"metric": "acc_norm",
|
1654 |
-
"aggregation": "mean",
|
1655 |
-
"higher_is_better": true
|
1656 |
-
}
|
1657 |
-
],
|
1658 |
-
"output_type": "multiple_choice",
|
1659 |
-
"repeats": 1,
|
1660 |
-
"should_decontaminate": false,
|
1661 |
-
"metadata": {
|
1662 |
-
"version": 1.0
|
1663 |
-
}
|
1664 |
-
},
|
1665 |
-
"ceval-valid_marxism": {
|
1666 |
-
"task": "ceval-valid_marxism",
|
1667 |
-
"group": "ceval-valid",
|
1668 |
-
"dataset_path": "ceval/ceval-exam",
|
1669 |
-
"dataset_name": "marxism",
|
1670 |
-
"validation_split": "val",
|
1671 |
-
"fewshot_split": "dev",
|
1672 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1673 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1674 |
-
"doc_to_choice": [
|
1675 |
-
"A",
|
1676 |
-
"B",
|
1677 |
-
"C",
|
1678 |
-
"D"
|
1679 |
-
],
|
1680 |
-
"description": "以下是中国关于马克思主义基本原理的单项选择题,请选出其中的正确答案。\n\n",
|
1681 |
-
"target_delimiter": " ",
|
1682 |
-
"fewshot_delimiter": "\n\n",
|
1683 |
-
"fewshot_config": {
|
1684 |
-
"sampler": "first_n"
|
1685 |
-
},
|
1686 |
-
"metric_list": [
|
1687 |
-
{
|
1688 |
-
"metric": "acc",
|
1689 |
-
"aggregation": "mean",
|
1690 |
-
"higher_is_better": true
|
1691 |
-
},
|
1692 |
-
{
|
1693 |
-
"metric": "acc_norm",
|
1694 |
-
"aggregation": "mean",
|
1695 |
-
"higher_is_better": true
|
1696 |
-
}
|
1697 |
-
],
|
1698 |
-
"output_type": "multiple_choice",
|
1699 |
-
"repeats": 1,
|
1700 |
-
"should_decontaminate": false,
|
1701 |
-
"metadata": {
|
1702 |
-
"version": 1.0
|
1703 |
-
}
|
1704 |
-
},
|
1705 |
-
"ceval-valid_metrology_engineer": {
|
1706 |
-
"task": "ceval-valid_metrology_engineer",
|
1707 |
-
"group": "ceval-valid",
|
1708 |
-
"dataset_path": "ceval/ceval-exam",
|
1709 |
-
"dataset_name": "metrology_engineer",
|
1710 |
-
"validation_split": "val",
|
1711 |
-
"fewshot_split": "dev",
|
1712 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1713 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1714 |
-
"doc_to_choice": [
|
1715 |
-
"A",
|
1716 |
-
"B",
|
1717 |
-
"C",
|
1718 |
-
"D"
|
1719 |
-
],
|
1720 |
-
"description": "以下是中国关于注册计量师的单���选择题,请选出其中的正确答案。\n\n",
|
1721 |
-
"target_delimiter": " ",
|
1722 |
-
"fewshot_delimiter": "\n\n",
|
1723 |
-
"fewshot_config": {
|
1724 |
-
"sampler": "first_n"
|
1725 |
-
},
|
1726 |
-
"metric_list": [
|
1727 |
-
{
|
1728 |
-
"metric": "acc",
|
1729 |
-
"aggregation": "mean",
|
1730 |
-
"higher_is_better": true
|
1731 |
-
},
|
1732 |
-
{
|
1733 |
-
"metric": "acc_norm",
|
1734 |
-
"aggregation": "mean",
|
1735 |
-
"higher_is_better": true
|
1736 |
-
}
|
1737 |
-
],
|
1738 |
-
"output_type": "multiple_choice",
|
1739 |
-
"repeats": 1,
|
1740 |
-
"should_decontaminate": false,
|
1741 |
-
"metadata": {
|
1742 |
-
"version": 1.0
|
1743 |
-
}
|
1744 |
-
},
|
1745 |
-
"ceval-valid_middle_school_biology": {
|
1746 |
-
"task": "ceval-valid_middle_school_biology",
|
1747 |
-
"group": "ceval-valid",
|
1748 |
-
"dataset_path": "ceval/ceval-exam",
|
1749 |
-
"dataset_name": "middle_school_biology",
|
1750 |
-
"validation_split": "val",
|
1751 |
-
"fewshot_split": "dev",
|
1752 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1753 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1754 |
-
"doc_to_choice": [
|
1755 |
-
"A",
|
1756 |
-
"B",
|
1757 |
-
"C",
|
1758 |
-
"D"
|
1759 |
-
],
|
1760 |
-
"description": "以下是中国关于初中生物的单项选择题,请选出其中的正确答案。\n\n",
|
1761 |
-
"target_delimiter": " ",
|
1762 |
-
"fewshot_delimiter": "\n\n",
|
1763 |
-
"fewshot_config": {
|
1764 |
-
"sampler": "first_n"
|
1765 |
-
},
|
1766 |
-
"metric_list": [
|
1767 |
-
{
|
1768 |
-
"metric": "acc",
|
1769 |
-
"aggregation": "mean",
|
1770 |
-
"higher_is_better": true
|
1771 |
-
},
|
1772 |
-
{
|
1773 |
-
"metric": "acc_norm",
|
1774 |
-
"aggregation": "mean",
|
1775 |
-
"higher_is_better": true
|
1776 |
-
}
|
1777 |
-
],
|
1778 |
-
"output_type": "multiple_choice",
|
1779 |
-
"repeats": 1,
|
1780 |
-
"should_decontaminate": false,
|
1781 |
-
"metadata": {
|
1782 |
-
"version": 1.0
|
1783 |
-
}
|
1784 |
-
},
|
1785 |
-
"ceval-valid_middle_school_chemistry": {
|
1786 |
-
"task": "ceval-valid_middle_school_chemistry",
|
1787 |
-
"group": "ceval-valid",
|
1788 |
-
"dataset_path": "ceval/ceval-exam",
|
1789 |
-
"dataset_name": "middle_school_chemistry",
|
1790 |
-
"validation_split": "val",
|
1791 |
-
"fewshot_split": "dev",
|
1792 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1793 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1794 |
-
"doc_to_choice": [
|
1795 |
-
"A",
|
1796 |
-
"B",
|
1797 |
-
"C",
|
1798 |
-
"D"
|
1799 |
-
],
|
1800 |
-
"description": "以下是中国关于初中化学的单项选择题,请选出其中的正确答案。\n\n",
|
1801 |
-
"target_delimiter": " ",
|
1802 |
-
"fewshot_delimiter": "\n\n",
|
1803 |
-
"fewshot_config": {
|
1804 |
-
"sampler": "first_n"
|
1805 |
-
},
|
1806 |
-
"metric_list": [
|
1807 |
-
{
|
1808 |
-
"metric": "acc",
|
1809 |
-
"aggregation": "mean",
|
1810 |
-
"higher_is_better": true
|
1811 |
-
},
|
1812 |
-
{
|
1813 |
-
"metric": "acc_norm",
|
1814 |
-
"aggregation": "mean",
|
1815 |
-
"higher_is_better": true
|
1816 |
-
}
|
1817 |
-
],
|
1818 |
-
"output_type": "multiple_choice",
|
1819 |
-
"repeats": 1,
|
1820 |
-
"should_decontaminate": false,
|
1821 |
-
"metadata": {
|
1822 |
-
"version": 1.0
|
1823 |
-
}
|
1824 |
-
},
|
1825 |
-
"ceval-valid_middle_school_geography": {
|
1826 |
-
"task": "ceval-valid_middle_school_geography",
|
1827 |
-
"group": "ceval-valid",
|
1828 |
-
"dataset_path": "ceval/ceval-exam",
|
1829 |
-
"dataset_name": "middle_school_geography",
|
1830 |
-
"validation_split": "val",
|
1831 |
-
"fewshot_split": "dev",
|
1832 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1833 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1834 |
-
"doc_to_choice": [
|
1835 |
-
"A",
|
1836 |
-
"B",
|
1837 |
-
"C",
|
1838 |
-
"D"
|
1839 |
-
],
|
1840 |
-
"description": "以下是中国关于初中地理的单项选择题,请选出其中的正确答案。\n\n",
|
1841 |
-
"target_delimiter": " ",
|
1842 |
-
"fewshot_delimiter": "\n\n",
|
1843 |
-
"fewshot_config": {
|
1844 |
-
"sampler": "first_n"
|
1845 |
-
},
|
1846 |
-
"metric_list": [
|
1847 |
-
{
|
1848 |
-
"metric": "acc",
|
1849 |
-
"aggregation": "mean",
|
1850 |
-
"higher_is_better": true
|
1851 |
-
},
|
1852 |
-
{
|
1853 |
-
"metric": "acc_norm",
|
1854 |
-
"aggregation": "mean",
|
1855 |
-
"higher_is_better": true
|
1856 |
-
}
|
1857 |
-
],
|
1858 |
-
"output_type": "multiple_choice",
|
1859 |
-
"repeats": 1,
|
1860 |
-
"should_decontaminate": false,
|
1861 |
-
"metadata": {
|
1862 |
-
"version": 1.0
|
1863 |
-
}
|
1864 |
-
},
|
1865 |
-
"ceval-valid_middle_school_history": {
|
1866 |
-
"task": "ceval-valid_middle_school_history",
|
1867 |
-
"group": "ceval-valid",
|
1868 |
-
"dataset_path": "ceval/ceval-exam",
|
1869 |
-
"dataset_name": "middle_school_history",
|
1870 |
-
"validation_split": "val",
|
1871 |
-
"fewshot_split": "dev",
|
1872 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1873 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1874 |
-
"doc_to_choice": [
|
1875 |
-
"A",
|
1876 |
-
"B",
|
1877 |
-
"C",
|
1878 |
-
"D"
|
1879 |
-
],
|
1880 |
-
"description": "以下是中国关于初中历史的单项选择题,请选出其中的正确答案。\n\n",
|
1881 |
-
"target_delimiter": " ",
|
1882 |
-
"fewshot_delimiter": "\n\n",
|
1883 |
-
"fewshot_config": {
|
1884 |
-
"sampler": "first_n"
|
1885 |
-
},
|
1886 |
-
"metric_list": [
|
1887 |
-
{
|
1888 |
-
"metric": "acc",
|
1889 |
-
"aggregation": "mean",
|
1890 |
-
"higher_is_better": true
|
1891 |
-
},
|
1892 |
-
{
|
1893 |
-
"metric": "acc_norm",
|
1894 |
-
"aggregation": "mean",
|
1895 |
-
"higher_is_better": true
|
1896 |
-
}
|
1897 |
-
],
|
1898 |
-
"output_type": "multiple_choice",
|
1899 |
-
"repeats": 1,
|
1900 |
-
"should_decontaminate": false,
|
1901 |
-
"metadata": {
|
1902 |
-
"version": 1.0
|
1903 |
-
}
|
1904 |
-
},
|
1905 |
-
"ceval-valid_middle_school_mathematics": {
|
1906 |
-
"task": "ceval-valid_middle_school_mathematics",
|
1907 |
-
"group": "ceval-valid",
|
1908 |
-
"dataset_path": "ceval/ceval-exam",
|
1909 |
-
"dataset_name": "middle_school_mathematics",
|
1910 |
-
"validation_split": "val",
|
1911 |
-
"fewshot_split": "dev",
|
1912 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1913 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1914 |
-
"doc_to_choice": [
|
1915 |
-
"A",
|
1916 |
-
"B",
|
1917 |
-
"C",
|
1918 |
-
"D"
|
1919 |
-
],
|
1920 |
-
"description": "以下是中国关于初中数学的单项选择题,请选出其中的正确答案。\n\n",
|
