text
stringlengths
1
2.05k
import autotvm, te, topi from tvm.autotvm.task.space
import FallbackConfigEntity from tvm.contrib
import nnpack from tvm.contrib.pickle_memoize
import memoize from tvm.topi.utils
import get_const_tuple def verify_conv2d_nchw( batch, in_channel, in_size, num_filter, kernel, stride, padding, devices, dilation=1, add_bias=False, add_relu=False, ): """Verify conv2d nchw workload.""" print( "Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation) ) in_height = in_width = in_size placholder_a = te.placeholder((batch, in_channel, in_height, in_width), name="A") placeholder_w = te.placeholder((num_filter, in_channel, kernel, kernel), name="W") bias = te.placeholder((num_filter, 1, 1), name="bias") a_shape = get_const_tuple(placholder_a.shape) w_shape = get_const_tuple(placeholder_w.shape) bias_shape = get_const_tuple(bias.shape) dtype = placholder_a.dtype @memoize("topi.tests.test_topi_conv2d_nchw.verify_conv2d_nchw") def get_ref_data(): a_np = np.random.uniform(size=a_shape).astype(dtype) w_np = np.random.uniform(size=w_shape).astype(dtype) b_np = np.random.uniform(size=bias_shape).astype(dtype) dw_np = tvm.topi.testing.dilate_python(w_np, (1, 1, dilation, dilation)) c_np = tvm.topi.testing.conv2d_nchw_python(a_np, dw_np, stride, padding) if add_bias: b_np = np.random.uniform(size=bias_shape).astype(dtype) c_np += b_np if add_relu: c_np = np.maximum(c_np, 0) return a_np, w_np, b_np, c_np a_np, w_np, b_np, c_np = get_ref_data() def check_device(device): dev = tvm.device(device, 0) if not tvm.testing.device_enabled(device): print("Skipping %s becuase it is not enabled" % device) print("Running on target: %s" % device) with tvm.target.Target(device): result_c = topi.nn.conv2d( placholder_a, placeholder_w, stride, padding, dilation, data_layout="NCHW",
out_dtype=dtype, ) if add_bias: result_c = topi.add(result_c, bias) if add_relu: result_c = topi.nn.relu(result_c) schedule = topi.generic.schedule_conv2d_nchw([result_c]) buff_a = tvm.nd.array(a_np, dev) buff_w = tvm.nd.array(w_np, dev) buff_b = tvm.nd.array(b_np, dev) buff_c = tvm.nd.array(np.zeros(get_const_tuple(result_c.shape), dtype=result_c.dtype), dev) if add_bias: func = tvm.build( schedule, [placholder_a, placeholder_w, bias, result_c], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation), ) func(buff_a, buff_w, buff_b, buff_c) else: func = tvm.build( schedule, [placholder_a, placeholder_w, result_c], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation), ) func(buff_a, buff_w, buff_c) tvm.testing.assert_allclose(buff_c.numpy(), c_np, rtol=1e-4) for device in devices: check_device(device)
class WinogradFallback(autotvm.FallbackContext): """Winograd fallbacks.""" def _query_inside(self, target, workload): key = (target, workload) if key in self.memory: return self.memory[key] cfg = FallbackConfigEntity() cfg.template_key = "winograd_nnpack_fp32" self.memory[key] = cfg return cfg def test_conv2d_nchw(): """Verify conv2d nchw winograd works.""" if not tvm.get_global_func( "tvm.contrib.nnpack.convolution_inference_without_weight_transform", True ): skip("extern function is not available") if not nnpack.is_available(): skip("nnpack is not available") devices = ["llvm -device=arm_cpu"] autotvm.GLOBAL_SCOPE.silent = True with WinogradFallback(): verify_conv2d_nchw(1, 64, 56, 64, 3, 1, 1, devices=devices) verify_conv2d_nchw(1, 128, 28, 128, 3, 1, 1, devices=devices) verify_conv2d_nchw(1, 256, 14, 256, 3, 1, 1, devices=devices) verify_conv2d_nchw(1, 512, 7, 512, 3, 1, 1, devices=devices) verify_conv2d_nchw(1, 3, 192, 12, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 4, 192, 12, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 12, 96, 24, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 24, 48, 48, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 48, 24, 96, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 96, 12, 180, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 180, 6, 220, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 220, 6, 180, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 180, 12, 96, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 96, 24, 48, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 48, 48, 24, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 24, 96, 12, 3, 1
, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 12, 192, 1, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 64, 56, 64, 3, 1, 1, add_bias=True, devices=devices) verify_conv2d_nchw(1, 64, 56, 64, 3, 1, 1, add_relu=True, devices=devices) verify_conv2d_nchw(1, 64, 56, 64, 3, 1, 1, add_relu=True, add_bias=True, devices=devices) verify_conv2d_nchw(1, 3, 3, 3, 3, 1, 1, devices=devices) verify_conv2d_nchw(1, 13, 71, 59, 3, 1, 1, devices=devices) autotvm.GLOBAL_SCOPE.silent = False if __name__ == "__main__":
import pytest pytest.main([__file__])
from collections
import namedtuple
import tvm from tvm
import relay from tvm.relay
import quantize as qtz
import mxnet as mx from mxnet
import gluon
import logging
import os
