Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
File size: 2,969 Bytes
cd97f51
 
c8622ba
cd97f51
 
 
 
 
 
 
 
 
6d41002
cd97f51
 
6d41002
cd97f51
6d41002
 
c8622ba
 
 
 
 
 
 
 
 
 
880b4fb
c8622ba
 
880b4fb
c8622ba
880b4fb
 
cd97f51
 
 
 
 
 
 
c8622ba
 
 
 
 
 
cd97f51
f29e53d
136b041
f29e53d
 
 
 
 
 
 
 
 
28a52fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136b041
f29e53d
136b041
f410c02
136b041
 
 
a6e21b1
f410c02
a6e21b1
 
136b041
 
 
 
 
 
 
 
 
 
a6e21b1
74272e6
a6e21b1
74272e6
a6e21b1
74272e6
136b041
 
 
a6e21b1
74272e6
a6e21b1
74272e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
dataset_info:
- config_name: Behaviour
  features:
  - name: text
    dtype: string
  - name: choices
    sequence: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 883966
    num_examples: 5000
  - name: test
    num_bytes: 183067
    num_examples: 1000
  download_size: 458408
  dataset_size: 1067033
- config_name: Synth
  features:
  - name: text
    dtype: string
  - name: choices
    sequence: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 800941
    num_examples: 7014
  - name: test
    num_bytes: 248483
    num_examples: 2908
  download_size: 502169
  dataset_size: 1049424
configs:
- config_name: Behaviour
  data_files:
  - split: train
    path: Behaviour/train-*
  - split: test
    path: Behaviour/test-*
- config_name: Synth
  data_files:
  - split: train
    path: Synth/train-*
  - split: test
    path: Synth/test-*
---

# Automatic Misogyny Identification (AMI)

Original Paper: https://amievalita2020.github.io

Task presented at EVALITA-2020

This task consists of tweet classification, specifically, categorization of the level of misogyny in a given text.

We taken both subtasks, *raw_dataset* uploaded as *Behaviour* (3 class classification) and *synthetic* uploaded as *Synth* (2 class classification).

## Example

Here you can see the structure of the single sample in the present dataset.

### Behaviour

```json

{
  "text": string, # text of the tweet
  "label": int, # 0: Non Misogino, 1: Misogino, 2: Misogino Aggressivo
}

```

### Synth

```json

{
  "text": string, # text of the tweet
  "label": int, # 0: Non Misogino, 1: Misogino
}

```

## Statitics

| AMI Behaviour | Non Misogino | Misogino | Misogino Aggressivo |
| :--------: | :----: | :----: | :----: |
| Training | 2663 | 554 | 1783 |
| Test | 500 | 324 | 176 |

| AMI Synth | Non Misogino | Misogino |
| :--------: | :----: | :----: |
| Training | 3670 | 3344 |
| Test | 1454 | 1454 |


## Proposed Prompts

Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity.
Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task.

### Behaviour

Description of the task: "Indica il livello di misoginia presente nei seguenti tweets."

Label (**Non Misogino**): "Tweet: '{{text}}'.\nIl tweet non presenta alcun elemento misogino"

Label (**Misogino**): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine"

Label (**Misogino Aggressivo**): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine aggressive"

### Synth
Description of the task: "Indica se i seguenti tweets presentano caratteristiche o elementi misogini."

Label (**Non Misogino**): "Tweet: '{{text}}'.\nIl tweet non presenta alcun elemento misogino"

Label (**Misogino**): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine"