output
stringlengths
52
181k
instruction
stringlengths
296
182k
#include <bits/stdc++.h> using namespace std; long long ans; int dp[300000 + 5][20], n; vector<int> e[300000 + 5]; inline void upd(int &x, int y) { if (x < y) x = y; } int dfs(int now, int fa) { int mxdep = 0; for (auto v : e[now]) if (v != fa) upd(mxdep, dfs(v, now)); mxdep++; ans += mxdep; dp[now][1] = n; for (int m = 2; m <= 19; m++) { vector<int> tmp; for (auto v : e[now]) if (v != fa) tmp.push_back(dp[v][m - 1]); sort(tmp.begin(), tmp.end(), greater<int>()); int t = 1; while (t <= (int)tmp.size() && tmp[t - 1] >= t) t++; dp[now][m] = t - 1; upd(dp[now][m], 1); } return mxdep; } void dfs2(int now, int fa) { for (auto v : e[now]) if (v != fa) { dfs2(v, now); for (int m = 1; m <= 19; m++) upd(dp[now][m], dp[v][m]); } } int main() { scanf("%d", &n); for (int i = 1; i <= n - 1; i++) { int x, y; scanf("%d%d", &x, &y); e[x].push_back(y); e[y].push_back(x); } dfs(1, 0); dfs2(1, 0); for (int now = 1; now <= n; now++) for (int m = 1; m <= 18; m++) ans += 1ll * m * (dp[now][m] - dp[now][m + 1]); printf("%lld\n", ans); return 0; }
### Prompt Your task is to create a cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long ans; int dp[300000 + 5][20], n; vector<int> e[300000 + 5]; inline void upd(int &x, int y) { if (x < y) x = y; } int dfs(int now, int fa) { int mxdep = 0; for (auto v : e[now]) if (v != fa) upd(mxdep, dfs(v, now)); mxdep++; ans += mxdep; dp[now][1] = n; for (int m = 2; m <= 19; m++) { vector<int> tmp; for (auto v : e[now]) if (v != fa) tmp.push_back(dp[v][m - 1]); sort(tmp.begin(), tmp.end(), greater<int>()); int t = 1; while (t <= (int)tmp.size() && tmp[t - 1] >= t) t++; dp[now][m] = t - 1; upd(dp[now][m], 1); } return mxdep; } void dfs2(int now, int fa) { for (auto v : e[now]) if (v != fa) { dfs2(v, now); for (int m = 1; m <= 19; m++) upd(dp[now][m], dp[v][m]); } } int main() { scanf("%d", &n); for (int i = 1; i <= n - 1; i++) { int x, y; scanf("%d%d", &x, &y); e[x].push_back(y); e[y].push_back(x); } dfs(1, 0); dfs2(1, 0); for (int now = 1; now <= n; now++) for (int m = 1; m <= 18; m++) ans += 1ll * m * (dp[now][m] - dp[now][m + 1]); printf("%lld\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 300005; vector<int> e[N]; int n, v, f[N], g[N], q[N]; long long sum; void dfs(int x, int fa, int v) { f[x] = 1; g[x] = 1; for (auto i : e[x]) if (i != fa) { dfs(i, x, v); g[x] = max(g[x], g[i]); } if (e[x].size() - (fa != 0) >= v) { *q = 0; for (auto i : e[x]) if (i != fa) q[++*q] = -f[i]; assert(*q >= v); nth_element(q + 1, q + v, q + *q + 1); f[x] = -q[v]; g[x] = max(g[x], ++f[x]); } sum += g[x]; } void dfs2(int x, int fa, int v) { f[x] = e[x].size() - (fa != 0); g[x] = 0; for (auto i : e[x]) if (i != fa) { dfs2(i, x, v); f[x] = max(f[x], f[i]); g[x] = max(g[x], g[i]); } *q = 0; for (auto i : e[x]) if (i != fa) q[++*q] = e[i].size() - 1; sort(q + 1, q + *q + 1); reverse(q + 1, q + *q + 1); int tmp = 0; for (; tmp < *q && q[tmp + 1] >= tmp + 1; ++tmp) ; g[x] = max(g[x], tmp); sum += n - v + 1; if (f[x] >= v) sum += f[x] - v + 1; if (g[x] >= v) sum += g[x] - v + 1; } int main() { scanf("%d", &n); for (int i = (int)(1); i <= (int)(n - 1); i++) { int x, y; scanf("%d%d", &x, &y); e[x].push_back(y); e[y].push_back(x); } for (v = 1; v * v * v <= n; v++) dfs(1, 0, v); dfs2(1, 0, v); printf("%lld\n", sum); }
### Prompt Generate a CPP solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 300005; vector<int> e[N]; int n, v, f[N], g[N], q[N]; long long sum; void dfs(int x, int fa, int v) { f[x] = 1; g[x] = 1; for (auto i : e[x]) if (i != fa) { dfs(i, x, v); g[x] = max(g[x], g[i]); } if (e[x].size() - (fa != 0) >= v) { *q = 0; for (auto i : e[x]) if (i != fa) q[++*q] = -f[i]; assert(*q >= v); nth_element(q + 1, q + v, q + *q + 1); f[x] = -q[v]; g[x] = max(g[x], ++f[x]); } sum += g[x]; } void dfs2(int x, int fa, int v) { f[x] = e[x].size() - (fa != 0); g[x] = 0; for (auto i : e[x]) if (i != fa) { dfs2(i, x, v); f[x] = max(f[x], f[i]); g[x] = max(g[x], g[i]); } *q = 0; for (auto i : e[x]) if (i != fa) q[++*q] = e[i].size() - 1; sort(q + 1, q + *q + 1); reverse(q + 1, q + *q + 1); int tmp = 0; for (; tmp < *q && q[tmp + 1] >= tmp + 1; ++tmp) ; g[x] = max(g[x], tmp); sum += n - v + 1; if (f[x] >= v) sum += f[x] - v + 1; if (g[x] >= v) sum += g[x] - v + 1; } int main() { scanf("%d", &n); for (int i = (int)(1); i <= (int)(n - 1); i++) { int x, y; scanf("%d%d", &x, &y); e[x].push_back(y); e[y].push_back(x); } for (v = 1; v * v * v <= n; v++) dfs(1, 0, v); dfs2(1, 0, v); printf("%lld\n", sum); } ```
#include <bits/stdc++.h> using namespace std; const long long N = 300005; long long n, dp[N][20][2], ans, h[N]; vector<vector<long long> > gr; priority_queue<long long> pq[N][20]; void dfs(long long u, long long par) { h[u] = 1; dp[u][1][0] = dp[u][1][1] = n; for (long long i = 0; i < gr[u].size(); ++i) { long long v = gr[u][i]; if (v != par) { dfs(v, u); h[u] = max(h[u], h[v] + 1); for (long long j = 2; j <= 18; ++j) { pq[u][j].push(dp[v][j - 1][0]); dp[u][j][1] = max(dp[v][j][1], dp[u][j][1]); } } } vector<long long> x[20]; for (long long i = 2; i <= 18; ++i) { while (!pq[u][i].empty()) { x[i].push_back(pq[u][i].top()); pq[u][i].pop(); } } for (long long i = 2; i <= 18; ++i) { if (x[i].size()) { for (long long j = x[i].size() - 1; j >= 0; --j) { if (x[i][j] >= j + 1) { dp[u][i][0] = max(j + 1, dp[u][i][0]); break; } } dp[u][i][1] = max(dp[u][i][1], dp[u][i][0]); } } } signed main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; gr.resize(n + 5, vector<long long>()); for (long long i = 0; i < n - 1; ++i) { long long u, v; cin >> u >> v; gr[u].push_back(v); gr[v].push_back(u); } dfs(1, 0); for (long long i = 1; i <= n; ++i) ans += h[i]; for (long long u = 1; u <= n; ++u) { for (long long i = 1; i <= 19; ++i) { long long l = 2; if (i <= 18) l = max(l, dp[u][i + 1][1] + 1); long long r = dp[u][i][1]; if (l <= r) ans += (r - l + 1) * i; } } cout << ans; return 0; }