import tvm.testing logging.basicConfig(level=logging.INFO) Config = namedtuple( "Config", [ "model", "nbit_input", "dtype_input", "nbit_output", "dtype_output", "global_scale", "expected_acc", ], ) def get_val_data(model_name, rec_val, batch_size, num_workers=4): rec_val = os.path.expanduser(rec_val) mean_rgb = [123.68, 116.779, 103.939] std_rgb = [58.393, 57.12, 57.375] def batch_fn(batch, ctx): data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0) label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0) return data, label img_size = 299 if model_name == "inceptionv3" else 224 val_data = mx.io.ImageRecordIter( path_imgrec=rec_val, preprocess_threads=num_workers, shuffle=False, batch_size=batch_size, resize=256, data_shape=(3, img_size, img_size), mean_r=mean_rgb[0], mean_g=mean_rgb[1], mean_b=mean_rgb[2], std_r=std_rgb[0], std_g=std_rgb[1], std_b=std_rgb[2], ) return val_data, batch_fn def get_model(model_name, batch_size, qconfig, original=False): gluon_model = gluon.model_zoo.vision.get_model(model_name, pretrained=True) img_size = 299 if model_name == "inceptionv3" else 224 data_shape = (batch_size, 3, img_size, img_size) mod, params = relay.frontend.from_mxnet(gluon_model, {"data": data_shape}) logging.debug("original") logging.debug(mod.astext(show_meta_data=False)) if original: return mod, params with qconfig: logging.debug("current quantize config") logging.debug(qtz.current_qconfig()) qfunc = qtz.quantize(mod, params) logging.debug("after quantize") logging.debug(qfunc.astext(show_meta_data=False)) return qfunc, params def eval_acc( model, params, dataset, batch_fn, target=tvm.target.cuda(), device=tvm.cuda(), log_interval=500 ): with tvm.tra
nsform.PassContext(opt_level=3): lib = relay.build(model, target, params=params) m = tvm.contrib.graph_executor.GraphModule(lib["default"](device)) dataset.reset() batch_size = dataset.batch_size acc_top1 = mx.metric.Accuracy() acc_top5 = mx.metric.TopKAccuracy(5) acc_top1.reset() acc_top5.reset() for i, batch in enumerate(dataset): data, label = batch_fn(batch, [mx.cpu(0)]) m.set_input("data", tvm.nd.array(data[0].asnumpy())) m.run() out_arr = m.get_output(0) acc_top1.update(label, [mx.nd.array(out_arr.numpy())]) acc_top5.update(label, [mx.nd.array(out_arr.numpy())]) if not (i + 1) % log_interval: _, top1 = acc_top1.get() _, top5 = acc_top5.get() nsamples = (i + 1) * batch_size logging.info("[%d samples] validation: acc-top1=%f acc-top5=%f", nsamples, top1, top5) logging.info("[final] validation: acc-top1=%f acc-top5=%f", top1, top5) return top1 @tvm.testing.requires_gpu def test_quantize_acc(cfg, rec_val): qconfig = qtz.qconfig( skip_conv_layers=[0], nbit_input=cfg.nbit_input, nbit_weight=cfg.nbit_input, global_scale=cfg.global_scale, dtype_input=cfg.dtype_input, dtype_weight=cfg.dtype_input, dtype_activation=cfg.dtype_output, debug_enabled_ops=None, ) batch_size = 1 model, params = get_model(cfg.model, batch_size, qconfig) val_data, batch_fn = get_val_data(cfg.model, rec_val=rec_val, batch_size=batch_size) acc = eval_acc(model, params, val_data, batch_fn) assert acc > cfg.expected_acc return acc if __name__ == "__main__": rec_val = "/scratch/tqchen/imagenet/val.rec" results = [] configs = [ Config( "mobilenetv2_1.0", nbit_input=8, dtype_input="int8", nbit_output=32, dtype_output="int32", global_scale=4.0, expected_acc=0.666,
), Config( "mobilenetv2_1.0", nbit_input=8, dtype_input="int8", nbit_output=16, dtype_output="int16", global_scale=4.0, expected_acc=0.666, ), Config( "resnet18_v1", nbit_input=8, dtype_input="int8", nbit_output=16, dtype_output="int16", global_scale=8.0, expected_acc=0.692, ), Config( "resnet18_v1", nbit_input=8, dtype_input="int8", nbit_output=32, dtype_output="int32", global_scale=8.0, expected_acc=0.692, ), Config( "resnet34_v1", nbit_input=8, dtype_input="int8", nbit_output=32, dtype_output="int32", global_scale=8.0, expected_acc=0.733, ), Config( "resnet50_v1", nbit_input=8, dtype_input="int8", nbit_output=32, dtype_output="int32", global_scale=8.0, expected_acc=0.747, ), Config( "resnet101_v1", nbit_input=8, dtype_input="int8", nbit_output=32, dtype_output="int32", global_scale=8.0, expected_acc=0.756, ), ] for config in configs: acc = test_quantize_acc(config, rec_val) results.append((config, acc)) for res in results: print(res)
import os
import sys
import logging
import pytest pytest.importorskip("onnx")
import onnx
import tvm from tvm
import relay from tvm.relay
import quantize as qtz
import tvm.testing from test_quantization_accuracy
import Config, get_val_data, eval_acc logging.basicConfig(level=logging.INFO) def calibrate_dataset(model_name, rec_val, batch_size, calibration_samples): val_data, _ = get_val_data(model_name, rec_val=rec_val, batch_size=batch_size) val_data.reset() for i, batch in enumerate(val_data): if i * batch_size >= calibration_samples: break data = batch.data[0].asnumpy() yield {"data": data} def download_file(url_base, file_name): if not os.path.exists(file_name) or not os.path.isfile(file_name):