1921 |
-
"target_delimiter": " ",
|
1922 |
-
"fewshot_delimiter": "\n\n",
|
1923 |
-
"fewshot_config": {
|
1924 |
-
"sampler": "first_n"
|
1925 |
-
},
|
1926 |
-
"metric_list": [
|
1927 |
-
{
|
1928 |
-
"metric": "acc",
|
1929 |
-
"aggregation": "mean",
|
1930 |
-
"higher_is_better": true
|
1931 |
-
},
|
1932 |
-
{
|
1933 |
-
"metric": "acc_norm",
|
1934 |
-
"aggregation": "mean",
|
1935 |
-
"higher_is_better": true
|
1936 |
-
}
|
1937 |
-
],
|
1938 |
-
"output_type": "multiple_choice",
|
1939 |
-
"repeats": 1,
|
1940 |
-
"should_decontaminate": false,
|
1941 |
-
"metadata": {
|
1942 |
-
"version": 1.0
|
1943 |
-
}
|
1944 |
-
},
|
1945 |
-
"ceval-valid_middle_school_physics": {
|
1946 |
-
"task": "ceval-valid_middle_school_physics",
|
1947 |
-
"group": "ceval-valid",
|
1948 |
-
"dataset_path": "ceval/ceval-exam",
|
1949 |
-
"dataset_name": "middle_school_physics",
|
1950 |
-
"validation_split": "val",
|
1951 |
-
"fewshot_split": "dev",
|
1952 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1953 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1954 |
-
"doc_to_choice": [
|
1955 |
-
"A",
|
1956 |
-
"B",
|
1957 |
-
"C",
|
1958 |
-
"D"
|
1959 |
-
],
|
1960 |
-
"description": "以下是中国关于初中物理的单项选择题,请选出其中的正确答案。\n\n",
|
1961 |
-
"target_delimiter": " ",
|
1962 |
-
"fewshot_delimiter": "\n\n",
|
1963 |
-
"fewshot_config": {
|
1964 |
-
"sampler": "first_n"
|
1965 |
-
},
|
1966 |
-
"metric_list": [
|
1967 |
-
{
|
1968 |
-
"metric": "acc",
|
1969 |
-
"aggregation": "mean",
|
1970 |
-
"higher_is_better": true
|
1971 |
-
},
|
1972 |
-
{
|
1973 |
-
"metric": "acc_norm",
|
1974 |
-
"aggregation": "mean",
|
1975 |
-
"higher_is_better": true
|
1976 |
-
}
|
1977 |
-
],
|
1978 |
-
"output_type": "multiple_choice",
|
1979 |
-
"repeats": 1,
|
1980 |
-
"should_decontaminate": false,
|
1981 |
-
"metadata": {
|
1982 |
-
"version": 1.0
|
1983 |
-
}
|
1984 |
-
},
|
1985 |
-
"ceval-valid_middle_school_politics": {
|
1986 |
-
"task": "ceval-valid_middle_school_politics",
|
1987 |
-
"group": "ceval-valid",
|
1988 |
-
"dataset_path": "ceval/ceval-exam",
|
1989 |
-
"dataset_name": "middle_school_politics",
|
1990 |
-
"validation_split": "val",
|
1991 |
-
"fewshot_split": "dev",
|
1992 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
1993 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
1994 |
-
"doc_to_choice": [
|
1995 |
-
"A",
|
1996 |
-
"B",
|
1997 |
-
"C",
|
1998 |
-
"D"
|
1999 |
-
],
|
2000 |
-
"description": "以下是中国关于初中政治的单项选择题,请选出其中的正确答案。\n\n",
|
2001 |
-
"target_delimiter": " ",
|
2002 |
-
"fewshot_delimiter": "\n\n",
|
2003 |
-
"fewshot_config": {
|
2004 |
-
"sampler": "first_n"
|
2005 |
-
},
|
2006 |
-
"metric_list": [
|
2007 |
-
{
|
2008 |
-
"metric": "acc",
|
2009 |
-
"aggregation": "mean",
|
2010 |
-
"higher_is_better": true
|
2011 |
-
},
|
2012 |
-
{
|
2013 |
-
"metric": "acc_norm",
|
2014 |
-
"aggregation": "mean",
|
2015 |
-
"higher_is_better": true
|
2016 |
-
}
|
2017 |
-
],
|
2018 |
-
"output_type": "multiple_choice",
|
2019 |
-
"repeats": 1,
|
2020 |
-
"should_decontaminate": false,
|
2021 |
-
"metadata": {
|
2022 |
-
"version": 1.0
|
2023 |
-
}
|
2024 |
-
},
|
2025 |
-
"ceval-valid_modern_chinese_history": {
|
2026 |
-
"task": "ceval-valid_modern_chinese_history",
|
2027 |
-
"group": "ceval-valid",
|
2028 |
-
"dataset_path": "ceval/ceval-exam",
|
2029 |
-
"dataset_name": "modern_chinese_history",
|
2030 |
-
"validation_split": "val",
|
2031 |
-
"fewshot_split": "dev",
|
2032 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
2033 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
2034 |
-
"doc_to_choice": [
|
2035 |
-
"A",
|
2036 |
-
"B",
|
2037 |
-
"C",
|
2038 |
-
"D"
|
2039 |
-
],
|
2040 |
-
"description": "以下是中国关于近代史纲要的单项选择题,请选出其中的正确答案。\n\n",
|
2041 |
-
"target_delimiter": " ",
|
2042 |
-
"fewshot_delimiter": "\n\n",
|
2043 |
-
"fewshot_config": {
|
2044 |
-
"sampler": "first_n"
|
2045 |
-
},
|
2046 |
-
"metric_list": [
|
2047 |
-
{
|
2048 |
-
"metric": "acc",
|
2049 |
-
"aggregation": "mean",
|
2050 |
-
"higher_is_better": true
|
2051 |
-
},
|
2052 |
-
{
|
2053 |
-
"metric": "acc_norm",
|
2054 |
-
"aggregation": "mean",
|
2055 |
-
"higher_is_better": true
|
2056 |
-
}
|
2057 |
-
],
|
2058 |
-
"output_type": "multiple_choice",
|
2059 |
-
"repeats": 1,
|
2060 |
-
"should_decontaminate": false,
|
2061 |
-
"metadata": {
|
2062 |
-
"version": 1.0
|
2063 |
-
}
|
2064 |
-
},
|
2065 |
-
"ceval-valid_operating_system": {
|
2066 |
-
"task": "ceval-valid_operating_system",
|
2067 |
-
"group": "ceval-valid",
|
2068 |
-
"dataset_path": "ceval/ceval-exam",
|
2069 |
-
"dataset_name": "operating_system",
|
2070 |
-
"validation_split": "val",
|
2071 |
-
"fewshot_split": "dev",
|
2072 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
2073 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
2074 |
-
"doc_to_choice": [
|
2075 |
-
"A",
|
2076 |
-
"B",
|
2077 |
-
"C",
|
2078 |
-
"D"
|
2079 |
-
],
|
2080 |
-
"description": "以下是中国关于操作系统的单项选择题,请选出其中的正确答案。\n\n",
|
2081 |
-
"target_delimiter": " ",
|
2082 |
-
"fewshot_delimiter": "\n\n",
|
2083 |
-
"fewshot_config": {
|
2084 |
-
"sampler": "first_n"
|
2085 |
-
},
|
2086 |
-
"metric_list": [
|
2087 |
-
{
|
2088 |
-
"metric": "acc",
|
2089 |
-
"aggregation": "mean",
|
2090 |
-
"higher_is_better": true
|
2091 |
-
},
|
2092 |
-
{
|
2093 |
-
"metric": "acc_norm",
|
2094 |
-
"aggregation": "mean",
|
2095 |
-
"higher_is_better": true
|
2096 |
-
}
|
2097 |
-
],
|
2098 |
-
"output_type": "multiple_choice",
|
2099 |
-
"repeats": 1,
|
2100 |
-
"should_decontaminate": false,
|
2101 |
-
"metadata": {
|
2102 |
-
"version": 1.0
|
2103 |
-
}
|
2104 |
-
},
|
2105 |
-
"ceval-valid_physician": {
|
2106 |
-
"task": "ceval-valid_physician",
|
2107 |
-
"group": "ceval-valid",
|
2108 |
-
"dataset_path": "ceval/ceval-exam",
|
2109 |
-
"dataset_name": "physician",
|
2110 |
-
"validation_split": "val",
|
2111 |
-
"fewshot_split": "dev",
|
2112 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
2113 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
2114 |
-
"doc_to_choice": [
|
2115 |
-
"A",
|
2116 |
-
"B",
|
2117 |
-
"C",
|
2118 |
-
"D"
|
2119 |
-
],
|
2120 |
-
"description": "以下是中国关于医师资格的单项选择题,请选出其中的正确答案。\n\n",
|
2121 |
-
"target_delimiter": " ",
|
2122 |
-
"fewshot_delimiter": "\n\n",
|
2123 |
-
"fewshot_config": {
|
2124 |
-
"sampler": "first_n"
|
2125 |
-
},
|
2126 |
-
"metric_list": [
|
2127 |
-
{
|
2128 |
-
"metric": "acc",
|
2129 |
-
"aggregation": "mean",
|
2130 |
-
"higher_is_better": true
|
2131 |
-
},
|
2132 |
-
{
|
2133 |
-
"metric": "acc_norm",
|
2134 |
-
"aggregation": "mean",
|
2135 |
-
"higher_is_better": true
|
2136 |
-
}
|
2137 |
-
],
|
2138 |
-
"output_type": "multiple_choice",
|
2139 |
-
"repeats": 1,
|
2140 |
-
"should_decontaminate": false,
|
2141 |
-
"metadata": {
|
2142 |
-
"version": 1.0
|
2143 |
-
}
|
2144 |
-
},
|
2145 |
-
"ceval-valid_plant_protection": {
|
2146 |
-
"task": "ceval-valid_plant_protection",
|
2147 |
-
"group": "ceval-valid",
|
2148 |
-
"dataset_path": "ceval/ceval-exam",
|
2149 |
-
"dataset_name": "plant_protection",
|
2150 |
-
"validation_split": "val",
|
2151 |
-
"fewshot_split": "dev",
|
2152 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
2153 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
2154 |
-
"doc_to_choice": [
|
2155 |
-
"A",
|
2156 |
-
"B",
|
2157 |
-
"C",
|
2158 |
-
"D"
|
2159 |
-
],
|
2160 |
-
"description": "以下是中国关于植物保护的单项选择题,请选出其中的正确答案。\n\n",
|
2161 |
-
"target_delimiter": " ",
|
2162 |
-
"fewshot_delimiter": "\n\n",
|
2163 |
-
"fewshot_config": {
|
2164 |
-
"sampler": "first_n"
|
2165 |
-
},
|
2166 |
-
"metric_list": [
|
2167 |
-
{
|
2168 |
-
"metric": "acc",
|
2169 |
-
"aggregation": "mean",
|
2170 |
-
"higher_is_better": true
|
2171 |
-
},
|
2172 |
-
{
|
2173 |
-
"metric": "acc_norm",
|
2174 |
-
"aggregation": "mean",
|
2175 |
-
"higher_is_better": true
|
2176 |
-
}
|
2177 |
-
],
|
2178 |
-
"output_type": "multiple_choice",
|
2179 |
-
"repeats": 1,
|
2180 |
-
"should_decontaminate": false,
|
2181 |
-
"metadata": {
|
2182 |
-
"version": 1.0
|
2183 |
-
}
|
2184 |
-
},
|
2185 |
-
"ceval-valid_probability_and_statistics": {
|
2186 |
-
"task": "ceval-valid_probability_and_statistics",
|
2187 |
-
"group": "ceval-valid",
|
2188 |
-
"dataset_path": "ceval/ceval-exam",
|
2189 |
-
"dataset_name": "probability_and_statistics",
|
2190 |
-
"validation_split": "val",
|
2191 |
-
