Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
File size: 4,150 Bytes
cd97f51
 
c8622ba
cd97f51
 
 
 
 
 
 
c17c5ed
cd97f51
 
c17c5ed
cd97f51
c17c5ed
 
c8622ba
 
 
 
 
 
 
 
6cd2f71
c8622ba
 
6cd2f71
c8622ba
6cd2f71
 
cd97f51
 
 
 
 
 
 
c8622ba
 
 
 
 
 
cd97f51
f29e53d
136b041
f29e53d
 
 
 
 
 
 
 
 
28a52fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136b041
f29e53d
136b041
f410c02
136b041
 
 
a6e21b1
f410c02
a6e21b1
 
136b041
 
 
 
 
 
 
 
 
75f4768
a6e21b1
428954f
 
 
75f4768
a6e21b1
75f4768
a6e21b1
75f4768
136b041
428954f
 
 
 
 
 
136b041
75f4768
a6e21b1
428954f
 
75f4768
a6e21b1
75f4768
bc1d046
428954f
 
 
 
280cc77
428954f
 
3a00117
 
 
bc1d046
281f561
 
 
 
 
 
bffe16e
 
52fcf91
 
 
 
00b220d
52fcf91
00b220d
52fcf91
00b220d
52fcf91
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
dataset_info:
- config_name: Behaviour
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 608966
    num_examples: 5000
  - name: test
    num_bytes: 128067
    num_examples: 1000
  download_size: 455378
  dataset_size: 737033
- config_name: Synth
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 681703
    num_examples: 7014
  - name: test
    num_bytes: 199047
    num_examples: 2908
  download_size: 498443
  dataset_size: 880750
configs:
- config_name: Behaviour
  data_files:
  - split: train
    path: Behaviour/train-*
  - split: test
    path: Behaviour/test-*
- config_name: Synth
  data_files:
  - split: train
    path: Synth/train-*
  - split: test
    path: Synth/test-*
---

# Automatic Misogyny Identification (AMI)

Original Paper: https://amievalita2020.github.io

Task presented at EVALITA-2020

This task consists of tweet classification, specifically, categorization of the level of misogyny in a given text.

We taken both subtasks, *raw_dataset* uploaded as *Behaviour* (3 class classification) and *synthetic* uploaded as *Synth* (2 class classification).

## Example

Here you can see the structure of the single sample in the present dataset.

### Behaviour

```json
{
  "text": string, # text of the tweet
  "label": int, # 0: Non Misogino, 1: Misogino, 2: Misogino Aggressivo
}
```

### Synth

```json
{
  "text": string, # text of the tweet
  "label": int, # 0: Non Misogino, 1: Misogino
}
```

## Statitics

| AMI Behaviour | Non Misogino | Misogino | Misogino Aggressivo |
| :--------: | :----: | :----: | :----: |
| Training | 2663 | 554 | 1783 |
| Test | 500 | 324 | 176 |

| AMI Synth | Non Misogino | Misogino |
| :--------: | :----: | :----: |
| Training | 3670 | 3344 |
| Test | 1454 | 1454 |


## Proposed Prompts

Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity.
Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task.

### Behaviour

Description of the task: "Indica il livello di misoginia presente nei seguenti tweet.\n\n"


#### Cloze Style:

Label (**Non Misogino**): "Tweet: '{{text}}'.\nIl tweet non presenta caratteristiche misogine."

Label (**Misogino**): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine."

Label (**Misogino Aggressivo**): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine aggressive."

#### MCQA Style:

```txt
Tweet: '{{text}}'.\nDomanda: che livello di misoginia è presente nel tweet?\nA. Nessuno\nB. Misogino\nC. Misogino Aggressivo\nRisposta:
```

### Synth
Description of the task: "Indica se i seguenti tweet presentano caratteristiche misogine.\n\n"

#### Cloze Style:

Label (**Non Misogino**): "Tweet: '{{text}}'.\nIl tweet non presenta caratteristiche misogine."

Label (**Misogino**): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine."


#### MCQA Style:

```txt
Tweet: '{{text}}'.\nDomanda: Il tweet contiene elementi misogini? Rispondi sì o no:
```

## Results

The following results are given by the Cloze-style prompting over some english and italian-adapted LLMs.

| AMI Synth | ACCURACY (5-shots) |
| :-----: | :--: |
| Gemma-2B | 53.78 |
| QWEN2-1.5B | 60.72 |
| Mistral-7B | 71.59 |
| ZEFIRO | 74.69 |
| Llama-3-8B | 74.55 |
| Llama-3-8B-IT | 78.47 |
| ANITA | 82.66 |

## Acknowledge

We would like to thank the authors of this resource for publicly releasing such an intriguing benchmark.

Additionally, we extend our gratitude to the students of the [MNLP-2024 course](https://naviglinlp.blogspot.com/), whose first homework explored various interesting prompting strategies.

The original dataset is freely available for download [link](https://live.european-language-grid.eu/catalogue/corpus/7005/download/).

## License

The data come under license [Creative Commons Attribution Non Commercial Share Alike 4.0 International](https://creativecommons.org/licenses/by-nc-sa/4.0/).