import urllib.request as urllib2 url = "{}/{}".format(url_base, file_name) try: print("download from {}".format(url)) if sys.version_info >= (3,): urllib2.urlretrieve(url, file_name) else: f = urllib2.urlopen(url) data = f.read() with open(file_name, "wb") as code: code.write(data) except Exception as err: if os.path.exists(file_name): os.remove(file_name) raise Exception("download {} failed due to {}!".format(file_name, repr(err))) def get_onnx_model(model_name, batch_size, qconfig, original=False, dataset=None): assert model_name == "vit32", "Only support vit32 model!" base = "https: logfile = "gtx1660_vit_B32_224.log" onnx_path = "vit_B32_224.onnx" download_file(base, logfile) download_file(base, onnx_path) onnx_graph = onnx.load(open(onnx_path, "rb")) data_shape = (batch_size, 3, 224, 224) mod, params = relay.frontend.from_onnx(onnx_graph, {"data": data_shape}) with tvm.transform.PassContext(opt_level=3): qfunc = relay.quantize.prerequisite_optimize(mod, params=params) logging.debug("original") logging.debug(qfunc.astext(show_meta_data=False)) if original: return qfunc, params, logfile with qconfig: logging.debug("current quantize config") logging.debug(qtz.current_qconfig()) if dataset is not None: with tvm.target.cuda(): with tvm.autotvm.apply_history_best(logfile): qfunc = qtz.quantize(qfunc, params, dataset=dataset) else: qfunc = qtz.quantize(qfunc, params) logging.debug("after quantize") logging.debug(qfunc.astext(show_meta_data=False)) return qfunc, params, logfile @tvm.testing.requires_gpu def test_onnx_quantize_acc(cfg, rec_val, batch_size=1, original=False): qconfig = qtz.qconfig( skip_conv_layers=[0], skip_d
ense_layer=False, nbit_input=cfg.nbit_input, nbit_weight=cfg.nbit_input, dtype_input=cfg.dtype_input, dtype_weight=cfg.dtype_input, dtype_activation=cfg.dtype_output, debug_enabled_ops=None, calibrate_mode="percentile", calibrate_chunk_by=8, ) dataset = list(calibrate_dataset(cfg.model, rec_val, batch_size, 64)) model, params, logfile = get_onnx_model( cfg.model, batch_size, qconfig, original=original, dataset=dataset ) val_data, batch_fn = get_val_data(cfg.model, rec_val=rec_val, batch_size=batch_size) with tvm.autotvm.apply_history_best(logfile): acc = eval_acc(model, params, val_data, batch_fn, log_interval=1000) assert acc > cfg.expected_acc return acc if __name__ == "__main__": rec_val = "/scratch/tqchen/imagenet/val.rec" configs = [ Config( "vit32", nbit_input=8, dtype_input="int8", nbit_output=32, dtype_output="int32", global_scale=8.0, expected_acc=0.727, ), ] for config in configs: acc = test_onnx_quantize_acc(config, rec_val, batch_size=1, original=True) print("{}-float32: {}".format(config.model, acc)) acc = test_onnx_quantize_acc(config, rec_val, batch_size=1, original=False) print("{}-int8: {}".format(config.model, acc))
import numpy as np
import tvm
import tvm.testing from tvm.script
import tir as T from tvm.runtime.ndarray
import array from tvm.relay.backend
import Executor from tvm.relay.backend.aot
import CreateExecutorMetadata from tvm.relay
import TensorType from tvm.tir.usmp.utils
import PoolAllocation from tvm.ir.memory_pools
import AllocatedPoolInfo, ConstantPoolInfo, WorkspacePoolInfo, ConstantInfo def _check_executor_metadata(executor_metadata, expected_metadata): assert list(executor_metadata.inputs) == expected_metadata["inputs"] assert list(executor_metadata.input_tensor_types) == expected_metadata["input_tensor_types"] assert list(executor_metadata.outputs) == expected_metadata["outputs"] assert list(executor_metadata.output_tensor_types) == expected_metadata["output_tensor_types"] assert list(executor_metadata.pools) == expected_metadata["pools"] assert executor_metadata.devices == expected_metadata["devices"] assert executor_metadata.executor == expected_metadata["executor"] assert executor_metadata.mod_name == expected_metadata["mod_name"] assert executor_metadata.interface_api == expected_metadata["interface_api"] assert executor_metadata.unpacked_api == expected_metadata["unpacked_api"] assert executor_metadata.workspace_alignment == expected_metadata["workspace_alignment"] assert executor_metadata.constant_alignment == expected_metadata["constant_alignment"] assert set(executor_metadata.pool_inputs.keys()) == set(expected_metadata["pool_inputs"].keys()) assert set(executor_metadata.io_pool_allocations.keys()) == set( expected_metadata["io_pool_allocations"].keys() ) def test_create_executor_metadata_single_func(): @tvm.script.ir_module class Module: @T.prim_func def __tvm_main__( a: T.handle, output: T.handle, workspace: T.Ptr[T.uint8], constants: T.Ptr[T.uint8] ) -> None: T.func_attr({"global_symbol": "test_mod___tvm_main__", "runner_function": True, "target": T.target({"kind": "llvm", "tag": "", "keys": ["cpu"]}), "input_vars": [a], "output_vars": [output], "devices": ["test_device"]}) a_buffer = T.match_buffer(a, [5, 7], dtype="float32", align=16) output_buffer = T.match_buffer(output, [5, 7], dtype="float32", align=16) sid_3 =
T.allocate([140], "int8", "global.workspace") sid_2 = T.allocate([140], "int8", "global.workspace") sid_1 = T.allocate([140], "int8", "global.workspace") constant_0 = T.allocate_const([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "float32", [5, 7]) T.evaluate(T.tvm_call_cpacked("test_fused_add_0", a_buffer.data, sid_1, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) T.evaluate(T.tvm_call_cpacked("test_fused_add_0", sid_1, constant_0, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) T.evaluate(T.tvm_call_cpacked("test_fused_add_0", sid_2, sid_3, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) T.evaluate(T.tvm_call_cpacked("test_fused_add_1", sid_2, sid_3, output_buffer.data, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) target = Module["__tvm_main__"].attrs["target"] executor = Executor("aot", {"interface-api": "c"}) workspace_pool_info = AllocatedPoolInfo( WorkspacePoolInfo("sram", [target]), 256, 3, ) constant_pool_info = AllocatedPoolInfo( ConstantPoolInfo( "flash", [target], [ConstantInfo("a", 0, array(np.array([0])))], ), 512, 2, ) io_pool_allocations = { "a": PoolAllocation(WorkspacePoolInfo("sram", [target]), 0), "output": PoolAllocation(WorkspacePoolInfo("sram", [target]), 0), } mod = Module.with_attr("io_tensor_pool_allocations", io_pool_allocations) mod["__tvm_main__"] = mod["__tvm_main__"].with_attr( "pool_args", [ constant_pool_info, workspace_pool_info, ], ) f = mod["__tvm_main__"] expected_metadata = { "inputs": [f.params[0]], "input_tensor_types": [TensorType((5, 7), "float32")], "outputs": ["output"], "output_tensor_types": [TensorType((5, 7), "float32")], "