"fewshot_split": "dev",
|
2192 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
2193 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
2194 |
-
"doc_to_choice": [
|
2195 |
-
"A",
|
2196 |
-
"B",
|
2197 |
-
"C",
|
2198 |
-
"D"
|
2199 |
-
],
|
2200 |
-
"description": "以下是中国关于概率统计的单项选择题,请选出其中的正确答案。\n\n",
|
2201 |
-
"target_delimiter": " ",
|
2202 |
-
"fewshot_delimiter": "\n\n",
|
2203 |
-
"fewshot_config": {
|
2204 |
-
"sampler": "first_n"
|
2205 |
-
},
|
2206 |
-
"metric_list": [
|
2207 |
-
{
|
2208 |
-
"metric": "acc",
|
2209 |
-
"aggregation": "mean",
|
2210 |
-
"higher_is_better": true
|
2211 |
-
},
|
2212 |
-
{
|
2213 |
-
"metric": "acc_norm",
|
2214 |
-
"aggregation": "mean",
|
2215 |
-
"higher_is_better": true
|
2216 |
-
}
|
2217 |
-
],
|
2218 |
-
"output_type": "multiple_choice",
|
2219 |
-
"repeats": 1,
|
2220 |
-
"should_decontaminate": false,
|
2221 |
-
"metadata": {
|
2222 |
-
"version": 1.0
|
2223 |
-
}
|
2224 |
-
},
|
2225 |
-
"ceval-valid_professional_tour_guide": {
|
2226 |
-
"task": "ceval-valid_professional_tour_guide",
|
2227 |
-
"group": "ceval-valid",
|
2228 |
-
"dataset_path": "ceval/ceval-exam",
|
2229 |
-
"dataset_name": "professional_tour_guide",
|
2230 |
-
"validation_split": "val",
|
2231 |
-
"fewshot_split": "dev",
|
2232 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
2233 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
2234 |
-
"doc_to_choice": [
|
2235 |
-
"A",
|
2236 |
-
"B",
|
2237 |
-
"C",
|
2238 |
-
"D"
|
2239 |
-
],
|
2240 |
-
"description": "以下是中国关于导游资格的单项选择题,请选出其中的正确答案。\n\n",
|
2241 |
-
"target_delimiter": " ",
|
2242 |
-
"fewshot_delimiter": "\n\n",
|
2243 |
-
"fewshot_config": {
|
2244 |
-
"sampler": "first_n"
|
2245 |
-
},
|
2246 |
-
"metric_list": [
|
2247 |
-
{
|
2248 |
-
"metric": "acc",
|
2249 |
-
"aggregation": "mean",
|
2250 |
-
"higher_is_better": true
|
2251 |
-
},
|
2252 |
-
{
|
2253 |
-
"metric": "acc_norm",
|
2254 |
-
"aggregation": "mean",
|
2255 |
-
"higher_is_better": true
|
2256 |
-
}
|
2257 |
-
],
|
2258 |
-
"output_type": "multiple_choice",
|
2259 |
-
"repeats": 1,
|
2260 |
-
"should_decontaminate": false,
|
2261 |
-
"metadata": {
|
2262 |
-
"version": 1.0
|
2263 |
-
}
|
2264 |
-
},
|
2265 |
-
"ceval-valid_sports_science": {
|
2266 |
-
"task": "ceval-valid_sports_science",
|
2267 |
-
"group": "ceval-valid",
|
2268 |
-
"dataset_path": "ceval/ceval-exam",
|
2269 |
-
"dataset_name": "sports_science",
|
2270 |
-
"validation_split": "val",
|
2271 |
-
"fewshot_split": "dev",
|
2272 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
2273 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
2274 |
-
"doc_to_choice": [
|
2275 |
-
"A",
|
2276 |
-
"B",
|
2277 |
-
"C",
|
2278 |
-
"D"
|
2279 |
-
],
|
2280 |
-
"description": "以下是中国关于体育学的单项选择题,请选出其中的正确答案。\n\n",
|
2281 |
-
"target_delimiter": " ",
|
2282 |
-
"fewshot_delimiter": "\n\n",
|
2283 |
-
"fewshot_config": {
|
2284 |
-
"sampler": "first_n"
|
2285 |
-
},
|
2286 |
-
"metric_list": [
|
2287 |
-
{
|
2288 |
-
"metric": "acc",
|
2289 |
-
"aggregation": "mean",
|
2290 |
-
"higher_is_better": true
|
2291 |
-
},
|
2292 |
-
{
|
2293 |
-
"metric": "acc_norm",
|
2294 |
-
"aggregation": "mean",
|
2295 |
-
"higher_is_better": true
|
2296 |
-
}
|
2297 |
-
],
|
2298 |
-
"output_type": "multiple_choice",
|
2299 |
-
"repeats": 1,
|
2300 |
-
"should_decontaminate": false,
|
2301 |
-
"metadata": {
|
2302 |
-
"version": 1.0
|
2303 |
-
}
|
2304 |
-
},
|
2305 |
-
"ceval-valid_tax_accountant": {
|
2306 |
-
"task": "ceval-valid_tax_accountant",
|
2307 |
-
"group": "ceval-valid",
|
2308 |
-
"dataset_path": "ceval/ceval-exam",
|
2309 |
-
"dataset_name": "tax_accountant",
|
2310 |
-
"validation_split": "val",
|
2311 |
-
"fewshot_split": "dev",
|
2312 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
2313 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
2314 |
-
"doc_to_choice": [
|
2315 |
-
"A",
|
2316 |
-
"B",
|
2317 |
-
"C",
|
2318 |
-
"D"
|
2319 |
-
],
|
2320 |
-
"description": "以下是中国关于税务师的单项选择题,请选出其中的正确答案。\n\n",
|
2321 |
-
"target_delimiter": " ",
|
2322 |
-
"fewshot_delimiter": "\n\n",
|
2323 |
-
"fewshot_config": {
|
2324 |
-
"sampler": "first_n"
|
2325 |
-
},
|
2326 |
-
"metric_list": [
|
2327 |
-
{
|
2328 |
-
"metric": "acc",
|
2329 |
-
"aggregation": "mean",
|
2330 |
-
"higher_is_better": true
|
2331 |
-
},
|
2332 |
-
{
|
2333 |
-
"metric": "acc_norm",
|
2334 |
-
"aggregation": "mean",
|
2335 |
-
"higher_is_better": true
|
2336 |
-
}
|
2337 |
-
],
|
2338 |
-
"output_type": "multiple_choice",
|
2339 |
-
"repeats": 1,
|
2340 |
-
"should_decontaminate": false,
|
2341 |
-
"metadata": {
|
2342 |
-
"version": 1.0
|
2343 |
-
}
|
2344 |
-
},
|
2345 |
-
"ceval-valid_teacher_qualification": {
|
2346 |
-
"task": "ceval-valid_teacher_qualification",
|
2347 |
-
"group": "ceval-valid",
|
2348 |
-
"dataset_path": "ceval/ceval-exam",
|
2349 |
-
"dataset_name": "teacher_qualification",
|
2350 |
-
"validation_split": "val",
|
2351 |
-
"fewshot_split": "dev",
|
2352 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
2353 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
2354 |
-
"doc_to_choice": [
|
2355 |
-
"A",
|
2356 |
-
"B",
|
2357 |
-
"C",
|
2358 |
-
"D"
|
2359 |
-
],
|
2360 |
-
"description": "以下是中国关于教师资格的单项选择题,请选出其中的正确答案。\n\n",
|
2361 |
-
"target_delimiter": " ",
|
2362 |
-
"fewshot_delimiter": "\n\n",
|
2363 |
-
"fewshot_config": {
|
2364 |
-
"sampler": "first_n"
|
2365 |
-
},
|
2366 |
-
"metric_list": [
|
2367 |
-
{
|
2368 |
-
"metric": "acc",
|
2369 |
-
"aggregation": "mean",
|
2370 |
-
"higher_is_better": true
|
2371 |
-
},
|
2372 |
-
{
|
2373 |
-
"metric": "acc_norm",
|
2374 |
-
"aggregation": "mean",
|
2375 |
-
"higher_is_better": true
|
2376 |
-
}
|
2377 |
-
],
|
2378 |
-
"output_type": "multiple_choice",
|
2379 |
-
"repeats": 1,
|
2380 |
-
"should_decontaminate": false,
|
2381 |
-
"metadata": {
|
2382 |
-
"version": 1.0
|
2383 |
-
}
|
2384 |
-
},
|
2385 |
-
"ceval-valid_urban_and_rural_planner": {
|
2386 |
-
"task": "ceval-valid_urban_and_rural_planner",
|
2387 |
-
"group": "ceval-valid",
|
2388 |
-
"dataset_path": "ceval/ceval-exam",
|
2389 |
-
"dataset_name": "urban_and_rural_planner",
|
2390 |
-
"validation_split": "val",
|
2391 |
-
"fewshot_split": "dev",
|
2392 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
2393 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
2394 |
-
"doc_to_choice": [
|
2395 |
-
"A",
|
2396 |
-
"B",
|
2397 |
-
"C",
|
2398 |
-
"D"
|
2399 |
-
],
|
2400 |
-
"description": "以下是中国关于注册城乡规划师的单项选择题,请选出其中的正确答案。\n\n",
|
2401 |
-
"target_delimiter": " ",
|
2402 |
-
"fewshot_delimiter": "\n\n",
|
2403 |
-
"fewshot_config": {
|
2404 |
-
"sampler": "first_n"
|
2405 |
-
},
|
2406 |
-
"metric_list": [
|
2407 |
-
{
|
2408 |
-
"metric": "acc",
|
2409 |
-
"aggregation": "mean",
|
2410 |
-
"higher_is_better": true
|
2411 |
-
},
|
2412 |
-
{
|
2413 |
-
"metric": "acc_norm",
|
2414 |
-
"aggregation": "mean",
|
2415 |
-
"higher_is_better": true
|
2416 |
-
}
|
2417 |
-
],
|
2418 |
-
"output_type": "multiple_choice",
|
2419 |
-
"repeats": 1,
|
2420 |
-
"should_decontaminate": false,
|
2421 |
-
"metadata": {
|
2422 |
-
"version": 1.0
|
2423 |
-
}
|
2424 |
-
},
|
2425 |
-
"ceval-valid_veterinary_medicine": {
|
2426 |
-
"task": "ceval-valid_veterinary_medicine",
|
2427 |
-
"group": "ceval-valid",
|
2428 |
-
"dataset_path": "ceval/ceval-exam",
|
2429 |
-
"dataset_name": "veterinary_medicine",
|
2430 |
-
"validation_split": "val",
|
2431 |
-
"fewshot_split": "dev",
|
2432 |
-
"doc_to_text": "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案:",
|
2433 |
-
"doc_to_target": "{{['A', 'B', 'C', 'D'].index(answer)}}",
|
2434 |
-
"doc_to_choice": [
|
2435 |
-
"A",
|
2436 |
-
"B",
|
2437 |
-
"C",
|
2438 |
-
"D"
|
2439 |
-
],
|
2440 |
-
"description": "以下是中国关于兽医学的单项选择题,请选出其中的正确答案。\n\n",
|
2441 |
-
"target_delimiter": " ",
|
2442 |
-
"fewshot_delimiter": "\n\n",
|
2443 |
-
"fewshot_config": {
|
2444 |
-
"sampler": "first_n"
|
2445 |
-
},
|
2446 |
-
"metric_list": [
|
2447 |
-
{
|
2448 |
-
"metric": "acc",
|
2449 |
-
"aggregation": "mean",
|
2450 |
-
"higher_is_better": true
|
2451 |
-
},
|
2452 |
-
{
|
2453 |
-
"metric": "acc_norm",
|
2454 |
-
"aggregation": "mean",
|
2455 |
-
"higher_is_better": true
|
2456 |
-
}
|
2457 |
-
],
|
2458 |
-
"output_type": "multiple_choice",
|
2459 |
-
"repeats": 1,
|
2460 |
-
"should_decontaminate": false,
|
2461 |
-