### Prompt Generate a CPP solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long N = 300005; long long n, dp[N][20][2], ans, h[N]; vector<vector<long long> > gr; priority_queue<long long> pq[N][20]; void dfs(long long u, long long par) { h[u] = 1; dp[u][1][0] = dp[u][1][1] = n; for (long long i = 0; i < gr[u].size(); ++i) { long long v = gr[u][i]; if (v != par) { dfs(v, u); h[u] = max(h[u], h[v] + 1); for (long long j = 2; j <= 18; ++j) { pq[u][j].push(dp[v][j - 1][0]); dp[u][j][1] = max(dp[v][j][1], dp[u][j][1]); } } } vector<long long> x[20]; for (long long i = 2; i <= 18; ++i) { while (!pq[u][i].empty()) { x[i].push_back(pq[u][i].top()); pq[u][i].pop(); } } for (long long i = 2; i <= 18; ++i) { if (x[i].size()) { for (long long j = x[i].size() - 1; j >= 0; --j) { if (x[i][j] >= j + 1) { dp[u][i][0] = max(j + 1, dp[u][i][0]); break; } } dp[u][i][1] = max(dp[u][i][1], dp[u][i][0]); } } } signed main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; gr.resize(n + 5, vector<long long>()); for (long long i = 0; i < n - 1; ++i) { long long u, v; cin >> u >> v; gr[u].push_back(v); gr[v].push_back(u); } dfs(1, 0); for (long long i = 1; i <= n; ++i) ans += h[i]; for (long long u = 1; u <= n; ++u) { for (long long i = 1; i <= 19; ++i) { long long l = 2; if (i <= 18) l = max(l, dp[u][i + 1][1] + 1); long long r = dp[u][i][1]; if (l <= r) ans += (r - l + 1) * i; } } cout << ans; return 0; } ```
#include <bits/stdc++.h> using namespace std; long long int n; vector<vector<int> > child(300001, vector<int>()); bool was[300001]; int DP3till[300001]; int DP2till[300001]; int k2[300001]; long long int toadd; pair<int, int> dfs(int v, int k) { multiset<int> ways; int cn1 = 0; int mx = 0; for (int u : child[v]) { auto curr = dfs(u, k); mx = max(mx, curr.second); if (curr.first != 1) { ways.insert(curr.first); } else { cn1++; } } int curr = 1; if (child[v].size() >= k) { curr = 2; } if (((int)ways.size()) >= k) { auto it = ways.end(); for (int i = 0; i < k; i++) { it--; } curr = *it + 1; } toadd += max(curr, mx); return {curr, max(curr, mx)}; } void dfs2(int v) { DP2till[v] = k2[v] = child[v].size(); vector<int> till3; for (int u : child[v]) { dfs2(u); till3.push_back(k2[u]); DP2till[v] = max(DP2till[v], DP2till[u]); DP3till[v] = max(DP3till[v], DP3till[u]); } if (child[v].size() >= 70) { sort(till3.begin(), till3.end(), greater<int>()); int left = 70; int right = till3.size(); while (left < right) { int mid = (left + right) / 2; if (left == right - 1) { mid++; } if (till3[mid - 1] >= mid) { left = mid; } else { right = mid - 1; } } if (till3[left - 1] >= left) { DP3till[v] = max(DP3till[v], left); } } } int main() { scanf("%d", &n); vector<vector<int> > graph(n + 1, vector<int>()); for (int i = 1; i < n; i++) { int a, b; scanf("%d %d", &a, &b); graph[a].push_back(b); graph[b].push_back(a); } stack<int> st; st.push(1); was[1] = true; while (!st.empty()) { int v = st.top(); st.pop(); for (int u : graph[v]) { if (!was[u]) { child[v].push_back(u); st.push(u); was[u] = true; } } } long long int ans = 0; for (int i = 1; i <= n; i++) { if (i == 70) { dfs2(1); ans += (n - i + 1) * n; for (int v = 1; v <= n; v++) { if (DP2till[v] >= 70) { ans += DP2till[v] - 70 + 1; } if (DP3till[v] >= 70) { ans += DP3till[v] - 70 + 1; } } break; } toadd = 0; dfs(1, i); ans += toadd; } printf("%lld", ans); return 0; }
### Prompt Generate a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long int n; vector<vector<int> > child(300001, vector<int>()); bool was[300001]; int DP3till[300001]; int DP2till[300001]; int k2[300001]; long long int toadd; pair<int, int> dfs(int v, int k) { multiset<int> ways; int cn1 = 0; int mx = 0; for (int u : child[v]) { auto curr = dfs(u, k); mx = max(mx, curr.second); if (curr.first != 1) { ways.insert(curr.first); } else { cn1++; } } int curr = 1; if (child[v].size() >= k) { curr = 2; } if (((int)ways.size()) >= k) { auto it = ways.end(); for (int i = 0; i < k; i++) { it--; } curr = *it + 1; } toadd += max(curr, mx); return {curr, max(curr, mx)}; } void dfs2(int v) { DP2till[v] = k2[v] = child[v].size(); vector<int> till3; for (int u : child[v]) { dfs2(u); till3.push_back(k2[u]); DP2till[v] = max(DP2till[v], DP2till[u]); DP3till[v] = max(DP3till[v], DP3till[u]); } if (child[v].size() >= 70) { sort(till3.begin(), till3.end(), greater<int>()); int left = 70; int right = till3.size(); while (left < right) { int mid = (left + right) / 2; if (left == right - 1) { mid++; } if (till3[mid - 1] >= mid) { left = mid; } else { right = mid - 1; } } if (till3[left - 1] >= left) { DP3till[v] = max(DP3till[v], left); } } } int main() { scanf("%d", &n); vector<vector<int> > graph(n + 1, vector<int>()); for (int i = 1; i < n; i++) { int a, b; scanf("%d %d", &a, &b); graph[a].push_back(b); graph[b].push_back(a); } stack<int> st; st.push(1); was[1] = true; while (!st.empty()) { int v = st.top(); st.pop(); for (int u : graph[v]) { if (!was[u]) { child[v].push_back(u); st.push(u); was[u] = true; } } } long long int ans = 0; for (int i = 1; i <= n; i++) { if (i == 70) { dfs2(1); ans += (n - i + 1) * n; for (int v = 1; v <= n; v++) { if (DP2till[v] >= 70) { ans += DP2till[v] - 70 + 1; } if (DP3till[v] >= 70) { ans += DP3till[v] - 70 + 1; } } break; } toadd = 0; dfs(1, i); ans += toadd; } printf("%lld", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; long long n, fh[300069], dp[300069][18], z; vector<long long> al[300069]; bitset<300069> vtd; void bd(long long x) { long long i, j, sz = al[x].size(), l, lh, rh, md, zz, c; vector<long long> v; vtd[x] = 1; for (i = 0; i < sz; i++) { l = al[x][i]; if (!vtd[l]) { bd(l); fh[x] = max(fh[x], fh[l] + 1); v.push_back(l); } } sz = v.size(); dp[x][0] = n; for (i = 1; i < 18; i++) { for (lh = 0, rh = n; lh <= rh;) { md = (lh + rh) / 2; c = 0; for (j = 0; j < sz; j++) { l = v[j]; c += md <= dp[l][i - 1]; } if (c >= md) { zz = md; lh = md + 1; } else { rh = md - 1; } } dp[x][i] = zz; } z += fh[x]; } void bd2(long long x) { long long i, j, sz = al[x].size(), l; vtd[x] = 1; for (i = 0; i < sz; i++) { l = al[x][i]; if (!vtd[l]) { bd2(l); for (j = 0; j < 18; j++) { dp[x][j] = max(dp[x][j], dp[l][j]); } } } l = 1; for (i = 17; i + 1; i--) { z += max(dp[x][i] - l, 0ll) * i; l = max(l, dp[x][i]); } } int main() { long long i, k, l; scanf("%lld", &n); for (i = 0; i < n - 1; i++) { scanf("%lld%lld", &k, &l); al[k].push_back(l); al[l].push_back(k); } z = n * n; bd(1); vtd.reset(); bd2(1); printf("%lld\n", z); }
### Prompt Construct a Cpp code solution to the problem outlined: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long n, fh[300069], dp[300069][18], z; vector<long long> al[300069]; bitset<300069> vtd; void bd(long long x) { long long i, j, sz = al[x].size(), l, lh, rh, md, zz, c; vector<long long> v; vtd[x] = 1; for (i = 0; i < sz; i++) { l = al[x][i]; if (!vtd[l]) { bd(l); fh[x] = max(fh[x], fh[l] + 1); v.push_back(l); } } sz = v.size(); dp[x][0] = n; for (i = 1; i < 18; i++) { for (lh = 0, rh = n; lh <= rh;) { md = (lh + rh) / 2; c = 0; for (j = 0; j < sz; j++) { l = v[j]; c += md <= dp[l][i - 1]; } if (c >= md) { zz = md; lh = md + 1; } else { rh = md - 1; } } dp[x][i] = zz; } z += fh[x]; } void bd2(long long x) { long long i, j, sz = al[x].size(), l; vtd[x] = 1; for (i = 0; i < sz; i++) { l = al[x][i]; if (!vtd[l]) { bd2(l); for (j = 0; j < 18; j++) { dp[x][j] = max(dp[x][j], dp[l][j]); } } } l = 1; for (i = 17; i + 1; i--) { z += max(dp[x][i] - l, 0ll) * i; l = max(l, dp[x][i]); } } int main() { long long i, k, l; scanf("%lld", &n); for (i = 0; i < n - 1; i++) { scanf("%lld%lld", &k, &l); al[k].push_back(l); al[l].push_back(k); } z = n * n; bd(1); vtd.reset(); bd2(1); printf("%lld\n", z); } ```
#include <bits/stdc++.h> using namespace std; int const M = 3e5 + 100, inf = 1e9 + 20, mod = 1e9 + 7; int n, a[M], dp[M], st[M], fin[M], mark[M]; vector<pair<int, int> > cand; vector<int> ve; vector<int> adj[M]; vector<pair<int, int> > good; int par[M][30]; long long ans; vector<int> hist; bool seg[M * 4]; int pw(int x, int y) { if (y == 0) return 1; int tmp = pw(x, y / 2); if (y % 2 == 0) return (tmp * tmp) % mod; return ((tmp * tmp) % mod * x) % mod; } void dfs_lca(int v, int l) { par[v][0] = l; ve.push_back(v); st[v] = (int)ve.size() - 1; for (int i = 1; i <= 20; i++) par[v][i] = par[par[v][i - 1]][i - 1]; for (int i = 0; i < adj[v].size(); i++) { int u = adj[v][i]; if (u != l) dfs_lca(u, v); } fin[v] = (int)ve.size(); } bool ch(int x, int v, int ind, int base) { int cn = 0; for (int i = 0; i <= ind; i++) { int u = adj[v][i]; if (u == par[v][0]) continue; if (dp[u] >= x) cn++; } if (cn >= base) return 1; return 0; } void dfs(int v, int base) { mark[v] = base; dp[v] = 1; int cn = 0, mx = 0, ind; for (int i = 0; i < adj[v].size(); i++) { int u = adj[v][i]; if ((int)adj[u].size() - 1 < base) break; if (u == par[v][0]) continue; if (mark[u] != base) dfs(u, base); cn++; mx = max(mx, dp[u]); ind = i; } if (cn >= base) { int lo = 0, hi = mx; while (hi > lo + 1) { int mid = (lo + hi) / 2; if (ch(mid, v, ind, base)) lo = mid; else hi = mid - 1; } if (ch(hi, v, ind, base)) dp[v] = hi + 1; else dp[v] = lo + 1; } cand.push_back(make_pair(dp[v], v)); } bool get(int l, int r, int st, int en, int node) { if (st <= l && r <= en) { return seg[node]; } if (st >= r || l >= en) return 0; int mid = (l + r) >> 1; return get(l, mid, st, en, node * 2) | get(mid, r, st, en, node * 2 + 1); } bool bad(int v) { return get(0, ve.size(), st[v], fin[v], 1); } void update(int l, int r, int ind, int node) { seg[node] = 1; hist.push_back(node); if (r - l == 1) { return; } int mid = (l + r) >> 1; if (ind < mid) update(l, mid, ind, node * 2); else update(mid, r, ind, node * 2 + 1); } void check(int v) { if (bad(v)) return; int now = v; int cnt = 1; for (int i = 20; i >= 0; i--) { if (par[now][i] == 0) continue; if (!bad(par[now][i])) now = par[now][i], cnt += (1LL << i); } ans += (long long)cnt * (long long)dp[v]; update(0, ve.size(), st[v], 1); } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n; cin >> n; for (int i = 1; i <= n - 1; i++) { int a, b; cin >> a >> b; adj[a].push_back(b); adj[b].push_back(a); } adj[1].push_back(0); dfs_lca(1, 0); for (int i = 1; i <= n; i++) { good.push_back(make_pair((int)adj[i].size() - 1, i)); vector<pair<int, int> > hlp; for (int j = 0; j < adj[i].size(); j++) { int u = adj[i][j]; int tmp = (int)adj[u].size() - 1; hlp.push_back(make_pair(tmp, u)); } sort(hlp.begin(), hlp.end()); reverse(hlp.begin(), hlp.end()); adj[i].clear(); for (int j = 0; j < hlp.size(); j++) adj[i].push_back(hlp[j].second); } ans = (long long)n * (long long)n; sort(good.begin(), good.end()); reverse(good.begin(), good.end()); for (int i = 1; i <= n; i++) { for (int j = 0; j < good.size(); j++) { if (good[j].first < i) break; dfs(good[j].second, i); } sort(cand.begin(), cand.end()); reverse(cand.begin(), cand.end()); for (int j = 0; j < cand.size(); j++) { int now = cand[j].second; check(now); } cand.clear(); for (int j = 0; j < hist.size(); j++) seg[hist[j]] = 0; hist.clear(); } cout << ans; }
### Prompt In CPP, your task is to solve the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int const M = 3e5 + 100, inf = 1e9 + 20, mod = 1e9 + 7; int n, a[M], dp[M], st[M], fin[M], mark[M]; vector<pair<int, int> > cand; vector<int> ve; vector<int> adj[M]; vector<pair<int, int> > good; int par[M][30]; long long ans; vector<int> hist; bool seg[M * 4]; int pw(int x, int y) { if (y == 0) return 1; int tmp = pw(x, y / 2); if (y % 2 == 0) return (tmp * tmp) % mod; return ((tmp * tmp) % mod * x) % mod; } void dfs_lca(int v, int l) { par[v][0] = l; ve.push_back(v); st[v] = (int)ve.size() - 1; for (int i = 1; i <= 20; i++) par[v][i] = par[par[v][i - 1]][i - 1]; for (int i = 0; i < adj[v].size(); i++) { int u = adj[v][i]; if (u != l) dfs_lca(u, v); } fin[v] = (int)ve.size(); } bool ch(int x, int v, int ind, int base) { int cn = 0; for (int i = 0; i <= ind; i++) { int u = adj[v][i]; if (u == par[v][0]) continue; if (dp[u] >= x) cn++; } if (cn >= base) return 1; return 0; } void dfs(int v, int base) { mark[v] = base; dp[v] = 1; int cn = 0, mx = 0, ind; for (int i = 0; i < adj[v].size(); i++) { int u = adj[v][i]; if ((int)adj[u].size() - 1 < base) break; if (u == par[v][0]) continue; if (mark[u] != base) dfs(u, base); cn++; mx = max(mx, dp[u]); ind = i; } if (cn >= base) { int lo = 0, hi = mx; while (hi > lo + 1) { int mid = (lo + hi) / 2; if (ch(mid, v, ind, base)) lo = mid; else hi = mid - 1; } if (ch(hi, v, ind, base)) dp[v] = hi + 1; else dp[v] = lo + 1; } cand.push_back(make_pair(dp[v], v)); } bool get(int l, int r, int st, int en, int node) { if (st <= l && r <= en) { return seg[node]; } if (st >= r || l >= en) return 0; int mid = (l + r) >> 1; return get(l, mid, st, en, node * 2) | get(mid, r, st, en, node * 2 + 1); } bool bad(int v) { return get(0, ve.size(), st[v], fin[v], 1); } void update(int l, int r, int ind, int node) { seg[node] = 1; hist.push_back(node); if (r - l == 1) { return; } int mid = (l + r) >> 1; if (ind < mid) update(l, mid, ind, node * 2); else update(mid, r, ind, node * 2 + 1); } void check(int v) { if (bad(v)) return; int now = v; int cnt = 1; for (int i = 20; i >= 0; i--) { if (par[now][i] == 0) continue; if (!bad(par[now][i])) now = par[now][i], cnt += (1LL << i); } ans += (long long)cnt * (long long)dp[v]; update(0, ve.size(), st[v], 1); } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n; cin >> n; for (int i = 1; i <= n - 1; i++) { int a, b; cin >> a >> b; adj[a].push_back(b); adj[b].push_back(a); } adj[1].push_back(0); dfs_lca(1, 0); for (int i = 1; i <= n; i++) { good.push_back(make_pair((int)adj[i].size() - 1, i)); vector<pair<int, int> > hlp; for (int j = 0; j < adj[i].size(); j++) { int u = adj[i][j]; int tmp = (int)adj[u].size() - 1; hlp.push_back(make_pair(tmp, u)); } sort(hlp.begin(), hlp.end()); reverse(hlp.begin(), hlp.end()); adj[i].clear(); for (int j = 0; j < hlp.size(); j++) adj[i].push_back(hlp[j].second); } ans = (long long)n * (long long)n; sort(good.begin(), good.end()); reverse(good.begin(), good.end()); for (int i = 1; i <= n; i++) { for (int j = 0; j < good.size(); j++) { if (good[j].first < i) break; dfs(good[j].second, i); } sort(cand.begin(), cand.end()); reverse(cand.begin(), cand.end()); for (int j = 0; j < cand.size(); j++) { int now = cand[j].second; check(now); } cand.clear(); for (int j = 0; j < hist.size(); j++) seg[hist[j]] = 0; hist.clear(); } cout << ans; } ```
#include <bits/stdc++.h> using namespace std; int read() { int x = 0; bool flg = false; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') flg = true; for (; isdigit(ch); ch = getchar()) x = (x << 3) + (x << 1) + (ch ^ 48); return flg ? -x : x; } int n; long long ans; struct Edge { int to, nxt; } edge[600010]; int cnt = 1, last[300010]; inline void addedge(int x, int y) { edge[++cnt] = (Edge){y, last[x]}, last[x] = cnt; edge[++cnt] = (Edge){x, last[y]}, last[y] = cnt; } int f[300010][19]; int bin[300010]; int dep[300010], maxdep[300010]; void dfs1(int cur, int fat, int dep) { int chtot = 0; ::dep[cur] = maxdep[cur] = dep; for (int i = last[cur]; i; i = edge[i].nxt) { if (edge[i].to == fat) continue; dfs1(edge[i].to, cur, dep + 1); maxdep[cur] = max(maxdep[cur], maxdep[edge[i].to]); chtot++; } for (int i = 18; i >= 2; i--) { (*bin) = 0; for (int j = last[cur]; j; j = edge[j].nxt) if (edge[j].to ^ fat) bin[++*bin] = f[edge[j].to][i - 1]; sort(bin + 1, bin + (*bin) + 1); int l = 1, r = chtot, mid; if (l > r || !(bin[(*bin) - l + 1] >= l)) continue; while (l < r) { mid = l + r + 1 >> 1; if (bin[(*bin) - mid + 1] >= mid) l = mid; else r = mid - 1; } f[cur][i] = l; } f[cur][1] = n; } void dfs2(int cur, int fat) { for (int i = last[cur]; i; i = edge[i].nxt) if (edge[i].to ^ fat) { dfs2(edge[i].to, cur); for (int j = 1; j <= 18; j++) f[cur][j] = max(f[cur][j], f[edge[i].to][j]); } ans += maxdep[cur] - dep[cur] + 1; for (int j = 18; j; j--) { if (f[cur][j] < 2) continue; if (j == 18 || f[cur][j + 1] < 2) ans += 1LL * j * (f[cur][j] - 1); else ans += 1LL * j * (f[cur][j] - f[cur][j + 1]); } } int main() { n = read(); for (int i = 1; i < n; i++) addedge(read(), read()); dfs1(1, 0, 1); dfs2(1, 0); printf("%I64d\n", ans); return 0; }
### Prompt Create a solution in Cpp for the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int read() { int x = 0; bool flg = false; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') flg = true; for (; isdigit(ch); ch = getchar()) x = (x << 3) + (x << 1) + (ch ^ 48); return flg ? -x : x; } int n; long long ans; struct Edge { int to, nxt; } edge[600010]; int cnt = 1, last[300010]; inline void addedge(int x, int y) { edge[++cnt] = (Edge){y, last[x]}, last[x] = cnt; edge[++cnt] = (Edge){x, last[y]}, last[y] = cnt; } int f[300010][19]; int bin[300010]; int dep[300010], maxdep[300010]; void dfs1(int cur, int fat, int dep) { int chtot = 0; ::dep[cur] = maxdep[cur] = dep; for (int i = last[cur]; i; i = edge[i].nxt) { if (edge[i].to == fat) continue; dfs1(edge[i].to, cur, dep + 1); maxdep[cur] = max(maxdep[cur], maxdep[edge[i].to]); chtot++; } for (int i = 18; i >= 2; i--) { (*bin) = 0; for (int j = last[cur]; j; j = edge[j].nxt) if (edge[j].to ^ fat) bin[++*bin] = f[edge[j].to][i - 1]; sort(bin + 1, bin + (*bin) + 1); int l = 1, r = chtot, mid; if (l > r || !(bin[(*bin) - l + 1] >= l)) continue; while (l < r) { mid = l + r + 1 >> 1; if (bin[(*bin) - mid + 1] >= mid) l = mid; else r = mid - 1; } f[cur][i] = l; } f[cur][1] = n; } void dfs2(int cur, int fat) { for (int i = last[cur]; i; i = edge[i].nxt) if (edge[i].to ^ fat) { dfs2(edge[i].to, cur); for (int j = 1; j <= 18; j++) f[cur][j] = max(f[cur][j], f[edge[i].to][j]); } ans += maxdep[cur] - dep[cur] + 1; for (int j = 18; j; j--) { if (f[cur][j] < 2) continue; if (j == 18 || f[cur][j + 1] < 2) ans += 1LL * j * (f[cur][j] - 1); else ans += 1LL * j * (f[cur][j] - f[cur][j + 1]); } } int main() { n = read(); for (int i = 1; i < n; i++) addedge(read(), read()); dfs1(1, 0, 1); dfs2(1, 0); printf("%I64d\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; inline char gc() { static char buf[100000], *p1 = buf, *p2 = buf; return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++; } inline int read() { int x = 0; char ch = getchar(); bool positive = 1; for (; !isdigit(ch); ch = getchar()) if (ch == '-') positive = 0; for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0'; return positive ? x : -x; } inline void write(int a) { if (a >= 10) write(a / 10); putchar('0' + a % 10); } inline void writeln(int a) { if (a < 0) { a = -a; putchar('-'); } write(a); puts(""); } const int N = 300005, K = 19; long long ans; int n, tp[N], q[N], dp[N][K]; vector<int> v[N]; inline bool cmp(int a, int b) { return a > b; } void dfs(int p, int fa) { for (unsigned i = 0; i < v[p].size(); i++) if (v[p][i] != fa) { dfs(v[p][i], p); tp[p] = max(tp[v[p][i]], tp[p]); } ans += ++tp[p]; dp[p][1] = n; for (int i = 2; i < K; i++) { int tot = 0; for (unsigned j = 0; j < v[p].size(); j++) if (dp[v[p][j]][i - 1]) q[++tot] = dp[v[p][j]][i - 1]; sort(&q[1], &q[tot + 1], cmp); for (int j = tot; j > 1; j--) { if (q[j] >= j) { dp[p][i] = j; break; } } } } void solve(int p, int fa) { for (unsigned i = 0; i < v[p].size(); i++) if (v[p][i] != fa) { solve(v[p][i], p); for (int j = 0; j < K; j++) dp[p][j] = max(dp[p][j], dp[v[p][i]][j]); } for (int i = 1; i < K; i++) { ans += ((long long)dp[p][i] - (i + 1 == K ? 0 : dp[p][i + 1])) * i; if (i + 1 == K || dp[p][i + 1] == 0) { ans -= i; break; } } } int main() { n = read(); for (int i = 1; i < n; i++) { int s = read(), t = read(); v[s].push_back(t); v[t].push_back(s); } dfs(1, 0); solve(1, 0); cout << ans << endl; }
### Prompt Generate a CPP solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; inline char gc() { static char buf[100000], *p1 = buf, *p2 = buf; return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++; } inline int read() { int x = 0; char ch = getchar(); bool positive = 1; for (; !isdigit(ch); ch = getchar()) if (ch == '-') positive = 0; for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0'; return positive ? x : -x; } inline void write(int a) { if (a >= 10) write(a / 10); putchar('0' + a % 10); } inline void writeln(int a) { if (a < 0) { a = -a; putchar('-'); } write(a); puts(""); } const int N = 300005, K = 19; long long ans; int n, tp[N], q[N], dp[N][K]; vector<int> v[N]; inline bool cmp(int a, int b) { return a > b; } void dfs(int p, int fa) { for (unsigned i = 0; i < v[p].size(); i++) if (v[p][i] != fa) { dfs(v[p][i], p); tp[p] = max(tp[v[p][i]], tp[p]); } ans += ++tp[p]; dp[p][1] = n; for (int i = 2; i < K; i++) { int tot = 0; for (unsigned j = 0; j < v[p].size(); j++) if (dp[v[p][j]][i - 1]) q[++tot] = dp[v[p][j]][i - 1]; sort(&q[1], &q[tot + 1], cmp); for (int j = tot; j > 1; j--) { if (q[j] >= j) { dp[p][i] = j; break; } } } } void solve(int p, int fa) { for (unsigned i = 0; i < v[p].size(); i++) if (v[p][i] != fa) { solve(v[p][i], p); for (int j = 0; j < K; j++) dp[p][j] = max(dp[p][j], dp[v[p][i]][j]); } for (int i = 1; i < K; i++) { ans += ((long long)dp[p][i] - (i + 1 == K ? 