pools": f.params[2:], "devices": f.attrs["devices"], "executor": "aot", "mod_name": "test_mod", "interface_api": "c", "unpacked_api": False, "workspace_alignment": 16, "constant_alignment": 1, "pool_inputs": { f.params[2]: workspace_pool_info, f.params[3]: constant_pool_info, }, "io_pool_allocations": io_pool_allocations, } executor_metadata = CreateExecutorMetadata(mod, "test_mod", executor, 16, 1) _check_executor_metadata(executor_metadata, expected_metadata) def test_create_executor_metadata_no_usmp(): @tvm.script.ir_module class Module: @T.prim_func def __tvm_main__( a: T.handle, output: T.handle ) -> None: T.func_attr({"global_symbol": "test_mod___tvm_main__", "runner_function": True, "target": T.target({"kind": "llvm", "tag": "", "keys": ["cpu"]}), "input_vars": [a], "output_vars": [output], "devices": ["test_device"]}) a_buffer = T.match_buffer(a, [5, 7], dtype="float32", align=16) output_buffer = T.match_buffer(output, [5, 7], dtype="float32", align=16) sid_3 = T.allocate([140], "int8", "global.workspace") sid_2 = T.allocate([140], "int8", "global.workspace") sid_1 = T.allocate([140], "int8", "global.workspace") constant_0 = T.allocate_const([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "float32", [5, 7]) T.evaluate(T.tvm_call_cpacked("test_fused_add_0", a_buffer.data, sid_1, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) T.evaluate(T.tvm_call_cpacked("test_fused_add_0", sid_1, constant_0, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) T.evaluate(T.tvm_call_cpacked("test_fused_add_0", sid_2, sid_3, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) T.evaluate(T.tvm_call_cpacked("test_fused_
add_1", sid_2, sid_3, output_buffer.data, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) executor = Executor("aot", {"interface-api": "c"}) mod = Module f = mod["__tvm_main__"] expected_metadata = { "inputs": [f.params[0]], "input_tensor_types": [TensorType((5, 7), "float32")], "outputs": ["output"], "output_tensor_types": [TensorType((5, 7), "float32")], "pools": f.params[2:], "devices": f.attrs["devices"], "executor": "aot", "mod_name": "test_mod", "interface_api": "c", "unpacked_api": False, "workspace_alignment": 16, "constant_alignment": 1, "pool_inputs": {}, "io_pool_allocations": {}, } executor_metadata = CreateExecutorMetadata(mod, "test_mod", executor, 16, 1) _check_executor_metadata(executor_metadata, expected_metadata) if __name__ == "__main__": tvm.testing.main()
import numpy as np
import tvm
import tvm.testing from tvm.script
import tir as T from tvm.runtime.ndarray
import array from tvm.relay.backend.aot
import CreateFunctionMetadata from tvm.ir.memory_pools
import AllocatedPoolInfo, ConstantPoolInfo, WorkspacePoolInfo, ConstantInfo def _check_function_metadata(function_metadata, expected_infos): for symbol, expected_info in expected_infos.items(): func_info = function_metadata[symbol] key, value = func_info.workspace_sizes.items()[0] assert str(key) == expected_info["target"] assert value == expected_info["workspace_sizes"] key, value = func_info.io_sizes.items()[0] assert str(key) == expected_info["target"] assert value == expected_info["io_sizes"] key, value = func_info.constant_sizes.items()[0] assert str(key) == expected_info["target"] assert value == expected_info["constant_sizes"] key, value = func_info.tir_primfuncs.items()[0] assert str(key) == expected_info["target"] tvm.ir.assert_structural_equal(value, expected_info["tir_primfuncs"]) def test_create_function_metadata_workspace_allocate_only(): @tvm.script.ir_module class Module: @T.prim_func def __tvm_main__(a: T.handle, output: T.handle) -> None: T.func_attr({"global_symbol": "test_mod___tvm_main__", "runner_function": True, "target": T.target({"kind":"llvm", "tag":"", "keys":["cpu"]})}) a_buffer = T.match_buffer(a, [5, 7], dtype="float32", align=16) output_buffer = T.match_buffer(output, [5, 7], dtype="float32", align=16) sid_3 = T.allocate([140], "int8", "global.workspace") sid_2 = T.allocate([140], "int8", "global.workspace") sid_1 = T.allocate([140], "int8", "global.workspace") T.evaluate(T.tvm_call_cpacked("test_fused_add_0", a_buffer.data, sid_1, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) T.evaluate(T.tvm_call_cpacked("test_fused_add_0", sid_1, sid_2, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) T.evaluate(T.tvm_call_cpacked("test_fused_add_0", sid_2, sid_3, T.r