"metadata": {
|
2462 |
-
"version": 1.0
|
2463 |
-
}
|
2464 |
-
}
|
2465 |
-
},
|
2466 |
-
"versions": {
|
2467 |
-
"ceval-valid": "N/A",
|
2468 |
-
"ceval-valid_accountant": 1.0,
|
2469 |
-
"ceval-valid_advanced_mathematics": 1.0,
|
2470 |
-
"ceval-valid_art_studies": 1.0,
|
2471 |
-
"ceval-valid_basic_medicine": 1.0,
|
2472 |
-
"ceval-valid_business_administration": 1.0,
|
2473 |
-
"ceval-valid_chinese_language_and_literature": 1.0,
|
2474 |
-
"ceval-valid_civil_servant": 1.0,
|
2475 |
-
"ceval-valid_clinical_medicine": 1.0,
|
2476 |
-
"ceval-valid_college_chemistry": 1.0,
|
2477 |
-
"ceval-valid_college_economics": 1.0,
|
2478 |
-
"ceval-valid_college_physics": 1.0,
|
2479 |
-
"ceval-valid_college_programming": 1.0,
|
2480 |
-
"ceval-valid_computer_architecture": 1.0,
|
2481 |
-
"ceval-valid_computer_network": 1.0,
|
2482 |
-
"ceval-valid_discrete_mathematics": 1.0,
|
2483 |
-
"ceval-valid_education_science": 1.0,
|
2484 |
-
"ceval-valid_electrical_engineer": 1.0,
|
2485 |
-
"ceval-valid_environmental_impact_assessment_engineer": 1.0,
|
2486 |
-
"ceval-valid_fire_engineer": 1.0,
|
2487 |
-
"ceval-valid_high_school_biology": 1.0,
|
2488 |
-
"ceval-valid_high_school_chemistry": 1.0,
|
2489 |
-
"ceval-valid_high_school_chinese": 1.0,
|
2490 |
-
"ceval-valid_high_school_geography": 1.0,
|
2491 |
-
"ceval-valid_high_school_history": 1.0,
|
2492 |
-
"ceval-valid_high_school_mathematics": 1.0,
|
2493 |
-
"ceval-valid_high_school_physics": 1.0,
|
2494 |
-
"ceval-valid_high_school_politics": 1.0,
|
2495 |
-
"ceval-valid_ideological_and_moral_cultivation": 1.0,
|
2496 |
-
"ceval-valid_law": 1.0,
|
2497 |
-
"ceval-valid_legal_professional": 1.0,
|
2498 |
-
"ceval-valid_logic": 1.0,
|
2499 |
-
"ceval-valid_mao_zedong_thought": 1.0,
|
2500 |
-
"ceval-valid_marxism": 1.0,
|
2501 |
-
"ceval-valid_metrology_engineer": 1.0,
|
2502 |
-
"ceval-valid_middle_school_biology": 1.0,
|
2503 |
-
"ceval-valid_middle_school_chemistry": 1.0,
|
2504 |
-
"ceval-valid_middle_school_geography": 1.0,
|
2505 |
-
"ceval-valid_middle_school_history": 1.0,
|
2506 |
-
"ceval-valid_middle_school_mathematics": 1.0,
|
2507 |
-
"ceval-valid_middle_school_physics": 1.0,
|
2508 |
-
"ceval-valid_middle_school_politics": 1.0,
|
2509 |
-
"ceval-valid_modern_chinese_history": 1.0,
|
2510 |
-
"ceval-valid_operating_system": 1.0,
|
2511 |
-
"ceval-valid_physician": 1.0,
|
2512 |
-
"ceval-valid_plant_protection": 1.0,
|
2513 |
-
"ceval-valid_probability_and_statistics": 1.0,
|
2514 |
-
"ceval-valid_professional_tour_guide": 1.0,
|
2515 |
-
"ceval-valid_sports_science": 1.0,
|
2516 |
-
"ceval-valid_tax_accountant": 1.0,
|
2517 |
-
"ceval-valid_teacher_qualification": 1.0,
|
2518 |
-
"ceval-valid_urban_and_rural_planner": 1.0,
|
2519 |
-
"ceval-valid_veterinary_medicine": 1.0
|
2520 |
-
},
|
2521 |
-
"n-shot": {
|
2522 |
-
"ceval-valid": 0,
|
2523 |
-
"ceval-valid_accountant": 0,
|
2524 |
-
"ceval-valid_advanced_mathematics": 0,
|
2525 |
-
"ceval-valid_art_studies": 0,
|
2526 |
-
"ceval-valid_basic_medicine": 0,
|
2527 |
-
"ceval-valid_business_administration": 0,
|
2528 |
-
"ceval-valid_chinese_language_and_literature": 0,
|
2529 |
-
"ceval-valid_civil_servant": 0,
|
2530 |
-
"ceval-valid_clinical_medicine": 0,
|
2531 |
-
"ceval-valid_college_chemistry": 0,
|
2532 |
-
"ceval-valid_college_economics": 0,
|
2533 |
-
"ceval-valid_college_physics": 0,
|
2534 |
-
"ceval-valid_college_programming": 0,
|
2535 |
-
"ceval-valid_computer_architecture": 0,
|
2536 |
-
"ceval-valid_computer_network": 0,
|
2537 |
-
"ceval-valid_discrete_mathematics": 0,
|
2538 |
-
"ceval-valid_education_science": 0,
|
2539 |
-
"ceval-valid_electrical_engineer": 0,
|
2540 |
-
"ceval-valid_environmental_impact_assessment_engineer": 0,
|
2541 |
-
"ceval-valid_fire_engineer": 0,
|
2542 |
-
"ceval-valid_high_school_biology": 0,
|
2543 |
-
"ceval-valid_high_school_chemistry": 0,
|
2544 |
-
"ceval-valid_high_school_chinese": 0,
|
2545 |
-
"ceval-valid_high_school_geography": 0,
|
2546 |
-
"ceval-valid_high_school_history": 0,
|
2547 |
-
"ceval-valid_high_school_mathematics": 0,
|
2548 |
-
"ceval-valid_high_school_physics": 0,
|
2549 |
-
"ceval-valid_high_school_politics": 0,
|
2550 |
-
"ceval-valid_ideological_and_moral_cultivation": 0,
|
2551 |
-
"ceval-valid_law": 0,
|
2552 |
-
"ceval-valid_legal_professional": 0,
|
2553 |
-
"ceval-valid_logic": 0,
|
2554 |
-
"ceval-valid_mao_zedong_thought": 0,
|
2555 |
-
"ceval-valid_marxism": 0,
|
2556 |
-
"ceval-valid_metrology_engineer": 0,
|
2557 |
-
"ceval-valid_middle_school_biology": 0,
|
2558 |
-
"ceval-valid_middle_school_chemistry": 0,
|
2559 |
-
"ceval-valid_middle_school_geography": 0,
|
2560 |
-
"ceval-valid_middle_school_history": 0,
|
2561 |
-
"ceval-valid_middle_school_mathematics": 0,
|
2562 |
-
"ceval-valid_middle_school_physics": 0,
|
2563 |
-
"ceval-valid_middle_school_politics": 0,
|
2564 |
-
"ceval-valid_modern_chinese_history": 0,
|
2565 |
-
"ceval-valid_operating_system": 0,
|
2566 |
-
"ceval-valid_physician": 0,
|
2567 |
-
"ceval-valid_plant_protection": 0,
|
2568 |
-
"ceval-valid_probability_and_statistics": 0,
|
2569 |
-
"ceval-valid_professional_tour_guide": 0,
|
2570 |
-
"ceval-valid_sports_science": 0,
|
2571 |
-
"ceval-valid_tax_accountant": 0,
|
2572 |
-
"ceval-valid_teacher_qualification": 0,
|
2573 |
-
"ceval-valid_urban_and_rural_planner": 0,
|
2574 |
-
"ceval-valid_veterinary_medicine": 0
|
2575 |
-
},
|
2576 |
-
"config": {
|
2577 |
-
"model": "hf",
|
2578 |
-
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
2579 |
-
"batch_size": "2",
|
2580 |
-
"batch_sizes": [],
|
2581 |
-
"device": null,
|
2582 |
-
"use_cache": null,
|
2583 |
-
"limit": null,
|
2584 |
-
"bootstrap_iters": 100000,
|
2585 |
-
"gen_kwargs": null
|
2586 |
-
},
|
2587 |
-
"git_hash": "4701655"
|
2588 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/ceval-valid/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f000647be6eea5529f603c75503e3332301c0bd4aa7f76edcbbb38001ab4cc9c
|
3 |
+
size 79965
|
lm-eval-output/allenai/OLMo-7B/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d49be0dd3eb66a0025a1d0cdd953772d8bdfc3cd910d47adcca1eaa055d00007
|
3 |
-
size 2305507
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,38 +1,38 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"cmmlu": {
|
4 |
-
"acc,none": 0.
|
5 |
-
"acc_stderr,none": 0.
|
6 |
-
"acc_norm,none": 0.
|
7 |
-
"acc_norm_stderr,none": 0.
|
8 |
"alias": "cmmlu"
|
9 |
},
|
10 |
"cmmlu_agronomy": {
|
11 |
-
"acc,none": 0.
|
12 |
-
"acc_stderr,none": 0.
|
13 |
-
"acc_norm,none": 0.
|
14 |
-
"acc_norm_stderr,none": 0.
|
15 |
"alias": " - cmmlu_agronomy"
|
16 |
},
|
17 |
"cmmlu_anatomy": {
|
18 |
-
"acc,none": 0.
|
19 |
-
"acc_stderr,none": 0.
|
20 |
-
"acc_norm,none": 0.
|
21 |
-
"acc_norm_stderr,none": 0.
|
22 |
"alias": " - cmmlu_anatomy"
|
23 |
},
|
24 |
"cmmlu_ancient_chinese": {
|
25 |
-
"acc,none": 0.
|
26 |
-
"acc_stderr,none": 0.
|
27 |
-
"acc_norm,none": 0.
|
28 |
-
"acc_norm_stderr,none": 0.
|
29 |
"alias": " - cmmlu_ancient_chinese"
|
30 |
},
|
31 |
"cmmlu_arts": {
|
32 |
-
"acc,none": 0.
|
33 |
-
"acc_stderr,none": 0.
|
34 |
-
"acc_norm,none": 0.
|
35 |
-
"acc_norm_stderr,none": 0.
|
36 |
"alias": " - cmmlu_arts"
|
37 |
},
|
38 |
"cmmlu_astronomy": {
|
@@ -43,122 +43,122 @@
|
|
43 |
"alias": " - cmmlu_astronomy"
|
44 |
},
|
45 |
"cmmlu_business_ethics": {
|
46 |
-
"acc,none": 0.
|
47 |
-
"acc_stderr,none": 0.
|
48 |
-
"acc_norm,none": 0.
|
49 |
-
"acc_norm_stderr,none": 0.
|
50 |
"alias": " - cmmlu_business_ethics"
|
51 |
},
|
52 |
"cmmlu_chinese_civil_service_exam": {
|
53 |
-
"acc,none": 0.
|
54 |
-
"acc_stderr,none": 0.
|
55 |
-
"acc_norm,none": 0.
|
56 |
-
"acc_norm_stderr,none": 0.
|
57 |
"alias": " - cmmlu_chinese_civil_service_exam"
|
58 |
},
|
59 |
"cmmlu_chinese_driving_rule": {
|
60 |
-
"acc,none": 0.
|
61 |
-
"acc_stderr,none": 0.
|
62 |
-
"acc_norm,none": 0.
|
63 |
-
"acc_norm_stderr,none": 0.
|
64 |
"alias": " - cmmlu_chinese_driving_rule"
|
65 |
},
|
66 |
"cmmlu_chinese_food_culture": {
|
67 |
-
"acc,none": 0.
|
68 |
-
"acc_stderr,none": 0.
|
69 |
-
"acc_norm,none": 0.
|
70 |
-
"acc_norm_stderr,none": 0.
|
71 |
"alias": " - cmmlu_chinese_food_culture"
|
72 |
},
|
73 |
"cmmlu_chinese_foreign_policy": {
|
74 |
-
"acc,none": 0.
|
75 |
-
"acc_stderr,none": 0.
|
76 |
-
"acc_norm,none": 0.
|
77 |
-
"acc_norm_stderr,none": 0.
|
78 |
"alias": " - cmmlu_chinese_foreign_policy"
|
79 |
},
|
80 |
"cmmlu_chinese_history": {
|
81 |
-
"acc,none": 0.
|
82 |
-
"acc_stderr,none": 0.
|
83 |
-
"acc_norm,none": 0.
|
84 |
-
"acc_norm_stderr,none": 0.
|
85 |
"alias": " - cmmlu_chinese_history"
|
86 |
},
|
87 |
"cmmlu_chinese_literature": {
|
88 |
-
"acc,none": 0.
|
89 |
-
"acc_stderr,none": 0.
|
90 |
-
"acc_norm,none": 0.
|
91 |
-
"acc_norm_stderr,none": 0.
|
92 |
"alias": " - cmmlu_chinese_literature"
|
93 |
},
|
94 |
"cmmlu_chinese_teacher_qualification": {
|
95 |
-
"acc,none": 0.
|
96 |
-
"acc_stderr,none": 0.
|
97 |
-
"acc_norm,none": 0.
|
98 |
-
"acc_norm_stderr,none": 0.
|
99 |
"alias": " - cmmlu_chinese_teacher_qualification"
|
100 |
},
|
101 |
"cmmlu_clinical_knowledge": {
|
102 |
-
"acc,none": 0.
|
103 |
-
"acc_stderr,none": 0.
|
104 |
-
"acc_norm,none": 0.
|
105 |
-
"acc_norm_stderr,none": 0.
|
106 |
"alias": " - cmmlu_clinical_knowledge"
|
107 |
},
|
108 |
"cmmlu_college_actuarial_science": {
|
109 |
-
"acc,none": 0.
|
110 |
-
"acc_stderr,none": 0.
|
111 |
-
"acc_norm,none": 0.
|
112 |
-
"acc_norm_stderr,none": 0.
|
113 |
"alias": " - cmmlu_college_actuarial_science"
|
114 |
},
|
115 |
"cmmlu_college_education": {
|
116 |
-
"acc,none": 0.
|
117 |
-
"acc_stderr,none": 0.
|
118 |
-
"acc_norm,none": 0.
|
119 |
-
"acc_norm_stderr,none": 0.
|
120 |
"alias": " - cmmlu_college_education"
|
121 |
},
|
122 |
"cmmlu_college_engineering_hydrology": {
|
123 |
-
"acc,none": 0.
|
124 |
-
"acc_stderr,none": 0.
|
125 |
-
"acc_norm,none": 0.
|
126 |
-
"acc_norm_stderr,none": 0.
|
127 |
"alias": " - cmmlu_college_engineering_hydrology"
|
128 |
},
|
129 |
"cmmlu_college_law": {
|
130 |
-
"acc,none": 0.
|
131 |
-
"acc_stderr,none": 0.
|
132 |
-
"acc_norm,none": 0.
|
133 |
-
"acc_norm_stderr,none": 0.
|
134 |
"alias": " - cmmlu_college_law"
|
135 |
},
|
136 |
"cmmlu_college_mathematics": {
|
137 |
-
"acc,none": 0.
|
138 |
-
"acc_stderr,none": 0.
|
139 |
-
"acc_norm,none": 0.
|
140 |
-
"acc_norm_stderr,none": 0.
|
141 |
"alias": " - cmmlu_college_mathematics"
|
142 |
},
|
143 |
"cmmlu_college_medical_statistics": {
|
144 |
-
"acc,none": 0.
|
145 |
-
"acc_stderr,none": 0.
|
146 |
-
"acc_norm,none": 0.
|
147 |
-
"acc_norm_stderr,none": 0.
|
148 |
"alias": " - cmmlu_college_medical_statistics"
|
149 |
},
|
150 |
"cmmlu_college_medicine": {
|
151 |
-
"acc,none": 0.
|
152 |
-
"acc_stderr,none": 0.
|
153 |
-
"acc_norm,none": 0.
|
154 |
-
"acc_norm_stderr,none": 0.
|
155 |
"alias": " - cmmlu_college_medicine"
|
156 |
},
|
157 |
"cmmlu_computer_science": {
|
158 |
-
"acc,none": 0.
|
159 |
-
"acc_stderr,none": 0.
|
160 |
-
"acc_norm,none": 0.
|
161 |
-
"acc_norm_stderr,none": 0.
|
162 |
"alias": " - cmmlu_computer_science"
|
163 |
},
|
164 |
"cmmlu_computer_security": {
|
@@ -169,45 +169,45 @@
|
|
169 |
"alias": " - cmmlu_computer_security"
|
170 |
},
|
171 |
"cmmlu_conceptual_physics": {
|
172 |
-
"acc,none": 0.
|
173 |
-
"acc_stderr,none": 0.
|
174 |
-
"acc_norm,none": 0.
|
175 |
-
"acc_norm_stderr,none": 0.
|
176 |
"alias": " - cmmlu_conceptual_physics"
|
177 |
},
|
178 |
"cmmlu_construction_project_management": {
|
179 |
-
"acc,none": 0.
|
180 |
-
"acc_stderr,none": 0.
|
181 |
-
"acc_norm,none": 0.
|
182 |
-
"acc_norm_stderr,none": 0.
|
183 |
"alias": " - cmmlu_construction_project_management"
|
184 |
},
|
185 |
"cmmlu_economics": {
|
186 |
-
"acc,none": 0.
|
187 |
-
"acc_stderr,none": 0.
|
188 |
-
"acc_norm,none": 0.
|
189 |
-
"acc_norm_stderr,none": 0.
|
190 |
"alias": " - cmmlu_economics"
|
191 |
},
|
192 |
"cmmlu_education": {
|
193 |
-
"acc,none": 0.
|
194 |
-
"acc_stderr,none": 0.
|
195 |
-
"acc_norm,none": 0.
|
196 |
-
"acc_norm_stderr,none": 0.
|
197 |
"alias": " - cmmlu_education"
|
198 |
},
|
199 |
"cmmlu_electrical_engineering": {
|
200 |
-
"acc,none": 0.
|
201 |
-
"acc_stderr,none": 0.
|
202 |
-
"acc_norm,none": 0.
|
203 |
-
"acc_norm_stderr,none": 0.
|
204 |
"alias": " - cmmlu_electrical_engineering"
|
205 |
},
|
206 |
"cmmlu_elementary_chinese": {
|
207 |
-
"acc,none": 0.
|
208 |
-
"acc_stderr,none": 0.
|
209 |
-
"acc_norm,none": 0.
|
210 |
-
"acc_norm_stderr,none": 0.
|
211 |
"alias": " - cmmlu_elementary_chinese"
|
212 |
},
|
213 |
"cmmlu_elementary_commonsense": {
|
@@ -218,10 +218,10 @@
|
|
218 |
"alias": " - cmmlu_elementary_commonsense"
|
219 |
},
|
220 |
"cmmlu_elementary_information_and_technology": {
|
221 |
-
"acc,none": 0.
|
222 |
-
"acc_stderr,none": 0.
|
223 |
-
"acc_norm,none": 0.
|
224 |
-
"acc_norm_stderr,none": 0.
|
225 |
"alias": " - cmmlu_elementary_information_and_technology"
|
226 |
},
|
227 |
"cmmlu_elementary_mathematics": {
|
@@ -232,66 +232,66 @@
|
|
232 |
"alias": " - cmmlu_elementary_mathematics"
|
233 |
},
|
234 |
"cmmlu_ethnology": {
|
235 |
-
"acc,none": 0.
|
236 |
-
"acc_stderr,none": 0.
|
237 |
-
"acc_norm,none": 0.
|
238 |
-
"acc_norm_stderr,none": 0.
|
239 |
"alias": " - cmmlu_ethnology"
|
240 |
},
|
241 |
"cmmlu_food_science": {
|
242 |
-
"acc,none": 0.
|
243 |
-
"acc_stderr,none": 0.
|
244 |
-
"acc_norm,none": 0.
|
245 |
-
"acc_norm_stderr,none": 0.
|
246 |
"alias": " - cmmlu_food_science"
|
247 |
},
|
248 |
"cmmlu_genetics": {
|
249 |
-
"acc,none": 0.
|
250 |
-
"acc_stderr,none": 0.
|
251 |
-
"acc_norm,none": 0.
|
252 |
-
"acc_norm_stderr,none": 0.
|
253 |
"alias": " - cmmlu_genetics"
|
254 |
},
|
255 |
"cmmlu_global_facts": {
|
256 |
-
"acc,none": 0.
|
257 |
-
"acc_stderr,none": 0.
|
258 |
-
"acc_norm,none": 0.
|
259 |
-
"acc_norm_stderr,none": 0.
|
260 |
"alias": " - cmmlu_global_facts"
|
261 |
},
|
262 |
"cmmlu_high_school_biology": {
|
263 |
-
"acc,none": 0.
|
264 |
-
"acc_stderr,none": 0.
|
265 |
-
"acc_norm,none": 0.
|
266 |
-
"acc_norm_stderr,none": 0.
|
267 |
"alias": " - cmmlu_high_school_biology"
|
268 |
},
|
269 |
"cmmlu_high_school_chemistry": {
|
270 |
-
"acc,none": 0.
|
271 |
-
"acc_stderr,none": 0.
|
272 |
-
"acc_norm,none": 0.
|
273 |
-
"acc_norm_stderr,none": 0.
|
274 |
"alias": " - cmmlu_high_school_chemistry"
|
275 |
},
|
276 |
"cmmlu_high_school_geography": {
|
277 |
-
"acc,none": 0.
|
278 |
-
"acc_stderr,none": 0.
|
279 |
-
"acc_norm,none": 0.
|
280 |
-
"acc_norm_stderr,none": 0.
|
281 |
"alias": " - cmmlu_high_school_geography"
|
282 |
},
|
283 |
"cmmlu_high_school_mathematics": {
|
284 |
-
"acc,none": 0.
|
285 |
-
"acc_stderr,none": 0.
|
286 |
-
"acc_norm,none": 0.
|
287 |
-
"acc_norm_stderr,none": 0.
|
288 |
"alias": " - cmmlu_high_school_mathematics"
|
289 |
},
|
290 |
"cmmlu_high_school_physics": {
|
291 |
-
"acc,none": 0.
|
292 |
-
"acc_stderr,none": 0.
|
293 |
-
"acc_norm,none": 0.
|
294 |
-
"acc_norm_stderr,none": 0.
|
295 |
"alias": " - cmmlu_high_school_physics"
|
296 |
},
|
297 |
"cmmlu_high_school_politics": {
|
@@ -302,129 +302,129 @@
|
|
302 |
"alias": " - cmmlu_high_school_politics"
|
303 |
},
|
304 |
"cmmlu_human_sexuality": {
|
305 |
-
"acc,none": 0.
|
306 |
-
"acc_stderr,none": 0.
|
307 |
-
"acc_norm,none": 0.
|
308 |
-
"acc_norm_stderr,none": 0.
|
309 |
"alias": " - cmmlu_human_sexuality"
|
310 |
},
|
311 |
"cmmlu_international_law": {
|
312 |
-
"acc,none": 0.
|
313 |
-
"acc_stderr,none": 0.
|
314 |
-
"acc_norm,none": 0.
|
315 |
-
"acc_norm_stderr,none": 0.
|
316 |
"alias": " - cmmlu_international_law"
|
317 |
},
|
318 |
"cmmlu_journalism": {
|
319 |
-
"acc,none": 0.
|
320 |
-
"acc_stderr,none": 0.
|
321 |
-
"acc_norm,none": 0.
|
322 |
-
"acc_norm_stderr,none": 0.
|
323 |
"alias": " - cmmlu_journalism"
|
324 |
},
|
325 |
"cmmlu_jurisprudence": {
|
326 |
-
"acc,none": 0.
|
327 |
-
"acc_stderr,none": 0.
|
328 |
-
"acc_norm,none": 0.
|
329 |
-
"acc_norm_stderr,none": 0.
|
330 |
"alias": " - cmmlu_jurisprudence"
|
331 |
},
|
332 |
"cmmlu_legal_and_moral_basis": {
|
333 |
-
"acc,none": 0.