0 : dp[p][i + 1])) * i; if (i + 1 == K || dp[p][i + 1] == 0) { ans -= i; break; } } } int main() { n = read(); for (int i = 1; i < n; i++) { int s = read(), t = read(); v[s].push_back(t); v[t].push_back(s); } dfs(1, 0); solve(1, 0); cout << ans << endl; } ```
#include <bits/stdc++.h> using namespace std; const int MAXN = 3e5 + 10; const int MAX_LOG = 20; vector<int> vertex[MAXN]; vector<int> e; int h[MAXN]; int z[MAXN]; int dp[MAXN]; bool check[MAXN]; long long res; void dfs(int v) { check[v] = true; h[v] = 1; e.clear(); for (int i = 0; i < vertex[v].size(); i++) { if (!check[vertex[v][i]]) { e.push_back(dp[vertex[v][i]]); } } e.push_back(0); sort(e.begin(), e.end()); dp[v] = 0; int w = 0; for (int i = (long long)(e.size()) - 1; i >= 0; i--) { int k = i; if (w >= e[i]) { dp[v] = w; break; } while (k >= 0 && e[k] > 0 && e[k] == e[i]) { w++; k--; } if (w >= e[i]) { dp[v] = e[i]; break; } i = k + 1; } if (dp[v] == 0) { dp[v] = w; } for (int i = 0; i < vertex[v].size(); i++) { if (!check[vertex[v][i]]) { dfs(vertex[v][i]); h[v] = max(h[v], h[vertex[v][i]] + 1); } } } void calc(int v) { check[v] = true; z[v] = dp[v]; for (int i = 0; i < vertex[v].size(); i++) { if (!check[vertex[v][i]]) { calc(vertex[v][i]); z[v] = max(z[vertex[v][i]], z[v]); } } res += max(0, z[v] - 1); } int main() { ios_base ::sync_with_stdio(false); cin.tie(0); long long n; cin >> n; for (int i = 0; i < (n - 1); i++) { int v, u; cin >> v >> u; vertex[v].push_back(u); vertex[u].push_back(v); } for (int i = 1; i <= n; i++) { dp[i] = n; } res = (n - 1) * n; for (int i = 1; i < MAX_LOG; i++) { fill(check, check + MAXN, false); dfs(1); fill(check, check + MAXN, false); calc(1); } for (int i = 1; i <= n; i++) { res += h[i]; } cout << res; }
### Prompt Your challenge is to write a cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 3e5 + 10; const int MAX_LOG = 20; vector<int> vertex[MAXN]; vector<int> e; int h[MAXN]; int z[MAXN]; int dp[MAXN]; bool check[MAXN]; long long res; void dfs(int v) { check[v] = true; h[v] = 1; e.clear(); for (int i = 0; i < vertex[v].size(); i++) { if (!check[vertex[v][i]]) { e.push_back(dp[vertex[v][i]]); } } e.push_back(0); sort(e.begin(), e.end()); dp[v] = 0; int w = 0; for (int i = (long long)(e.size()) - 1; i >= 0; i--) { int k = i; if (w >= e[i]) { dp[v] = w; break; } while (k >= 0 && e[k] > 0 && e[k] == e[i]) { w++; k--; } if (w >= e[i]) { dp[v] = e[i]; break; } i = k + 1; } if (dp[v] == 0) { dp[v] = w; } for (int i = 0; i < vertex[v].size(); i++) { if (!check[vertex[v][i]]) { dfs(vertex[v][i]); h[v] = max(h[v], h[vertex[v][i]] + 1); } } } void calc(int v) { check[v] = true; z[v] = dp[v]; for (int i = 0; i < vertex[v].size(); i++) { if (!check[vertex[v][i]]) { calc(vertex[v][i]); z[v] = max(z[vertex[v][i]], z[v]); } } res += max(0, z[v] - 1); } int main() { ios_base ::sync_with_stdio(false); cin.tie(0); long long n; cin >> n; for (int i = 0; i < (n - 1); i++) { int v, u; cin >> v >> u; vertex[v].push_back(u); vertex[u].push_back(v); } for (int i = 1; i <= n; i++) { dp[i] = n; } res = (n - 1) * n; for (int i = 1; i < MAX_LOG; i++) { fill(check, check + MAXN, false); dfs(1); fill(check, check + MAXN, false); calc(1); } for (int i = 1; i <= n; i++) { res += h[i]; } cout << res; } ```
#include <bits/stdc++.h> using namespace std; const int INF = 0x3fffffff; const int SINF = 0x7fffffff; const long long LINF = 0x3fffffffffffffff; const long long SLINF = 0x7fffffffffffffff; const int MAXN = 300007; int n; long long ans; vector<int> ch[MAXN]; vector<int> dp[MAXN]; vector<int> tmp[MAXN]; void init(); void input(); void work(); void dfs(int now, int fa); int getans(int now, vector<int> &cd); void uni(vector<int> &a, int &va, vector<int> &b, int &vb); int main() { init(); input(); work(); } void init() { ios::sync_with_stdio(false); } void input() { scanf("%d", &n); int u, v; for (int i = 1; i < n; ++i) { scanf("%d%d", &u, &v); ch[u].push_back(v), ch[v].push_back(u); } } void work() { dfs(1, -1); ans = static_cast<long long>(n) * n; vector<int> tt; getans(1, tt); cout << ans << endl; } void dfs(int now, int fa) { for (int i = 0; i < ch[now].size(); ++i) { if (ch[now][i] == fa) { ch[now].erase(ch[now].begin() + i); break; } } int nd = ch[now].size(); for (int i = 0; i < nd; ++i) dfs(ch[now][i], now); dp[now].resize(nd + 1); for (int i = 1; i <= nd; ++i) tmp[i].clear(); for (int i = 0; i < nd; ++i) { int v = ch[now][i]; for (int j = 1; j <= ch[v].size(); ++j) { tmp[j].push_back(dp[v][j]); } } for (int i = 1; i <= nd; ++i) { if (tmp[i].size() >= i) { nth_element(tmp[i].begin(), tmp[i].end() - i, tmp[i].end()); dp[now][i] = (*(tmp[i].end() - i)) + 1; } else dp[now][i] = 1; } } int getans(int now, vector<int> &cd) { vector<int> vd; int nd = ch[now].size(); cd.resize(nd + 1); int ca = 0, va; for (int i = 1; i <= nd; ++i) cd[i] = dp[now][i], ca += cd[i]; for (int i = 0; i < nd; ++i) { vd.clear(); va = getans(ch[now][i], vd); uni(cd, ca, vd, va); } ans += ca; return ca; } void uni(vector<int> &a, int &va, vector<int> &b, int &vb) { if (a.size() < b.size()) { uni(b, vb, a, va); a.swap(b); swap(va, vb); return; } int bs = b.size(); for (int i = 1; i < bs; ++i) { if (b[i] > a[i]) va += b[i] - a[i], a[i] = b[i]; } }
### Prompt Please create a solution in Cpp to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int INF = 0x3fffffff; const int SINF = 0x7fffffff; const long long LINF = 0x3fffffffffffffff; const long long SLINF = 0x7fffffffffffffff; const int MAXN = 300007; int n; long long ans; vector<int> ch[MAXN]; vector<int> dp[MAXN]; vector<int> tmp[MAXN]; void init(); void input(); void work(); void dfs(int now, int fa); int getans(int now, vector<int> &cd); void uni(vector<int> &a, int &va, vector<int> &b, int &vb); int main() { init(); input(); work(); } void init() { ios::sync_with_stdio(false); } void input() { scanf("%d", &n); int u, v; for (int i = 1; i < n; ++i) { scanf("%d%d", &u, &v); ch[u].push_back(v), ch[v].push_back(u); } } void work() { dfs(1, -1); ans = static_cast<long long>(n) * n; vector<int> tt; getans(1, tt); cout << ans << endl; } void dfs(int now, int fa) { for (int i = 0; i < ch[now].size(); ++i) { if (ch[now][i] == fa) { ch[now].erase(ch[now].begin() + i); break; } } int nd = ch[now].size(); for (int i = 0; i < nd; ++i) dfs(ch[now][i], now); dp[now].resize(nd + 1); for (int i = 1; i <= nd; ++i) tmp[i].clear(); for (int i = 0; i < nd; ++i) { int v = ch[now][i]; for (int j = 1; j <= ch[v].size(); ++j) { tmp[j].push_back(dp[v][j]); } } for (int i = 1; i <= nd; ++i) { if (tmp[i].size() >= i) { nth_element(tmp[i].begin(), tmp[i].end() - i, tmp[i].end()); dp[now][i] = (*(tmp[i].end() - i)) + 1; } else dp[now][i] = 1; } } int getans(int now, vector<int> &cd) { vector<int> vd; int nd = ch[now].size(); cd.resize(nd + 1); int ca = 0, va; for (int i = 1; i <= nd; ++i) cd[i] = dp[now][i], ca += cd[i]; for (int i = 0; i < nd; ++i) { vd.clear(); va = getans(ch[now][i], vd); uni(cd, ca, vd, va); } ans += ca; return ca; } void uni(vector<int> &a, int &va, vector<int> &b, int &vb) { if (a.size() < b.size()) { uni(b, vb, a, va); a.swap(b); swap(va, vb); return; } int bs = b.size(); for (int i = 1; i < bs; ++i) { if (b[i] > a[i]) va += b[i] - a[i], a[i] = b[i]; } } ```
#include <bits/stdc++.h> using namespace std; inline int read() { int x; char c; while ((c = getchar()) < '0' || c > '9') ; for (x = c - '0'; (c = getchar()) >= '0' && c <= '9';) x = x * 10 + c - '0'; return x; } struct edge { int nx, t; } e[300000 * 2 + 5]; int n, k, h[300000 + 5], en, c[300000 + 5], cc[300000 + 5], d[300000 + 5], f[300000 + 5], ff[300000 + 5], l[300000 + 5], cnt, fa[300000 + 5]; vector<int> v[300000 + 5]; long long ans; inline void ins(int x, int y) { e[++en] = (edge){h[x], y}; h[x] = en; e[++en] = (edge){h[y], x}; h[y] = en; } void dfs(int x) { l[++cnt] = x; for (int i = h[x]; i; i = e[i].nx) if (e[i].t != fa[x]) fa[e[i].t] = x, dfs(e[i].t); } void dp2(int x, int fa) { f[x] = 0; v[x].clear(); for (int i = h[x]; i; i = e[i].nx) if (e[i].t != fa) { ++c[x]; dp2(e[i].t, x); if (c[e[i].t] > 66) ++cc[x]; v[x].push_back(c[e[i].t]); f[x] = max(f[x], f[e[i].t]); ff[x] = max(ff[x], ff[e[i].t]); } f[x] = max(f[x], c[x]); ans += max(0, f[x] - min(n, 66)); if (cc[x] > 66) { sort(v[x].begin(), v[x].end()); for (int i = min(n, 66); ++i <= v[x].size();) if (v[x][v[x].size() - i] < i) break; else ff[x] = max(ff[x], i); } ans += max(0, ff[x] - min(n, 66)); } int main() { int* x = new int; srand(*x); n = read(); for (int i = 1; i < n; ++i) ins(read(), read()); dfs(1); for (k = 1; k <= 66 && k <= n; ++k) for (int i = n; i; --i) { int x = l[i]; f[x] = 0; for (int i = h[x], cnt = 0; i; i = e[i].nx) if (e[i].t != fa[x]) { if (k == 1) v[x].push_back(d[e[i].t]); else v[x][cnt++] = d[e[i].t]; f[x] = max(f[x], f[e[i].t]); } if (v[x].size() < k) d[x] = 1; else nth_element(v[x].begin(), v[x].end() - k, v[x].end()), d[x] = v[x][v[x].size() - k] + 1; ans += f[x] = max(f[x], d[x]); } ans += 1LL * (n - min(n, 66)) * n; dp2(1, 0); printf("%I64d", ans); }
### Prompt Please provide a Cpp coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; inline int read() { int x; char c; while ((c = getchar()) < '0' || c > '9') ; for (x = c - '0'; (c = getchar()) >= '0' && c <= '9';) x = x * 10 + c - '0'; return x; } struct edge { int nx, t; } e[300000 * 2 + 5]; int n, k, h[300000 + 5], en, c[300000 + 5], cc[300000 + 5], d[300000 + 5], f[300000 + 5], ff[300000 + 5], l[300000 + 5], cnt, fa[300000 + 5]; vector<int> v[300000 + 5]; long long ans; inline void ins(int x, int y) { e[++en] = (edge){h[x], y}; h[x] = en; e[++en] = (edge){h[y], x}; h[y] = en; } void dfs(int x) { l[++cnt] = x; for (int i = h[x]; i; i = e[i].nx) if (e[i].t != fa[x]) fa[e[i].t] = x, dfs(e[i].t); } void dp2(int x, int fa) { f[x] = 0; v[x].clear(); for (int i = h[x]; i; i = e[i].nx) if (e[i].t != fa) { ++c[x]; dp2(e[i].t, x); if (c[e[i].t] > 66) ++cc[x]; v[x].push_back(c[e[i].t]); f[x] = max(f[x], f[e[i].t]); ff[x] = max(ff[x], ff[e[i].t]); } f[x] = max(f[x], c[x]); ans += max(0, f[x] - min(n, 66)); if (cc[x] > 66) { sort(v[x].begin(), v[x].end()); for (int i = min(n, 66); ++i <= v[x].size();) if (v[x][v[x].size() - i] < i) break; else ff[x] = max(ff[x], i); } ans += max(0, ff[x] - min(n, 66)); } int main() { int* x = new int; srand(*x); n = read(); for (int i = 1; i < n; ++i) ins(read(), read()); dfs(1); for (k = 1; k <= 66 && k <= n; ++k) for (int i = n; i; --i) { int x = l[i]; f[x] = 0; for (int i = h[x], cnt = 0; i; i = e[i].nx) if (e[i].t != fa[x]) { if (k == 1) v[x].push_back(d[e[i].t]); else v[x][cnt++] = d[e[i].t]; f[x] = max(f[x], f[e[i].t]); } if (v[x].size() < k) d[x] = 1; else nth_element(v[x].begin(), v[x].end() - k, v[x].end()), d[x] = v[x][v[x].size() - k] + 1; ans += f[x] = max(f[x], d[x]); } ans += 1LL * (n - min(n, 66)) * n; dp2(1, 0); printf("%I64d", ans); } ```
#include <bits/stdc++.h> using namespace std; template <class T1, class T2> inline void upd1(T1& a, T2 b) { a > b ? a = b : 0; } template <class T1, class T2> inline void upd2(T1& a, T2 b) { a < b ? a = b : 0; } struct ano { operator long long() { long long x = 0, y = 0, c = getchar(); while (c < 48) y = c == 45, c = getchar(); while (c > 47) x = x * 10 + c - 48, c = getchar(); return y ? -x : x; } } buf; const int N = 3e5 + 5; vector<int> t[N]; long long s = 0; int n, f[20][N], g[20][N]; int dfs(int u, int p) { int l = 1; for (int v : t[u]) if (v != p) upd2(l, dfs(v, u) + 1); s += l; f[1][u] = n; g[1][u] = n; for (int i = 2;; ++i) { vector<int> a; for (int v : t[u]) if (v != p) a.push_back(-f[i - 1][v]); sort(a.begin(), a.end()); f[i][u] = 1; for (int k = a.size(); k > 1; --k) if (-a[k - 1] >= k) { f[i][u] = k; break; } if (f[i][u] == 1) break; } for (int i = 2;; ++i) { for (int v : t[u]) if (v != p) upd2(g[i][u], g[i][v]); upd2(g[i][u], f[i][u]); s += (i - 1) * (g[i - 1][u] - g[i][u]); if (g[i][u] == 1) break; } return l; } int main() { n = buf; for (int i = 2; i <= n; ++i) { int u = buf, v = buf; t[u].push_back(v); t[v].push_back(u); } dfs(1, 0); printf("%lld\n", s); }
### Prompt Please create a solution in Cpp to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <class T1, class T2> inline void upd1(T1& a, T2 b) { a > b ? a = b : 0; } template <class T1, class T2> inline void upd2(T1& a, T2 b) { a < b ? a = b : 0; } struct ano { operator long long() { long long x = 0, y = 0, c = getchar(); while (c < 48) y = c == 45, c = getchar(); while (c > 47) x = x * 10 + c - 48, c = getchar(); return y ? -x : x; } } buf; const int N = 3e5 + 5; vector<int> t[N]; long long s = 0; int n, f[20][N], g[20][N]; int dfs(int u, int p) { int l = 1; for (int v : t[u]) if (v != p) upd2(l, dfs(v, u) + 1); s += l; f[1][u] = n; g[1][u] = n; for (int i = 2;; ++i) { vector<int> a; for (int v : t[u]) if (v != p) a.push_back(-f[i - 1][v]); sort(a.begin(), a.end()); f[i][u] = 1; for (int k = a.size(); k > 1; --k) if (-a[k - 1] >= k) { f[i][u] = k; break; } if (f[i][u] == 1) break; } for (int i = 2;; ++i) { for (int v : t[u]) if (v != p) upd2(g[i][u], g[i][v]); upd2(g[i][u], f[i][u]); s += (i - 1) * (g[i - 1][u] - g[i][u]); if (g[i][u] == 1) break; } return