einterpret(T.uint64(0), dtype="handle"), dtype="int32")) T.evaluate(T.tvm_call_cpacked("test_fused_add_1", sid_2, sid_3, output_buffer.data, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) expected_infos = { "__tvm_main__": { "target": "llvm -keys=cpu ", "workspace_sizes": 432, "io_sizes": 280, "constant_sizes": 0, "tir_primfuncs": Module["__tvm_main__"], } } function_metadata = CreateFunctionMetadata(Module, 16, 1) _check_function_metadata(function_metadata, expected_infos) def test_create_function_metadata_constant_allocate_only(): @tvm.script.ir_module class Module: @T.prim_func def __tvm_main__(a: T.handle, output: T.handle) -> None: T.func_attr({"global_symbol": "test_mod___tvm_main__", "runner_function": True, "target": T.target({"kind":"llvm", "tag":"", "keys":["cpu"]}), "num_inputs": 1, "num_outputs": 1}) a_buffer = T.match_buffer(a, [5, 7], dtype="float32", align=16) output_buffer = T.match_buffer(output, [5, 7], dtype="float32", align=16) constant_0 = T.allocate_const([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "float32", [5, 7]) T.evaluate(T.tvm_call_cpacked("test_fused_add", a_buffer.data, constant_0, output_buffer.data, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) expected_infos = { "__tvm_main__": { "target": "llvm -keys=cpu ", "workspace_sizes": 0, "io_sizes": 280, "constant_sizes": 140, "tir_primfuncs": Module["__tvm_main__"], } } function_metadata = CreateFunctionMetadata(Module, 16, 1) _check_function_metadata(function_metadata, expected_infos) def test_create_function_metadata_constant_pool_only(): @tvm.script.ir_module class Module: @T.prim_func def __
tvm_main__(a: T.handle, output: T.handle) -> None: T.func_attr({"global_symbol": "test_mod___tvm_main__", "runner_function": True, "target": T.target({"kind":"llvm", "tag":"", "keys":["cpu"]}), "num_inputs": 1, "num_outputs": 1}) a_buffer = T.match_buffer(a, [5, 7], dtype="float32", align=16) output_buffer = T.match_buffer(output, [5, 7], dtype="float32", align=16) T.evaluate(T.tvm_call_cpacked("test_fused_add", a_buffer.data, a_buffer.data, output_buffer.data, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) expected_infos = { "__tvm_main__": { "target": "llvm -keys=cpu ", "workspace_sizes": 0, "io_sizes": 280, "constant_sizes": 256, "tir_primfuncs": Module["__tvm_main__"], } } target = Module["__tvm_main__"].attrs["target"] mod = Module.with_attr( "pool_args", [ AllocatedPoolInfo( ConstantPoolInfo( "flash", [target], [ConstantInfo("a", 0, array(np.array([0])))], ), 256, ), ], ) function_metadata = CreateFunctionMetadata(mod, 16, 1) _check_function_metadata(function_metadata, expected_infos) def test_create_function_metadata_workspace_pool_only(): @tvm.script.ir_module class Module: @T.prim_func def __tvm_main__(a: T.handle, output: T.handle) -> None: T.func_attr({"global_symbol": "test_mod___tvm_main__", "runner_function": True, "target": T.target({"kind":"llvm", "tag":"", "keys":["cpu"]}), "num_inputs": 1, "num_outputs": 1}) a_buffer = T.match_buffer(a, [5, 7], dtype="float32", align=16) output_buffer = T.match_buffer(output, [5, 7], dtype="float32", align=16) T.evaluate(T.tvm_call_cpacked("test_fused_add", a_buffer.data, a_buffer.data, output_buffer.data, T.r
einterpret(T.uint64(0), dtype="handle"), dtype="int32")) expected_infos = { "__tvm_main__": { "target": "llvm -keys=cpu ", "workspace_sizes": 256, "io_sizes": 280, "constant_sizes": 0, "tir_primfuncs": Module["__tvm_main__"], } } target = Module["__tvm_main__"].attrs["target"] mod = Module.with_attr( "pool_args", [ AllocatedPoolInfo( WorkspacePoolInfo("sram", [target]), 256, ), ], ) function_metadata = CreateFunctionMetadata(mod, 16, 1) _check_function_metadata(function_metadata, expected_infos) def test_create_function_metadata_all_single_func(): @tvm.script.ir_module class Module: @T.prim_func def __tvm_main__(a: T.handle, output: T.handle) -> None: T.func_attr({"global_symbol": "test_mod___tvm_main__", "runner_function": True, "target": T.target({"kind":"llvm", "tag":"", "keys":["cpu"]})}) a_buffer = T.match_buffer(a, [5, 7], dtype="float32", align=16) output_buffer = T.match_buffer(output, [5, 7], dtype="float32", align=16) sid_3 = T.allocate([140], "int8", "global.workspace") sid_2 = T.allocate([140], "int8", "global.workspace") sid_1 = T.allocate([140], "int8", "global.workspace") constant_0 = T.allocate_const([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "float32", [5, 7]) T.evaluate(T.tvm_call_cpacked("test_fused_add_0", a_buffer.data, sid_1, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) T.evaluate(T.tvm_call_cpacked("test_fused_add_0", sid_1, constant_0, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) T.evaluate(T.tvm_call_cpacked("test_fused_add_0", sid_2, sid_3, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) T.evaluate(T.tvm_call
_cpacked("test_fused_add_1", sid_2, sid_3, output_buffer.data, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) expected_infos = { "__tvm_main__": { "target": "llvm -keys=cpu ", "workspace_sizes": 688, "io_sizes": 280, "constant_sizes": 652, "tir_primfuncs": Module["__tvm_main__"], } } target = Module["__tvm_main__"].attrs["target"] mod = Module.with_attr( "pool_args", [ AllocatedPoolInfo( ConstantPoolInfo( "flash", [target], [ConstantInfo("a", 0, array(np.array([0])))], ), 512, ), AllocatedPoolInfo( WorkspacePoolInfo("sram", [target]), 256, ), ], ) function_metadata = CreateFunctionMetadata(mod, 16, 1) _check_function_metadata(function_metadata, expected_infos) def test_create_function_metadata_workspace_multi_funcs(): @tvm.script.ir_module class Module: @T.prim_func def __tvm_main__(a: T.handle, output: T.handle) -> None: T.func_attr({"global_symbol": "test_mod___tvm_main__", "runner_function": True, "target": T.target({"kind":"llvm", "tag":"", "keys":["cpu"]}), "num_inputs": 1, "num_outputs": 1}) a_buffer = T.match_buffer(a, [5, 7], dtype="float32", align=16) output_buffer = T.match_buffer(output, [5, 7], dtype="float32", align=16) T.evaluate(T.tvm_call_cpacked("test_fused_add", a_buffer.data, a_buffer.data, output_buffer.data, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) @T.prim_func def test_fused_add(a: T.handle, b: T.handle, output: T.handle) -> None: T.func_attr({"global_symbol": "test_mod_test_fused_add", "target": T.target({"kind":"llvm", "tag":"", "keys":["cpu"]})}) a_buffer = T.match_buffer(a, [5, 7],
