File size: 4,150 Bytes
cd97f51 c8622ba cd97f51 c17c5ed cd97f51 c17c5ed cd97f51 c17c5ed c8622ba 6cd2f71 c8622ba 6cd2f71 c8622ba 6cd2f71 cd97f51 c8622ba cd97f51 f29e53d 136b041 f29e53d 28a52fd 136b041 f29e53d 136b041 f410c02 136b041 a6e21b1 f410c02 a6e21b1 136b041 75f4768 a6e21b1 428954f 75f4768 a6e21b1 75f4768 a6e21b1 75f4768 136b041 428954f 136b041 75f4768 a6e21b1 428954f 75f4768 a6e21b1 75f4768 bc1d046 428954f 280cc77 428954f 3a00117 bc1d046 281f561 bffe16e 52fcf91 00b220d 52fcf91 00b220d 52fcf91 00b220d 52fcf91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
dataset_info:
- config_name: Behaviour
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 608966
num_examples: 5000
- name: test
num_bytes: 128067
num_examples: 1000
download_size: 455378
dataset_size: 737033
- config_name: Synth
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 681703
num_examples: 7014
- name: test
num_bytes: 199047
num_examples: 2908
download_size: 498443
dataset_size: 880750
configs:
- config_name: Behaviour
data_files:
- split: train
path: Behaviour/train-*
- split: test
path: Behaviour/test-*
- config_name: Synth
data_files:
- split: train
path: Synth/train-*
- split: test
path: Synth/test-*
---
# Automatic Misogyny Identification (AMI)
Original Paper: https://amievalita2020.github.io
Task presented at EVALITA-2020
This task consists of tweet classification, specifically, categorization of the level of misogyny in a given text.
We taken both subtasks, *raw_dataset* uploaded as *Behaviour* (3 class classification) and *synthetic* uploaded as *Synth* (2 class classification).
## Example
Here you can see the structure of the single sample in the present dataset.
### Behaviour
```json
{
"text": string, # text of the tweet
"label": int, # 0: Non Misogino, 1: Misogino, 2: Misogino Aggressivo
}
```
### Synth
```json
{
"text": string, # text of the tweet
"label": int, # 0: Non Misogino, 1: Misogino
}
```
## Statitics
| AMI Behaviour | Non Misogino | Misogino | Misogino Aggressivo |
| :--------: | :----: | :----: | :----: |
| Training | 2663 | 554 | 1783 |
| Test | 500 | 324 | 176 |
| AMI Synth | Non Misogino | Misogino |
| :--------: | :----: | :----: |
| Training | 3670 | 3344 |
| Test | 1454 | 1454 |
## Proposed Prompts
Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity.
Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task.
### Behaviour
Description of the task: "Indica il livello di misoginia presente nei seguenti tweet.\n\n"
#### Cloze Style:
Label (**Non Misogino**): "Tweet: '{{text}}'.\nIl tweet non presenta caratteristiche misogine."
Label (**Misogino**): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine."
Label (**Misogino Aggressivo**): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine aggressive."
#### MCQA Style:
```txt
Tweet: '{{text}}'.\nDomanda: che livello di misoginia è presente nel tweet?\nA. Nessuno\nB. Misogino\nC. Misogino Aggressivo\nRisposta:
```
### Synth
Description of the task: "Indica se i seguenti tweet presentano caratteristiche misogine.\n\n"
#### Cloze Style:
Label (**Non Misogino**): "Tweet: '{{text}}'.\nIl tweet non presenta caratteristiche misogine."
Label (**Misogino**): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine."
#### MCQA Style:
```txt
Tweet: '{{text}}'.\nDomanda: Il tweet contiene elementi misogini? Rispondi sì o no:
```
## Results
The following results are given by the Cloze-style prompting over some english and italian-adapted LLMs.
| AMI Synth | ACCURACY (5-shots) |
| :-----: | :--: |
| Gemma-2B | 53.78 |
| QWEN2-1.5B | 60.72 |
| Mistral-7B | 71.59 |
| ZEFIRO | 74.69 |
| Llama-3-8B | 74.55 |
| Llama-3-8B-IT | 78.47 |
| ANITA | 82.66 |
## Acknowledge
We would like to thank the authors of this resource for publicly releasing such an intriguing benchmark.
Additionally, we extend our gratitude to the students of the [MNLP-2024 course](https://naviglinlp.blogspot.com/), whose first homework explored various interesting prompting strategies.
The original dataset is freely available for download [link](https://live.european-language-grid.eu/catalogue/corpus/7005/download/).
## License
The data come under license [Creative Commons Attribution Non Commercial Share Alike 4.0 International](https://creativecommons.org/licenses/by-nc-sa/4.0/). |