l; } int main() { n = buf; for (int i = 2; i <= n; ++i) { int u = buf, v = buf; t[u].push_back(v); t[v].push_back(u); } dfs(1, 0); printf("%lld\n", s); } ```
#include <bits/stdc++.h> using namespace std; int n, sl, fh, cnt, s[1000010], fa[1000010], dp[1000010], mxd[1000010], f[1000010][20]; long long res, ans; int t, h[1000010]; struct Tre { int to, nxt; } e[1000010 << 1]; vector<pair<int, int> > vt[1000010]; int rd() { sl = 0; fh = 1; char ch = getchar(); while (ch < '0' || '9' < ch) { if (ch == '-') fh = -1; ch = getchar(); } while ('0' <= ch && ch <= '9') sl = sl * 10 + ch - '0', ch = getchar(); return sl * fh; } void add(int u, int v) { e[++t] = (Tre){v, h[u]}; h[u] = t; e[++t] = (Tre){u, h[v]}; h[v] = t; } void dfs(int u) { int v; f[u][1] = n; mxd[u] = 1; for (int i = h[u]; i; i = e[i].nxt) if ((v = e[i].to) != fa[u]) fa[v] = u, dfs(v), mxd[u] = max(mxd[u], mxd[v] + 1); ans += mxd[u]; for (int i = 2; i < 20; ++i) { cnt = 0; for (int j = h[u]; j; j = e[j].nxt) if ((v = e[j].to) != fa[u]) s[++cnt] = f[v][i - 1]; sort(s + 1, s + cnt + 1, [&](const int &x, const int &y) { return x > y; }); for (v = 0; v < cnt && s[v + 1] > v; ++v) ; f[u][i] = v; vt[v].push_back(make_pair(u, i)); } } void upd(int x, int v) { for (; x && dp[x] < v; x = fa[x]) res += v - dp[x], dp[x] = v; } int main() { n = rd(); int x, y; for (int i = 1; i < n; ++i) x = rd(), y = rd(), add(x, y); dfs(1); for (int i = 1; i <= n; ++i) dp[i] = 1; res = n; for (int k = n; k > 1; --k) { for (auto i : vt[k]) upd(i.first, i.second); ans += res; } printf("%lld\n", ans); return 0; }
### Prompt Please create a solution in CPP to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, sl, fh, cnt, s[1000010], fa[1000010], dp[1000010], mxd[1000010], f[1000010][20]; long long res, ans; int t, h[1000010]; struct Tre { int to, nxt; } e[1000010 << 1]; vector<pair<int, int> > vt[1000010]; int rd() { sl = 0; fh = 1; char ch = getchar(); while (ch < '0' || '9' < ch) { if (ch == '-') fh = -1; ch = getchar(); } while ('0' <= ch && ch <= '9') sl = sl * 10 + ch - '0', ch = getchar(); return sl * fh; } void add(int u, int v) { e[++t] = (Tre){v, h[u]}; h[u] = t; e[++t] = (Tre){u, h[v]}; h[v] = t; } void dfs(int u) { int v; f[u][1] = n; mxd[u] = 1; for (int i = h[u]; i; i = e[i].nxt) if ((v = e[i].to) != fa[u]) fa[v] = u, dfs(v), mxd[u] = max(mxd[u], mxd[v] + 1); ans += mxd[u]; for (int i = 2; i < 20; ++i) { cnt = 0; for (int j = h[u]; j; j = e[j].nxt) if ((v = e[j].to) != fa[u]) s[++cnt] = f[v][i - 1]; sort(s + 1, s + cnt + 1, [&](const int &x, const int &y) { return x > y; }); for (v = 0; v < cnt && s[v + 1] > v; ++v) ; f[u][i] = v; vt[v].push_back(make_pair(u, i)); } } void upd(int x, int v) { for (; x && dp[x] < v; x = fa[x]) res += v - dp[x], dp[x] = v; } int main() { n = rd(); int x, y; for (int i = 1; i < n; ++i) x = rd(), y = rd(), add(x, y); dfs(1); for (int i = 1; i <= n; ++i) dp[i] = 1; res = n; for (int k = n; k > 1; --k) { for (auto i : vt[k]) upd(i.first, i.second); ans += res; } printf("%lld\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; int N; vector<int> G[300005]; int PosRes[22][300005], Pos[22][300005]; int V[22][300005]; int DP[300005]; vector<int> Who; long long ans; int Cnt[30]; void Read() { scanf("%d", &N); for (int i = 1; i < N; i++) { int x, y; scanf("%d%d", &x, &y); G[x].push_back(y); G[y].push_back(x); } } void DFS(int node, int father) { Pos[1][node] = PosRes[1][node] = N; for (int j = 2; (1 << (j - 1)) <= N; j++) Pos[j][node] = PosRes[j][node] = 1; DP[node] = 1; for (int i = 0; i < G[node].size(); i++) { int neighb = G[node][i]; if (neighb == father) continue; DFS(neighb, node); DP[node] = max(DP[node], DP[neighb] + 1); } for (int j = 1; (1 << (j - 1)) <= N; j++) Cnt[j] = 0; for (int i = 0; i < G[node].size(); i++) { int neighb = G[node][i]; if (neighb == father) continue; for (int j = 1; (1 << (j - 1)) <= N; j++) { PosRes[j][node] = max(PosRes[j][node], PosRes[j][neighb]); V[j][++Cnt[j]] = Pos[j][neighb]; } } for (int j = 1; (1 << (j - 1)) <= N; j++) { sort(V[j] + 1, V[j] + Cnt[j] + 1); } for (int j = 2; (1 << (j - 1)) <= N; j++) { int ind = Cnt[j - 1] - Pos[j][node] + 1; while (Pos[j][node] <= N) { ind--; if (ind <= 0) break; if (Pos[j][node] + 1 <= V[j - 1][ind]) { ++Pos[j][node]; } else break; } PosRes[j][node] = max(PosRes[j][node], Pos[j][node]); } for (int j = 1; (1 << (j - 1)) <= N; j++) { int next = (1 << j) > N ? 1 : PosRes[j + 1][node]; ans += 1LL * (PosRes[j][node] - next) * j; } } int main() { Read(); DFS(1, 0); for (int i = 1; i <= N; i++) ans += DP[i]; printf("%I64d\n", ans); return 0; }
### Prompt Create a solution in Cpp for the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int N; vector<int> G[300005]; int PosRes[22][300005], Pos[22][300005]; int V[22][300005]; int DP[300005]; vector<int> Who; long long ans; int Cnt[30]; void Read() { scanf("%d", &N); for (int i = 1; i < N; i++) { int x, y; scanf("%d%d", &x, &y); G[x].push_back(y); G[y].push_back(x); } } void DFS(int node, int father) { Pos[1][node] = PosRes[1][node] = N; for (int j = 2; (1 << (j - 1)) <= N; j++) Pos[j][node] = PosRes[j][node] = 1; DP[node] = 1; for (int i = 0; i < G[node].size(); i++) { int neighb = G[node][i]; if (neighb == father) continue; DFS(neighb, node); DP[node] = max(DP[node], DP[neighb] + 1); } for (int j = 1; (1 << (j - 1)) <= N; j++) Cnt[j] = 0; for (int i = 0; i < G[node].size(); i++) { int neighb = G[node][i]; if (neighb == father) continue; for (int j = 1; (1 << (j - 1)) <= N; j++) { PosRes[j][node] = max(PosRes[j][node], PosRes[j][neighb]); V[j][++Cnt[j]] = Pos[j][neighb]; } } for (int j = 1; (1 << (j - 1)) <= N; j++) { sort(V[j] + 1, V[j] + Cnt[j] + 1); } for (int j = 2; (1 << (j - 1)) <= N; j++) { int ind = Cnt[j - 1] - Pos[j][node] + 1; while (Pos[j][node] <= N) { ind--; if (ind <= 0) break; if (Pos[j][node] + 1 <= V[j - 1][ind]) { ++Pos[j][node]; } else break; } PosRes[j][node] = max(PosRes[j][node], Pos[j][node]); } for (int j = 1; (1 << (j - 1)) <= N; j++) { int next = (1 << j) > N ? 