dtype="float32", align=16) b_buffer = T.match_buffer(b, [5, 7], dtype="float32", align=16) output_buffer = T.match_buffer(output, [5, 7], dtype="float32", align=16) sid_0 = T.allocate([140], "int8", "global.workspace") constant_0 = T.allocate_const([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "float32", [5, 7]) T.evaluate(T.tvm_call_cpacked("magic", a_buffer.data, b_buffer.data, sid_0, constant_0, output_buffer.data, T.reinterpret(T.uint64(0), dtype="handle"), dtype="int32")) expected_infos = { "__tvm_main__": { "target": "llvm -keys=cpu ", "workspace_sizes": 0, "io_sizes": 280, "constant_sizes": 0, "tir_primfuncs": Module["__tvm_main__"], }, "test_fused_add": { "target": "llvm -keys=cpu ", "workspace_sizes": 144, "io_sizes": 420, "constant_sizes": 140, "tir_primfuncs": Module["test_fused_add"], }, } function_metadata = CreateFunctionMetadata(Module, 16, 1) _check_function_metadata(function_metadata, expected_infos) if __name__ == "__main__": tvm.testing.main()
"""AOT with C Device API Tests"""
import re from collections
import OrderedDict
import numpy as np
import pytest
import tvm.testing from tvm
import relay from tvm.ir.module
import IRModule from tvm.testing.aot
import AOTTestModel, generate_ref_data, compile_models from tvm.micro.testing.aot_test_utils
import AOT_DEFAULT_RUNNER @pytest.fixture(name="device_api_main_func") def fixture_device_api_main_func(): """Test function generator which generates C Device API calls""" pytest.importorskip("ethosu.vela")
import tensorflow as tf
import tflite.Model from tests.python.contrib.test_ethosu.infra
import create_test_runner, generate_ref_data_tflite from tvm.relay.op.contrib.ethosu
import partition_for_ethosu tf.config.run_functions_eagerly(True)
class Model(tf.Module): @tf.function def tf_function(self, x): return tf.nn.max_pool(x, [1, 2], [1, 2], "SAME") def representative_dataset(): for _ in range(100): data = np.random.rand(1, 3, 4, 3) yield [data.astype(np.float32)] model = Model() concrete_func = model.tf_function.get_concrete_function( tf.TensorSpec([1, 3, 4, 3], dtype=tf.float32) ) converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func]) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.representative_dataset = representative_dataset converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.inference_input_type = tf.int8 converter.inference_output_type = tf.int8 tflite_graph = converter.convert() tflite_model = tflite.Model.Model.GetRootAsModel(tflite_graph, 0) relay_module, params = relay.frontend.from_tflite( tflite_model, shape_dict={"x": [1, 3, 4, 3]}, dtype_dict={"x": "int8"}, ) mod = partition_for_ethosu(relay_module, params) input_data, output_data = generate_ref_data_tflite(tflite_graph) def compile_to_main_func(interface_api="c", use_unpacked_api=True): test_runner = create_test_runner() compiled_models = compile_models( models=AOTTestModel( module=mod, inputs=input_data, outputs=output_data, ), interface_api=interface_api, use_unpacked_api=use_unpacked_api, workspace_byte_alignment=16, pass_config=test_runner.pass_config, ) main_ir_module = compiled_models[0].executor_factory.lowered_ir_mods.items()[0][1] main_func = main_ir_module["__tvm_main__"] return main_func return compile_to_main_func @pytest.fixture(name="non_device_api_main_func") def fixture_non_device_api_main_func(): """Test function generator which does not generate C De
vice API calls""" x = relay.var("x", shape=(10, 10)) y = relay.var("y", shape=(1, 10)) func = relay.Function([x, y], relay.multiply(x, y)) x_data = np.random.rand(10, 10).astype("float32") y_data = np.random.rand(1, 10).astype("float32") inputs = OrderedDict([("x", x_data), ("y", y_data)]) output_list = generate_ref_data(func, inputs) def compile_to_main_func(interface_api="c", use_unpacked_api=True): test_runner = AOT_DEFAULT_RUNNER compiled_models = compile_models( models=AOTTestModel( module=IRModule.from_expr(func), inputs=inputs, outputs=output_list, ), interface_api=interface_api, use_unpacked_api=use_unpacked_api, workspace_byte_alignment=16, pass_config=test_runner.pass_config, ) main_ir_module = list(compiled_models[0].executor_factory.lowered_ir_mods.values())[0] main_func = main_ir_module["__tvm_main__"] return main_func return compile_to_main_func def test_device_api_hooks_unpacked_api(device_api_main_func): """Check for Device API hooks with unpacked internal calls""" main_func = device_api_main_func(interface_api="c", use_unpacked_api=True) assert ( str(main_func.body[0]) == "tir.tvm_check_return(0, -1, tir.call_extern(" + '"TVMDeviceEthosUActivate",' + " device_context_ethos_u))\n" ) print("main func", repr(main_func.body)) assert ( str(main_func.body[1][0][0][0]) == "tir.tvm_check_return(0, -1, tir.call_extern(" + '"TVMDeviceEthosUOpen",' + " device_context_ethos_u))\n" ) regex = re.compile( r"tir\.tvm_check_return\(" r"0, -1, " r'tir\.call_extern\("tvmgen_default_ethos_u_main_0", ' r"\w+, \w+, device_context_ethos_u\)\)" ) assert regex.match(str(main_func.body[1][0][0][1])) assert ( str(main_func.body[1][0][0][2])