|
334 |
-
"acc_stderr,none": 0.
|
335 |
-
"acc_norm,none": 0.
|
336 |
-
"acc_norm_stderr,none": 0.
|
337 |
"alias": " - cmmlu_legal_and_moral_basis"
|
338 |
},
|
339 |
"cmmlu_logical": {
|
340 |
-
"acc,none": 0.
|
341 |
-
"acc_stderr,none": 0.
|
342 |
-
"acc_norm,none": 0.
|
343 |
-
"acc_norm_stderr,none": 0.
|
344 |
"alias": " - cmmlu_logical"
|
345 |
},
|
346 |
"cmmlu_machine_learning": {
|
347 |
-
"acc,none": 0.
|
348 |
-
"acc_stderr,none": 0.
|
349 |
-
"acc_norm,none": 0.
|
350 |
-
"acc_norm_stderr,none": 0.
|
351 |
"alias": " - cmmlu_machine_learning"
|
352 |
},
|
353 |
"cmmlu_management": {
|
354 |
-
"acc,none": 0.
|
355 |
-
"acc_stderr,none": 0.
|
356 |
-
"acc_norm,none": 0.
|
357 |
-
"acc_norm_stderr,none": 0.
|
358 |
"alias": " - cmmlu_management"
|
359 |
},
|
360 |
"cmmlu_marketing": {
|
361 |
-
"acc,none": 0.
|
362 |
-
"acc_stderr,none": 0.
|
363 |
-
"acc_norm,none": 0.
|
364 |
-
"acc_norm_stderr,none": 0.
|
365 |
"alias": " - cmmlu_marketing"
|
366 |
},
|
367 |
"cmmlu_marxist_theory": {
|
368 |
-
"acc,none": 0.
|
369 |
-
"acc_stderr,none": 0.
|
370 |
-
"acc_norm,none": 0.
|
371 |
-
"acc_norm_stderr,none": 0.
|
372 |
"alias": " - cmmlu_marxist_theory"
|
373 |
},
|
374 |
"cmmlu_modern_chinese": {
|
375 |
-
"acc,none": 0.
|
376 |
-
"acc_stderr,none": 0.
|
377 |
-
"acc_norm,none": 0.
|
378 |
-
"acc_norm_stderr,none": 0.
|
379 |
"alias": " - cmmlu_modern_chinese"
|
380 |
},
|
381 |
"cmmlu_nutrition": {
|
382 |
-
"acc,none": 0.
|
383 |
-
"acc_stderr,none": 0.
|
384 |
-
"acc_norm,none": 0.
|
385 |
-
"acc_norm_stderr,none": 0.
|
386 |
"alias": " - cmmlu_nutrition"
|
387 |
},
|
388 |
"cmmlu_philosophy": {
|
389 |
-
"acc,none": 0.
|
390 |
-
"acc_stderr,none": 0.
|
391 |
-
"acc_norm,none": 0.
|
392 |
-
"acc_norm_stderr,none": 0.
|
393 |
"alias": " - cmmlu_philosophy"
|
394 |
},
|
395 |
"cmmlu_professional_accounting": {
|
396 |
-
"acc,none": 0.
|
397 |
-
"acc_stderr,none": 0.
|
398 |
-
"acc_norm,none": 0.
|
399 |
-
"acc_norm_stderr,none": 0.
|
400 |
"alias": " - cmmlu_professional_accounting"
|
401 |
},
|
402 |
"cmmlu_professional_law": {
|
403 |
-
"acc,none": 0.
|
404 |
-
"acc_stderr,none": 0.
|
405 |
-
"acc_norm,none": 0.
|
406 |
-
"acc_norm_stderr,none": 0.
|
407 |
"alias": " - cmmlu_professional_law"
|
408 |
},
|
409 |
"cmmlu_professional_medicine": {
|
410 |
-
"acc,none": 0.
|
411 |
-
"acc_stderr,none": 0.
|
412 |
-
"acc_norm,none": 0.
|
413 |
-
"acc_norm_stderr,none": 0.
|
414 |
"alias": " - cmmlu_professional_medicine"
|
415 |
},
|
416 |
"cmmlu_professional_psychology": {
|
417 |
-
"acc,none": 0.
|
418 |
-
"acc_stderr,none": 0.
|
419 |
-
"acc_norm,none": 0.
|
420 |
-
"acc_norm_stderr,none": 0.
|
421 |
"alias": " - cmmlu_professional_psychology"
|
422 |
},
|
423 |
"cmmlu_public_relations": {
|
424 |
-
"acc,none": 0.
|
425 |
-
"acc_stderr,none": 0.
|
426 |
-
"acc_norm,none": 0.
|
427 |
-
"acc_norm_stderr,none": 0.
|
428 |
"alias": " - cmmlu_public_relations"
|
429 |
},
|
430 |
"cmmlu_security_study": {
|
@@ -435,31 +435,31 @@
|
|
435 |
"alias": " - cmmlu_security_study"
|
436 |
},
|
437 |
"cmmlu_sociology": {
|
438 |
-
"acc,none": 0.
|
439 |
-
"acc_stderr,none": 0.
|
440 |
-
"acc_norm,none": 0.
|
441 |
-
"acc_norm_stderr,none": 0.
|
442 |
"alias": " - cmmlu_sociology"
|
443 |
},
|
444 |
"cmmlu_sports_science": {
|
445 |
-
"acc,none": 0.
|
446 |
-
"acc_stderr,none": 0.
|
447 |
-
"acc_norm,none": 0.
|
448 |
-
"acc_norm_stderr,none": 0.
|
449 |
"alias": " - cmmlu_sports_science"
|
450 |
},
|
451 |
"cmmlu_traditional_chinese_medicine": {
|
452 |
"acc,none": 0.23243243243243245,
|
453 |
-
"acc_stderr,none": 0.
|
454 |
"acc_norm,none": 0.23243243243243245,
|
455 |
-
"acc_norm_stderr,none": 0.
|
456 |
"alias": " - cmmlu_traditional_chinese_medicine"
|
457 |
},
|
458 |
"cmmlu_virology": {
|
459 |
-
"acc,none": 0.
|
460 |
-
"acc_stderr,none": 0.
|
461 |
-
"acc_norm,none": 0.
|
462 |
-
"acc_norm_stderr,none": 0.
|
463 |
"alias": " - cmmlu_virology"
|
464 |
},
|
465 |
"cmmlu_world_history": {
|
@@ -479,10 +479,10 @@
|
|
479 |
},
|
480 |
"groups": {
|
481 |
"cmmlu": {
|
482 |
-
"acc,none": 0.
|
483 |
-
"acc_stderr,none": 0.
|
484 |
-
"acc_norm,none": 0.
|
485 |
-
"acc_norm_stderr,none": 0.
|
486 |
"alias": "cmmlu"
|
487 |
}
|
488 |
},
|
@@ -3311,13 +3311,15 @@
|
|
3311 |
"config": {
|
3312 |
"model": "hf",
|
3313 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
3314 |
-
"batch_size": "
|
3315 |
-
"batch_sizes": [
|
|
|
|
|
3316 |
"device": null,
|
3317 |
"use_cache": null,
|
3318 |
"limit": null,
|
3319 |
"bootstrap_iters": 100000,
|
3320 |
"gen_kwargs": null
|
3321 |
},
|
3322 |
-
"git_hash": "
|
3323 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"cmmlu": {
|
4 |
+
"acc,none": 0.2485753755828009,
|
5 |
+
"acc_stderr,none": 0.042815306797706565,
|
6 |
+
"acc_norm,none": 0.2485753755828009,
|
7 |
+
"acc_norm_stderr,none": 0.042815306797706565,
|
8 |
"alias": "cmmlu"
|
9 |
},
|
10 |
"cmmlu_agronomy": {
|
11 |
+
"acc,none": 0.1952662721893491,
|
12 |
+
"acc_stderr,none": 0.030583351673923103,
|
13 |
+
"acc_norm,none": 0.1952662721893491,
|
14 |
+
"acc_norm_stderr,none": 0.030583351673923103,
|
15 |
"alias": " - cmmlu_agronomy"
|
16 |
},
|
17 |
"cmmlu_anatomy": {
|
18 |
+
"acc,none": 0.22297297297297297,
|
19 |
+
"acc_stderr,none": 0.03433092518104002,
|
20 |
+
"acc_norm,none": 0.22297297297297297,
|
21 |
+
"acc_norm_stderr,none": 0.03433092518104002,
|
22 |
"alias": " - cmmlu_anatomy"
|
23 |
},
|
24 |
"cmmlu_ancient_chinese": {
|
25 |
+
"acc,none": 0.24390243902439024,
|
26 |
+
"acc_stderr,none": 0.033635910482728223,
|
27 |
+
"acc_norm,none": 0.24390243902439024,
|
28 |
+
"acc_norm_stderr,none": 0.033635910482728223,
|
29 |
"alias": " - cmmlu_ancient_chinese"
|
30 |
},
|
31 |
"cmmlu_arts": {
|
32 |
+
"acc,none": 0.29375,
|
33 |
+
"acc_stderr,none": 0.03612181848191273,
|
34 |
+
"acc_norm,none": 0.29375,
|
35 |
+
"acc_norm_stderr,none": 0.03612181848191273,
|
36 |
"alias": " - cmmlu_arts"
|
37 |
},
|
38 |
"cmmlu_astronomy": {
|
|
|
43 |
"alias": " - cmmlu_astronomy"
|
44 |
},
|
45 |
"cmmlu_business_ethics": {
|
46 |
+
"acc,none": 0.23444976076555024,
|
47 |
+
"acc_stderr,none": 0.029375148972005737,
|
48 |
+
"acc_norm,none": 0.23444976076555024,
|
49 |
+
"acc_norm_stderr,none": 0.029375148972005737,
|
50 |
"alias": " - cmmlu_business_ethics"
|
51 |
},
|
52 |
"cmmlu_chinese_civil_service_exam": {
|
53 |
+
"acc,none": 0.21875,
|
54 |
+
"acc_stderr,none": 0.032784644885244255,
|
55 |
+
"acc_norm,none": 0.21875,
|
56 |
+
"acc_norm_stderr,none": 0.032784644885244255,
|
57 |
"alias": " - cmmlu_chinese_civil_service_exam"
|
58 |
},
|
59 |
"cmmlu_chinese_driving_rule": {
|
60 |
+
"acc,none": 0.25190839694656486,
|
61 |
+
"acc_stderr,none": 0.03807387116306086,
|
62 |
+
"acc_norm,none": 0.25190839694656486,
|
63 |
+
"acc_norm_stderr,none": 0.03807387116306086,
|
64 |
"alias": " - cmmlu_chinese_driving_rule"
|
65 |
},
|
66 |
"cmmlu_chinese_food_culture": {
|
67 |
+
"acc,none": 0.20588235294117646,
|
68 |
+
"acc_stderr,none": 0.034800469312350674,
|
69 |
+
"acc_norm,none": 0.20588235294117646,
|
70 |
+
"acc_norm_stderr,none": 0.034800469312350674,
|
71 |
"alias": " - cmmlu_chinese_food_culture"
|
72 |
},
|
73 |
"cmmlu_chinese_foreign_policy": {
|
74 |
+
"acc,none": 0.2336448598130841,
|
75 |
+
"acc_stderr,none": 0.041099848424639984,
|
76 |
+
"acc_norm,none": 0.2336448598130841,
|
77 |
+
"acc_norm_stderr,none": 0.041099848424639984,
|
78 |
"alias": " - cmmlu_chinese_foreign_policy"
|
79 |
},
|
80 |
"cmmlu_chinese_history": {
|
81 |
+
"acc,none": 0.29721362229102166,
|
82 |
+
"acc_stderr,none": 0.025469363219004768,
|
83 |
+
"acc_norm,none": 0.29721362229102166,
|
84 |
+
"acc_norm_stderr,none": 0.025469363219004768,
|
85 |
"alias": " - cmmlu_chinese_history"
|
86 |
},
|
87 |
"cmmlu_chinese_literature": {
|
88 |
+
"acc,none": 0.22058823529411764,
|
89 |
+
"acc_stderr,none": 0.02910225438967408,
|
90 |
+
"acc_norm,none": 0.22058823529411764,
|
91 |
+
"acc_norm_stderr,none": 0.02910225438967408,
|
92 |
"alias": " - cmmlu_chinese_literature"
|
93 |
},
|
94 |
"cmmlu_chinese_teacher_qualification": {
|
95 |
+
"acc,none": 0.22346368715083798,
|
96 |
+
"acc_stderr,none": 0.031222980919579764,
|
97 |
+
"acc_norm,none": 0.22346368715083798,
|
98 |
+