== "tir.tvm_check_return(0, -1, tir.call_extern(" + '"TVMDeviceEthosUClose",' + " device_context_ethos_u))\n" ) assert ( str(str(main_func.body[2])) == "tir.tvm_check_return(0, -1, tir.call_extern(" + '"TVMDeviceEthosUDeactivate",' + " device_context_ethos_u))\n" ) @pytest.mark.skip( "Skipping this test as this is incorrectly using Arm(R) Ethos(TM)-U NPU " "with packed calling convention which is not supported by the NPU codegen's " "TIR to Runtime Hook. We need to use a different target to test this feature" ) def test_device_api_hooks_packed_api(device_api_main_func): """Check for Device API hooks with packed internal calls""" main_func = device_api_main_func(interface_api="packed", use_unpacked_api=False) assert ( str(main_func.body[0][0].value) == "@tir.tvm_check_return(0, -1, tir.call_extern(" + '"TVMDeviceEthosUActivate",' + " device_context_ethos_u: handle," + " dtype=int32))" ) assert ( str(main_func.body[1].body.body[0][0][0].value) == "@tir.tvm_check_return(0, -1, tir.call_extern(" + '"TVMDeviceEthosUOpen",' + " device_context_ethos_u: handle," + " dtype=int32))" ) assert ( str(main_func.body[1].body.body[0][0][1][0].value) == "@tir.tvm_call_cpacked(" + '"tvmgen_default_ethos_u_main_0",' + " input: handle, output: handle," + " device_context_ethos_u: handle," + " dtype=int32)" ) assert ( str(main_func.body[1].body.body[0][0][2].value) == "@tir.tvm_check_return(0, -1, tir.call_extern(" + '"TVMDeviceEthosUClose",' + " device_context_ethos_u: handle," + " dtype=int32))" ) assert ( str(main_func.body[2][0].value) == "@tir.tvm_check_return(0, -1, tir.call_extern(" + '"TVMDeviceEthosUDeactivate",' + " device_context_ethos_u: handle," + " dtype=int32))"
) def test_without_device_api_unpacked_api(non_device_api_main_func): """Test a graph without the Device API with the unpacked internal calls""" main_func = non_device_api_main_func(interface_api="c", use_unpacked_api=True) assert ( str(main_func.body) == "tir.tvm_check_return(0, -1, tir.call_extern(" + '"tvmgen_default_fused_multiply",' + " x_buffer_var, y_buffer_var, output_buffer_var))\n" ) def test_without_device_api_packed_api(non_device_api_main_func): """Test a graph without the Device API with the packed internal calls""" main_func = non_device_api_main_func(interface_api="packed", use_unpacked_api=False) assert str(main_func.body) == ( 'tir.tvm_call_cpacked("tvmgen_default_fused_multiply", ' "tir.tvm_stack_make_array(x_buffer_var, tir.tvm_stack_make_shape(10, 10), tir.reinterpret((uint64)0), (uint32)2, float32(0), 0), " "tir.tvm_stack_make_array(y_buffer_var, tir.tvm_stack_make_shape(1, 10), tir.reinterpret((uint64)0), (uint32)2, float32(0), 0), " "tir.tvm_stack_make_array(output_buffer_var, tir.tvm_stack_make_shape(10, 10), tir.reinterpret((uint64)0), (uint32)2, float32(0), 0), " "tir.reinterpret((uint64)0))\n" ) if __name__ == "__main__": tvm.testing.main()
"""AOT with C++ Runtime Tests"""
import re
import textwrap
import numpy as np
import pytest
import tvm from tvm
import IRModule from tvm
import relay from tvm.relay
import backend, testing from tvm.testing.aot
import generate_ref_data def test_error_c_interface(): """Checks that an error occurs when using the packed API in combination with C interface""" two = relay.add(relay.const(1), relay.const(1)) func = relay.Function([], two) with pytest.raises( tvm.TVMError, match=re.escape( 'Need unpacked-api == false (got: 0) and interface-api == "packed" (got: c) when ' "targeting c++ runtime" ), ): tvm.relay.build( IRModule.from_expr(func), target="llvm", executor=backend.Executor("aot", {"interface-api": "c"}), ) @pytest.mark.parametrize("enable_usmp", [True, False]) @pytest.mark.parametrize("target_kind", ["c", "llvm"]) def test_conv2d(enable_usmp, target_kind): """Tests compilation of convolutions""" relay_model = textwrap.dedent( """\ def @main(%data : Tensor[(1, 3, 64, 64), uint8], %weight : Tensor[(3, 3, 5, 5), int8]) { %1 = nn.conv2d( %data, %weight, padding=[2, 2], channels=3, kernel_size=[5, 5], data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32"); %2 = cast(nn.max_pool2d(%1, pool_size=[3, 3]), dtype="int8"); %3 = nn.conv2d( %2, %weight, padding=[2, 2], channels=3, kernel_size=[5, 5], data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32"); %4 = nn.max_pool2d(%3, pool_size=[3, 3]); %4 } """ ) ir_mod = tvm.parser.fromtext(relay_model) main_func = ir_mod["main"] shape_dict = {p.name_hint: p.checked_type.concrete_shape for p in main_func.params} type_dict = {p.name_hint: p.checked_type.dtype for p in main_func.params} weight_data = np.random.randint(1, 255, shape_dict["weight"]).astype(t
ype_dict["weight"]) input_data = np.ones(shape_dict["data"]).astype(type_dict["data"]) params = {"weight": weight_data} inputs = {"data": input_data} ref_outputs = generate_ref_data(ir_mod, inputs, params) with tvm.transform.PassContext( opt_level=3, config={ "tir.disable_vectorize": True, "tir.usmp.enable": enable_usmp, }, ): mod = tvm.relay.build( ir_mod, params=params, target=target_kind, executor=backend.Executor("aot", {"interface-api": "packed", "unpacked-api": False}), ) temp_dir = tvm.contrib.utils.TempDirectory() test_so_path = temp_dir / "test.so" mod.export_library(test_so_path, cc="gcc", options=["-std=c11", "-g3", "-O0"]) loaded_mod = tvm.runtime.load_module(test_so_path) runner = tvm.runtime.executor.AotModule(loaded_mod["default"](tvm.cpu(0))) runner.set_input(**inputs) runner.run() assert (runner.get_output(0).numpy() == list(ref_outputs.values())[0]).all() @pytest.mark.parametrize("enable_usmp", [True, False]) @pytest.mark.parametrize("target_kind", ["c", "llvm"]) def test_mobilenet(enable_usmp: bool, target_kind: str): """Full network test with Mobilenet""" ir_mod, params = testing.mobilenet.get_workload(batch_size=1) data_shape = [int(x) for x in ir_mod["main"].checked_type.arg_types[0].shape] data = np.random.uniform(size=data_shape).astype("float32") inputs = {"data": data} ref_outputs = generate_ref_data(ir_mod, inputs, params) with tvm.transform.PassContext( opt_level=3, config={"tir.disable_vectorize": True, "tir.usmp.enable": enable_usmp} ): mod = tvm.relay.build( ir_mod, params=params, target=target_kind, executor=backend.Executor("aot", {"interface-api": "packed"}), ) temp_dir = tvm.contrib.utils.TempDirectory() test_so_path = temp_dir / "test.so" mod.export_library(test_so_path, cc="c++", options=["-st
d=gnu++17", "-g3", "-O0"]) loaded_mod = tvm.runtime.load_module(test_so_path) runner = tvm.runtime.executor.AotModule(loaded_mod["default"](tvm.cpu(0))) runner.set_input(**inputs) runner.run() assert (runner.get_output(0).asnumpy() == list(ref_outputs.values())[0]).all() def test_module_list(): """Checks the correct list of module names is generated""" input_x = tvm.relay.var("x", tvm.relay.TensorType([1], dtype="float32")) expr = tvm.relay.add(input_x, tvm.relay.Constant(tvm.nd.array(np.array([1], dtype="float32")))) mod = tvm.relay.build( tvm.IRModule.from_expr(tvm.relay.Function([input_x], expr)), target="c", executor=tvm.relay.backend.Executor("aot", {"interface-api": "packed"}), mod_name="unusual_module_name_fred", ) temp_dir = tvm.contrib.utils.TempDirectory() test_so_path = temp_dir / "test.so" mod.export_library(test_so_path, cc="gcc", options=["-std=c11"]) loaded_mod = tvm.runtime.load_module(test_so_path) list_module_names = loaded_mod.get_function("list_module_names") names_expected = ["unusual_module_name_fred"] assert list(sorted(names_expected)) == list(sorted(list_module_names())) def test_create_executor(): x = tvm.relay.var("x", tvm.relay.TensorType([1], dtype="float32")) expr = tvm.relay.add(x, tvm.relay.Constant(tvm.nd.array(np.array([1], dtype="float32")))) actual = relay.create_executor( "aot", mod=tvm.IRModule.from_expr(tvm.relay.Function([x], expr)), target="c" ).evaluate()(np.array([2], dtype="float32")) np.isfinite(np.array([3], dtype="float32")) np.testing.assert_allclose(actual.numpy(), np.array([3], dtype="float32")) def test_pass_wrong_device_arg(): """Ensure an error is generated if the incorrect number of devices are passed""" x = tvm.relay.var("x", tvm.relay.TensorType([1], dtype="float32")) expr = tvm.relay.add(x, tvm.relay.Constant(tvm.nd.array(np.array([1], dtype="float32")))) with tvm.transform.PassContext(opt_level=3, confi
g={"tir.disable_vectorize": True}): mod = tvm.relay.build( tvm.IRModule.from_expr(tvm.relay.Function([x], expr)), target="c", executor=backend.Executor("aot", {"interface-api": "packed"}), ) temp_dir = tvm.contrib.utils.TempDirectory() test_so_path = temp_dir / "test.so" mod.export_library(test_so_path, cc="gcc", options=["-std=c11", "-g3", "-O0"]) loaded_mod = tvm.runtime.load_module(test_so_path) with pytest.raises(tvm.TVMError) as error: tvm.runtime.executor.AotModule(loaded_mod["default"](tvm.cpu(0), tvm.cpu(0))) assert ( "Check failed: devices_.size() == 1 (2 vs. 1) : Expect exactly 1 device passed." in str(error.exception) ) @pytest.mark.parametrize("target_kind", ["c", "llvm"]) @pytest.mark.parametrize("input_name", ["input:0", "input@0", "input_0"]) def test_aot_input_name_with_special_character(target_kind: str, input_name: str): """Test name transforms in AOT for input names with special characters.""" dtype = "float32" input_1 = relay.var(input_name, shape=(10, 5), dtype=dtype) weight = relay.var("weight", shape=(1, 5), dtype=dtype) output = relay.add(input_1, weight) func = relay.Function([input_1, weight], output) input_data = np.random.rand(10, 5).astype(dtype) weight_data = np.random.rand(1, 5).astype(dtype) expected_output = input_data + weight_data params = {"weight": weight_data} with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}): mod = tvm.relay.build( tvm.IRModule.from_expr(func), target=target_kind, params=params, executor=tvm.relay.backend.Executor("aot", {"interface-api": "packed"}), ) temp_dir = tvm.contrib.utils.TempDirectory() test_so_path = temp_dir / "test.so" mod.export_library(test_so_path, cc="c++", options=["-std=gnu++17", "-g3", "-O0"]) for name in ["input_0", input_name]: loaded_mod
= tvm.runtime.load_module(test_so_path) runner = tvm.runtime.executor.AotModule(loaded_mod["default"](tvm.cpu(0))) inputs = {name: input_data} runner.set_input(**inputs) input_ind = runner.get_input_index(name) assert (runner.get_input(input_ind).asnumpy() == input_data).all() runner.run() assert (runner.get_output(0).asnumpy() == expected_output).all() if __name__ == "__main__": tvm.testing.main()
"""AOT with C Runtime Tests""" from collections
import OrderedDict
import re
import os
import tarfile
import pathlib
import numpy as np
import pytest
import tvm from tvm
import relay, TVMError from tvm.contrib