"acc_norm_stderr,none": 0.031222980919579764,
|
99 |
"alias": " - cmmlu_chinese_teacher_qualification"
|
100 |
},
|
101 |
"cmmlu_clinical_knowledge": {
|
102 |
+
"acc,none": 0.22784810126582278,
|
103 |
+
"acc_stderr,none": 0.027303484599069443,
|
104 |
+
"acc_norm,none": 0.22784810126582278,
|
105 |
+
"acc_norm_stderr,none": 0.027303484599069443,
|
106 |
"alias": " - cmmlu_clinical_knowledge"
|
107 |
},
|
108 |
"cmmlu_college_actuarial_science": {
|
109 |
+
"acc,none": 0.2830188679245283,
|
110 |
+
"acc_stderr,none": 0.04396093377439375,
|
111 |
+
"acc_norm,none": 0.2830188679245283,
|
112 |
+
"acc_norm_stderr,none": 0.04396093377439375,
|
113 |
"alias": " - cmmlu_college_actuarial_science"
|
114 |
},
|
115 |
"cmmlu_college_education": {
|
116 |
+
"acc,none": 0.2897196261682243,
|
117 |
+
"acc_stderr,none": 0.0440606533474851,
|
118 |
+
"acc_norm,none": 0.2897196261682243,
|
119 |
+
"acc_norm_stderr,none": 0.0440606533474851,
|
120 |
"alias": " - cmmlu_college_education"
|
121 |
},
|
122 |
"cmmlu_college_engineering_hydrology": {
|
123 |
+
"acc,none": 0.2641509433962264,
|
124 |
+
"acc_stderr,none": 0.043025487739590106,
|
125 |
+
"acc_norm,none": 0.2641509433962264,
|
126 |
+
"acc_norm_stderr,none": 0.043025487739590106,
|
127 |
"alias": " - cmmlu_college_engineering_hydrology"
|
128 |
},
|
129 |
"cmmlu_college_law": {
|
130 |
+
"acc,none": 0.2962962962962963,
|
131 |
+
"acc_stderr,none": 0.044143436668549335,
|
132 |
+
"acc_norm,none": 0.2962962962962963,
|
133 |
+
"acc_norm_stderr,none": 0.044143436668549335,
|
134 |
"alias": " - cmmlu_college_law"
|
135 |
},
|
136 |
"cmmlu_college_mathematics": {
|
137 |
+
"acc,none": 0.3047619047619048,
|
138 |
+
"acc_stderr,none": 0.04513676718168311,
|
139 |
+
"acc_norm,none": 0.3047619047619048,
|
140 |
+
"acc_norm_stderr,none": 0.04513676718168311,
|
141 |
"alias": " - cmmlu_college_mathematics"
|
142 |
},
|
143 |
"cmmlu_college_medical_statistics": {
|
144 |
+
"acc,none": 0.19811320754716982,
|
145 |
+
"acc_stderr,none": 0.0388972228831855,
|
146 |
+
"acc_norm,none": 0.19811320754716982,
|
147 |
+
"acc_norm_stderr,none": 0.0388972228831855,
|
148 |
"alias": " - cmmlu_college_medical_statistics"
|
149 |
},
|
150 |
"cmmlu_college_medicine": {
|
151 |
+
"acc,none": 0.23809523809523808,
|
152 |
+
"acc_stderr,none": 0.02582505450222104,
|
153 |
+
"acc_norm,none": 0.23809523809523808,
|
154 |
+
"acc_norm_stderr,none": 0.02582505450222104,
|
155 |
"alias": " - cmmlu_college_medicine"
|
156 |
},
|
157 |
"cmmlu_computer_science": {
|
158 |
+
"acc,none": 0.24509803921568626,
|
159 |
+
"acc_stderr,none": 0.030190282453501964,
|
160 |
+
"acc_norm,none": 0.24509803921568626,
|
161 |
+
"acc_norm_stderr,none": 0.030190282453501964,
|
162 |
"alias": " - cmmlu_computer_science"
|
163 |
},
|
164 |
"cmmlu_computer_security": {
|
|
|
169 |
"alias": " - cmmlu_computer_security"
|
170 |
},
|
171 |
"cmmlu_conceptual_physics": {
|
172 |
+
"acc,none": 0.23129251700680273,
|
173 |
+
"acc_stderr,none": 0.034896744812616155,
|
174 |
+
"acc_norm,none": 0.23129251700680273,
|
175 |
+
"acc_norm_stderr,none": 0.034896744812616155,
|
176 |
"alias": " - cmmlu_conceptual_physics"
|
177 |
},
|
178 |
"cmmlu_construction_project_management": {
|
179 |
+
"acc,none": 0.28776978417266186,
|
180 |
+
"acc_stderr,none": 0.03853836179233389,
|
181 |
+
"acc_norm,none": 0.28776978417266186,
|
182 |
+
"acc_norm_stderr,none": 0.03853836179233389,
|
183 |
"alias": " - cmmlu_construction_project_management"
|
184 |
},
|
185 |
"cmmlu_economics": {
|
186 |
+
"acc,none": 0.27672955974842767,
|
187 |
+
"acc_stderr,none": 0.03559177035707934,
|
188 |
+
"acc_norm,none": 0.27672955974842767,
|
189 |
+
"acc_norm_stderr,none": 0.03559177035707934,
|
190 |
"alias": " - cmmlu_economics"
|
191 |
},
|
192 |
"cmmlu_education": {
|
193 |
+
"acc,none": 0.27607361963190186,
|
194 |
+
"acc_stderr,none": 0.0351238528370505,
|
195 |
+
"acc_norm,none": 0.27607361963190186,
|
196 |
+
"acc_norm_stderr,none": 0.0351238528370505,
|
197 |
"alias": " - cmmlu_education"
|
198 |
},
|
199 |
"cmmlu_electrical_engineering": {
|
200 |
+
"acc,none": 0.27325581395348836,
|
201 |
+
"acc_stderr,none": 0.03407826167337437,
|
202 |
+
"acc_norm,none": 0.27325581395348836,
|
203 |
+
"acc_norm_stderr,none": 0.03407826167337437,
|
204 |
"alias": " - cmmlu_electrical_engineering"
|
205 |
},
|
206 |
"cmmlu_elementary_chinese": {
|
207 |
+
"acc,none": 0.23412698412698413,
|
208 |
+
"acc_stderr,none": 0.0267280489993024,
|
209 |
+
"acc_norm,none": 0.23412698412698413,
|
210 |
+
"acc_norm_stderr,none": 0.0267280489993024,
|
211 |
"alias": " - cmmlu_elementary_chinese"
|
212 |
},
|
213 |
"cmmlu_elementary_commonsense": {
|
|
|
218 |
"alias": " - cmmlu_elementary_commonsense"
|
219 |
},
|
220 |
"cmmlu_elementary_information_and_technology": {
|
221 |
+
"acc,none": 0.24369747899159663,
|
222 |
+
"acc_stderr,none": 0.02788682807838058,
|
223 |
+
"acc_norm,none": 0.24369747899159663,
|
224 |
+
"acc_norm_stderr,none": 0.02788682807838058,
|
225 |
"alias": " - cmmlu_elementary_information_and_technology"
|
226 |
},
|
227 |
"cmmlu_elementary_mathematics": {
|
|
|
232 |
"alias": " - cmmlu_elementary_mathematics"
|
233 |
},
|
234 |
"cmmlu_ethnology": {
|
235 |
+
"acc,none": 0.2518518518518518,
|
236 |
+
"acc_stderr,none": 0.037498507091740234,
|
237 |
+
"acc_norm,none": 0.2518518518518518,
|
238 |
+
"acc_norm_stderr,none": 0.037498507091740234,
|
239 |
"alias": " - cmmlu_ethnology"
|
240 |
},
|
241 |
"cmmlu_food_science": {
|
242 |
+
"acc,none": 0.2867132867132867,
|
243 |
+
"acc_stderr,none": 0.03795000212801782,
|
244 |
+
"acc_norm,none": 0.2867132867132867,
|
245 |
+
"acc_norm_stderr,none": 0.03795000212801782,
|
246 |
"alias": " - cmmlu_food_science"
|
247 |
},
|
248 |
"cmmlu_genetics": {
|
249 |
+
"acc,none": 0.2897727272727273,
|
250 |
+
"acc_stderr,none": 0.034293230802398766,
|
251 |
+
"acc_norm,none": 0.2897727272727273,
|
252 |
+
"acc_norm_stderr,none": 0.034293230802398766,
|
253 |
"alias": " - cmmlu_genetics"
|
254 |
},
|
255 |
"cmmlu_global_facts": {
|
256 |
+
"acc,none": 0.2483221476510067,
|
257 |
+
"acc_stderr,none": 0.0355134404169743,
|
258 |
+
"acc_norm,none": 0.2483221476510067,
|
259 |
+
"acc_norm_stderr,none": 0.0355134404169743,
|
260 |
"alias": " - cmmlu_global_facts"
|
261 |
},
|
262 |
"cmmlu_high_school_biology": {
|
263 |
+
"acc,none": 0.23076923076923078,
|
264 |
+
"acc_stderr,none": 0.03250593287417369,
|
265 |
+
"acc_norm,none": 0.23076923076923078,
|
266 |
+
"acc_norm_stderr,none": 0.03250593287417369,
|
267 |
"alias": " - cmmlu_high_school_biology"
|
268 |
},
|
269 |
"cmmlu_high_school_chemistry": {
|
270 |
+
"acc,none": 0.22727272727272727,
|
271 |
+
"acc_stderr,none": 0.03661433360410719,
|
272 |
+
"acc_norm,none": 0.22727272727272727,
|
273 |
+
"acc_norm_stderr,none": 0.03661433360410719,
|
274 |
"alias": " - cmmlu_high_school_chemistry"
|
275 |
},
|
276 |
"cmmlu_high_school_geography": {
|
277 |
+
"acc,none": 0.2457627118644068,
|
278 |
+
"acc_stderr,none": 0.03980329854920432,
|
279 |
+
"acc_norm,none": 0.2457627118644068,
|
280 |
+
"acc_norm_stderr,none": 0.03980329854920432,
|
281 |
"alias": " - cmmlu_high_school_geography"
|
282 |
},
|
283 |
"cmmlu_high_school_mathematics": {
|
284 |
+
"acc,none": 0.2621951219512195,
|
285 |
+
"acc_stderr,none": 0.0344500028917346,
|
286 |
+
"acc_norm,none": 0.2621951219512195,
|
287 |
+
"acc_norm_stderr,none": 0.0344500028917346,
|
288 |
"alias": " - cmmlu_high_school_mathematics"
|
289 |
},
|
290 |
"cmmlu_high_school_physics": {
|
291 |
+
"acc,none": 0.2818181818181818,
|
292 |
+
"acc_stderr,none": 0.04309118709946458,
|
293 |
+
"acc_norm,none": 0.2818181818181818,
|
294 |
+
"acc_norm_stderr,none": 0.04309118709946458,
|
295 |
"alias": " - cmmlu_high_school_physics"
|
296 |
},
|
297 |
"cmmlu_high_school_politics": {
|
|
|
302 |
"alias": " - cmmlu_high_school_politics"
|
303 |
},
|
304 |
"cmmlu_human_sexuality": {
|
305 |
+
"acc,none": 0.19047619047619047,
|
306 |
+
"acc_stderr,none": 0.035122074123020534,
|
307 |
+
"acc_norm,none": 0.19047619047619047,
|
308 |
+
"acc_norm_stderr,none": 0.035122074123020534,
|
309 |
"alias": " - cmmlu_human_sexuality"
|
310 |
},
|
311 |
"cmmlu_international_law": {
|
312 |
+
"acc,none": 0.25405405405405407,
|
313 |
+
"acc_stderr,none": 0.03209281645145386,
|
314 |
+
"acc_norm,none": 0.25405405405405407,
|
315 |
+
"acc_norm_stderr,none": 0.03209281645145386,
|
316 |
"alias": " - cmmlu_international_law"
|
317 |
},
|
318 |
"cmmlu_journalism": {
|
319 |
+
"acc,none": 0.22674418604651161,
|
320 |
+
"acc_stderr,none": 0.032020758995849365,
|
321 |
+
"acc_norm,none": 0.22674418604651161,
|
322 |
+
"acc_norm_stderr,none": 0.032020758995849365,
|
323 |
"alias": " - cmmlu_journalism"
|
324 |
},
|
325 |
"cmmlu_jurisprudence": {
|
326 |
+
"acc,none": 0.26763990267639903,
|
327 |
+
"acc_stderr,none": 0.021864816663672668,
|
328 |
+
"acc_norm,none": 0.26763990267639903,
|
329 |
+
"acc_norm_stderr,none": 0.021864816663672668,
|
330 |
"alias": " - cmmlu_jurisprudence"
|
331 |
},
|
332 |
"cmmlu_legal_and_moral_basis": {
|
333 |
+
"acc,none": 0.3037383177570093,
|
334 |
+
"acc_stderr,none": 0.03150984286811783,
|
335 |
+
"acc_norm,none": 0.3037383177570093,
|
336 |
+
"acc_norm_stderr,none": 0.03150984286811783,
|
337 |
"alias": " - cmmlu_legal_and_moral_basis"
|
338 |
},
|
339 |
"cmmlu_logical": {
|
340 |
+
"acc,none": 0.25203252032520324,
|
341 |
+
"acc_stderr,none": 0.039308795268239924,
|
342 |
+
"acc_norm,none": 0.25203252032520324,
|
343 |
+
"acc_norm_stderr,none": 0.039308795268239924,
|
344 |
"alias": " - cmmlu_logical"
|
345 |
},
|
346 |
"cmmlu_machine_learning": {
|
347 |
+
"acc,none": 0.28688524590163933,
|
348 |
+
"acc_stderr,none": 0.041118866352671826,
|
349 |
+
"acc_norm,none": 0.28688524590163933,
|
350 |
+
"acc_norm_stderr,none": 0.041118866352671826,
|
351 |
"alias": " - cmmlu_machine_learning"
|
352 |
},
|
353 |
"cmmlu_management": {
|
354 |
+
"acc,none": 0.19523809523809524,
|
355 |
+
"acc_stderr,none": 0.027418446398346896,
|
356 |
+
"acc_norm,none": 0.19523809523809524,
|
357 |
+
"acc_norm_stderr,none": 0.027418446398346896,
|
358 |
"alias": " - cmmlu_management"
|
359 |
},
|
360 |
"cmmlu_marketing": {
|
361 |
+
"acc,none": 0.25,
|
362 |
+
"acc_stderr,none": 0.032364888900157734,
|
363 |
+
"acc_norm,none": 0.25,
|
364 |
+
"acc_norm_stderr,none": 0.032364888900157734,
|
365 |
"alias": " - cmmlu_marketing"
|
366 |
},
|
367 |
"cmmlu_marxist_theory": {
|
368 |
+
"acc,none": 0.24338624338624337,
|
369 |
+
"acc_stderr,none": 0.031297251928558506,
|
370 |
+
"acc_norm,none": 0.24338624338624337,
|
371 |
+
"acc_norm_stderr,none": 0.031297251928558506,
|
372 |
"alias": " - cmmlu_marxist_theory"
|
373 |
},
|
374 |
"cmmlu_modern_chinese": {
|
375 |
+
"acc,none": 0.23275862068965517,
|
376 |
+
"acc_stderr,none": 0.039406691683376995,
|
377 |
+
"acc_norm,none": 0.23275862068965517,
|
378 |
+
"acc_norm_stderr,none": 0.039406691683376995,
|
379 |
"alias": " - cmmlu_modern_chinese"
|
380 |
},
|
381 |
"cmmlu_nutrition": {
|
382 |
+
"acc,none": 0.2689655172413793,
|
383 |
+
"acc_stderr,none": 0.036951833116502325,
|
384 |
+
"acc_norm,none": 0.2689655172413793,
|
385 |
+
"acc_norm_stderr,none": 0.036951833116502325,
|
386 |
"alias": " - cmmlu_nutrition"
|
387 |
},
|
388 |
"cmmlu_philosophy": {
|
389 |
+
"acc,none": 0.3047619047619048,
|
390 |
+
"acc_stderr,none": 0.0451367671816831,
|
391 |
+
"acc_norm,none": 0.3047619047619048,
|
392 |
+
"acc_norm_stderr,none": 0.0451367671816831,
|
393 |
"alias": " - cmmlu_philosophy"
|
394 |
},
|
395 |
"cmmlu_professional_accounting": {
|
396 |
+
"acc,none": 0.2342857142857143,
|
397 |
+
"acc_stderr,none": 0.032109360396926204,
|
398 |
+
"acc_norm,none": 0.2342857142857143,
|
399 |
+
"acc_norm_stderr,none": 0.032109360396926204,
|
400 |
"alias": " - cmmlu_professional_accounting"
|
401 |
},
|
402 |
"cmmlu_professional_law": {
|
403 |
+
"acc,none": 0.2843601895734597,
|
404 |
+
"acc_stderr,none": 0.031129489323148667,
|
405 |
+
"acc_norm,none": 0.2843601895734597,
|
406 |
+
"acc_norm_stderr,none": 0.031129489323148667,
|
407 |
"alias": " - cmmlu_professional_law"
|
408 |
},
|
409 |
"cmmlu_professional_medicine": {
|
410 |
+
"acc,none": 0.26595744680851063,
|
411 |
+
"acc_stderr,none": 0.022816607010135298,
|
412 |
+
"acc_norm,none": 0.26595744680851063,
|
413 |
+
"acc_norm_stderr,none": 0.022816607010135298,
|
414 |
"alias": " - cmmlu_professional_medicine"
|
415 |
},
|
416 |
"cmmlu_professional_psychology": {
|
417 |
+
"acc,none": 0.23706896551724138,
|
418 |
+
"acc_stderr,none": 0.02798169400862497,
|
419 |
+
"acc_norm,none": 0.23706896551724138,
|
420 |
+
"acc_norm_stderr,none": 0.02798169400862497,
|
421 |
"alias": " - cmmlu_professional_psychology"
|
422 |
},
|
423 |
"cmmlu_public_relations": {
|
424 |
+
"acc,none": 0.25862068965517243,
|
425 |
+
"acc_stderr,none": 0.033291151121447815,
|
426 |
+
"acc_norm,none": 0.25862068965517243,
|
427 |
+
"acc_norm_stderr,none": 0.033291151121447815,
|
428 |
"alias": " - cmmlu_public_relations"
|
429 |
},
|
430 |
"cmmlu_security_study": {
|
|
|
435 |
"alias": " - cmmlu_security_study"
|
436 |
},
|
437 |
"cmmlu_sociology": {
|
438 |
+
"acc,none": 0.22566371681415928,
|
439 |
+
"acc_stderr,none": 0.027867910955296744,
|
440 |
+
"acc_norm,none": 0.22566371681415928,
|
441 |
+
"acc_norm_stderr,none": 0.027867910955296744,
|
442 |
"alias": " - cmmlu_sociology"
|
443 |
},
|
444 |
"cmmlu_sports_science": {
|
445 |
+
"acc,none": 0.23030303030303031,
|
446 |
+
"acc_stderr,none": 0.03287666758603489,
|
447 |
+
"acc_norm,none": 0.23030303030303031,
|
448 |
+
"acc_norm_stderr,none": 0.03287666758603489,
|
449 |
"alias": " - cmmlu_sports_science"
|
450 |
},
|
451 |
"cmmlu_traditional_chinese_medicine": {
|
452 |
"acc,none": 0.23243243243243245,
|
453 |
+
"acc_stderr,none": 0.031138505170794653,
|
454 |
"acc_norm,none": 0.23243243243243245,
|
455 |
+
"acc_norm_stderr,none": 0.031138505170794653,
|
456 |
"alias": " - cmmlu_traditional_chinese_medicine"
|
457 |
},
|
458 |
"cmmlu_virology": {
|
459 |
+
"acc,none": 0.24260355029585798,
|
460 |
+
"acc_stderr,none": 0.03307162750323179,
|
461 |
+
"acc_norm,none": 0.24260355029585798,
|
462 |
+
"acc_norm_stderr,none": 0.03307162750323179,
|
463 |
"alias": " - cmmlu_virology"
|
464 |
},
|
465 |
"cmmlu_world_history": {
|
|
|
479 |
},
|
480 |
"groups": {
|
481 |
"cmmlu": {
|
482 |
+
"acc,none": 0.2485753755828009,
|
483 |
+
"acc_stderr,none": 0.042815306797706565,
|
484 |
+
"acc_norm,none": 0.2485753755828009,
|
485 |
+
"acc_norm_stderr,none": 0.042815306797706565,
|
486 |
"alias": "cmmlu"
|
487 |
}
|
488 |
},
|
|
|
3311 |
"config": {
|
3312 |
"model": "hf",
|
3313 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
3314 |
+
"batch_size": "auto",
|
3315 |
+
"batch_sizes": [
|
3316 |
+
8
|
3317 |
+
],
|
3318 |
"device": null,
|
3319 |
"use_cache": null,
|
3320 |
"limit": null,
|
3321 |
"bootstrap_iters": 100000,
|
3322 |
"gen_kwargs": null
|
3323 |
},
|
3324 |
+
"git_hash": "2e3ceb0"
|
3325 |
}
|
lm-eval-output/allenai/OLMo-7B/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc69f38ccd1ff5eed2fe9dbdfb6e94b5d94c6c9d0c737ef0a4f268f3b0b4733c
|
3 |
+
size 111568
|
lm-eval-output/allenai/OLMo-7B/cola/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:3862814204891a844fdf5337965d761f05144ba67d8d95ab5b6cfa8973e8bf9e
|
3 |
-
size 59222
|
|
|
|
|
|
|
|
lm-eval-output/allenai/OLMo-7B/cola/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"cola": {
|
4 |
-
"mcc,none": 0.
|
5 |
-
"mcc_stderr,none": 0.
|
6 |
"alias": "cola"
|
7 |
}
|
8 |
},
|
@@ -46,13 +46,15 @@
|
|
46 |
"config": {
|
47 |
"model": "hf",
|
48 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
49 |
-
"batch_size": "
|
50 |
-
"batch_sizes": [
|
|
|
|
|
51 |
"device": null,
|
52 |
"use_cache": null,
|
53 |
"limit": null,
|
54 |
"bootstrap_iters": 100000,
|
55 |
"gen_kwargs": null
|
56 |
},
|
57 |
-
"git_hash": "
|
58 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"cola": {
|
4 |
+
"mcc,none": 0.003737743780434562,
|
5 |
+
"mcc_stderr,none": 0.031171364680531898,
|
6 |
"alias": "cola"
|
7 |
}
|
8 |
},
|
|
|
46 |
"config": {
|
47 |
"model": "hf",
|
48 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
49 |
+
"batch_size": "auto",
|
50 |
+
"batch_sizes": [
|
51 |
+
64
|
52 |
+
],
|
53 |
"device": null,
|
54 |
"use_cache": null,
|
55 |
"limit": null,
|
56 |
"bootstrap_iters": 100000,
|
57 |
"gen_kwargs": null
|
58 |
},
|
59 |
+
"git_hash": "2e3ceb0"
|
60 |
}
|