1 : PosRes[j + 1][node]; ans += 1LL * (PosRes[j][node] - next) * j; } } int main() { Read(); DFS(1, 0); for (int i = 1; i <= N; i++) ans += DP[i]; printf("%I64d\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; int n, head[300005], num, x, y, dep[300005], Max[300005][21], own[300005][21]; long long ans; struct edge { int to, nxt; } a[300005 << 1]; void add(int x, int y) { a[++num] = (edge){y, head[x]}, head[x] = num; } bool check(int x, int f, int id, int y) { int res = 0; for (int e = head[x]; e; e = a[e].nxt) { int k = a[e].to; if (k == f) continue; res += (own[k][id - 1] >= y); } return res >= y; } void dfs(int x, int f) { dep[x] = 1; own[x][1] = Max[x][1] = n; for (int e = head[x]; e; e = a[e].nxt) { int k = a[e].to; if (k == f) continue; dfs(k, x); dep[x] = max(dep[x], dep[k] + 1); for (int j = 2; j <= 20; ++j) { Max[x][j] = max(Max[x][j], Max[k][j]); } } int last = n; for (int j = 2; j <= 20; ++j) { int l = 1, r = last, mid; while (l < r) { mid = (l + r + 1) >> 1; if (check(x, f, j, mid)) l = mid; else r = mid - 1; } own[x][j] = l; Max[x][j] = max(Max[x][j], l); last = l; } ans += dep[x]; for (int j = 1; j < 20; ++j) { ans += j * (Max[x][j] - Max[x][j + 1]); } } int main() { scanf("%d", &n); for (int i = 1; i < n; ++i) { scanf("%d%d", &x, &y); add(x, y), add(y, x); } dfs(1, 0); printf("%I64d\n", ans); return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n, head[300005], num, x, y, dep[300005], Max[300005][21], own[300005][21]; long long ans; struct edge { int to, nxt; } a[300005 << 1]; void add(int x, int y) { a[++num] = (edge){y, head[x]}, head[x] = num; } bool check(int x, int f, int id, int y) { int res = 0; for (int e = head[x]; e; e = a[e].nxt) { int k = a[e].to; if (k == f) continue; res += (own[k][id - 1] >= y); } return res >= y; } void dfs(int x, int f) { dep[x] = 1; own[x][1] = Max[x][1] = n; for (int e = head[x]; e; e = a[e].nxt) { int k = a[e].to; if (k == f) continue; dfs(k, x); dep[x] = max(dep[x], dep[k] + 1); for (int j = 2; j <= 20; ++j) { Max[x][j] = max(Max[x][j], Max[k][j]); } } int last = n; for (int j = 2; j <= 20; ++j) { int l = 1, r = last, mid; while (l < r) { mid = (l + r + 1) >> 1; if (check(x, f, j, mid)) l = mid; else r = mid - 1; } own[x][j] = l; Max[x][j] = max(Max[x][j], l); last = l; } ans += dep[x]; for (int j = 1; j < 20; ++j) { ans += j * (Max[x][j] - Max[x][j + 1]); } } int main() { scanf("%d", &n); for (int i = 1; i < n; ++i) { scanf("%d%d", &x, &y); add(x, y), add(y, x); } dfs(1, 0); printf("%I64d\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; template <typename T> inline void read(T &x) { x = 0; char c = getchar(), f = 0; for (; c < 48 || c > 57; c = getchar()) if (!(c ^ 45)) f = 1; for (; c >= 48 && c <= 57; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48); f ? x = -x : x; } const int N = 300005; struct edge { int to, nxt; } e[N << 1]; int et, head[N]; int n, ln[N], dp[N][20]; long long rs = 0; inline void adde(int x, int y) { e[++et] = (edge){y, head[x]}, head[x] = et; } inline void dfs0(int x, int fa) { ln[x] = 1; for (int i = head[x]; i; i = e[i].nxt) if (e[i].to != fa) dfs0(e[i].to, x), ln[x] = max(ln[e[i].to] + 1, ln[x]); vector<int> v; dp[x][1] = n, rs += ln[x]; for (int k = 2; k < 20; k++) { v.clear(); for (int i = head[x]; i; i = e[i].nxt) if (e[i].to != fa) v.push_back(dp[e[i].to][k - 1]); sort(v.begin(), v.end(), greater<int>()); int id = 0; for (; id < (int)v.size() && v[id] >= id + 1; id++) ; dp[x][k] = id; } } inline void dfs1(int x, int fa) { for (int i = head[x]; i; i = e[i].nxt) if (e[i].to != fa) dfs1(e[i].to, x); for (int i = head[x]; i; i = e[i].nxt) if (e[i].to != fa) for (int k = 1; k < 20; k++) dp[x][k] = max(dp[x][k], dp[e[i].to][k]); } int main() { read(n); for (int i = 1, x, y; i < n; i++) read(x), read(y), adde(x, y), adde(y, x); dfs0(1, 0), dfs1(1, 0); for (int i = 1; i <= n; i++) for (int j = 1; j < 20; j++) rs += max(dp[i][j] - 1, 0); return printf("%lld\n", rs), 0; }
### Prompt Your task is to create a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename T> inline void read(T &x) { x = 0; char c = getchar(), f = 0; for (; c < 48 || c > 57; c = getchar()) if (!(c ^ 45)) f = 1; for (; c >= 48 && c <= 57; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48); f ? x = -x : x; } const int N = 300005; struct edge { int to, nxt; } e[N << 1]; int et, head[N]; int n, ln[N], dp[N][20]; long long rs = 0; inline void adde(int x, int y) { e[++et] = (edge){y, head[x]}, head[x] = et; } inline void dfs0(int x, int fa) { ln[x] = 1; for (int i = head[x]; i; i = e[i].nxt) if (e[i].to != fa) dfs0(e[i].to, x), ln[x] = max(ln[e[i].to] + 1, ln[x]); vector<int> v; dp[x][1] = n, rs += ln[x]; for (int k = 2; k < 20; k++) { v.clear(); for (int i = head[x]; i; i = e[i].nxt) if (e[i].to != fa) v.push_back(dp[e[i].to][k - 1]); sort(v.begin(), v.end(), greater<int>()); int id = 0; for (; id < (int)v.size() && v[id] >= id + 1; id++) ; dp[x][k] = id; } } inline void dfs1(int x, int fa) { for (int i = head[x]; i; i = e[i].nxt) if (e[i].to != fa) dfs1(e[i].to, x); for (int i = head[x]; i; i = e[i].nxt) if (e[i].to != fa) for (int k = 1; k < 20; k++) dp[x][k] = max(dp[x][k], dp[e[i].to][k]); } int main() { read(n); for (int i = 1, x, y; i < n; i++) read(x), read(y), adde(x, y), adde(y, x); dfs0(1, 0), dfs1(1, 0); for (int i = 1; i <= n; i++) for (int j = 1; j < 20; j++) rs += max(dp[i][j] - 1, 0); return printf("%lld\n", rs), 0; } ```
#include <bits/stdc++.h> using namespace std; template <typename T> void in(T &x) { T c = getchar(); while (((c < 48) || (c > 57)) && (c != '-')) c = getchar(); bool neg = false; if (c == '-') neg = true; x = 0; for (; c < 48 || c > 57; c = getchar()) ; for (; c > 47 && c < 58; c = getchar()) x = (x * 10) + (c - 48); if (neg) x = -x; } const int MAXN = 3e5 + 10; int n; vector<int> adj[MAXN]; vector<vector<int> > values[MAXN]; vector<int> dp[MAXN]; int sub[MAXN]; void walk(int r, int p) { values[r].resize(adj[r].size() + 1); sub[r] = 1; int sons = 0; for (int c : adj[r]) { if (c == p) continue; walk(c, r), sons++; sub[r] += sub[c]; } dp[r].resize(sons + 1); for (int i = 1; i < dp[r].size(); i++) { if (values[r][i].size() >= i) { sort(values[r][i].begin(), values[r][i].end(), greater<int>()); dp[r][i] = values[r][i][i - 1] + 1; } else dp[r][i] = 2; if (p != -1 and values[p].size() > i) values[p][i].push_back(dp[r][i]); } } set<pair<int, int> > data[MAXN]; long long ans = 0, curr = 0; bool big[MAXN]; void add(int r, int p) { for (int k = 1; k < dp[r].size(); k++) { curr -= data[k].rbegin()->first; data[k].insert({dp[r][k], r}); curr += data[k].rbegin()->first; } for (int c : adj[r]) { if (c != p and big[c] == false) { add(c, r); } } } void rem(int r, int p) { for (int k = 1; k < dp[r].size(); k++) { curr -= data[k].rbegin()->first; data[k].erase({dp[r][k], r}); curr += data[k].rbegin()->first; } for (int c : adj[r]) { if (c != p) { rem(c, r); } } } void go(int r, int p, bool keep) { int maxim = 0, bc = -1, sons = 0; for (int c : adj[r]) { if (c != p) { if (maxim < sub[c]) maxim = sub[c], bc = c; sons++; } } if (bc != -1) big[bc] = true; for (int c : adj[r]) { if (c != p and big[c] == false) { go(c, r, false); } } if (bc != -1) go(bc, r, true); add(r, p); ans += curr; if (bc != -1) big[bc] = false; if (!keep) rem(r, p); } int main() { int a, b; in(n); for (int i = 1; i < n; i++) { in(a), in(b); adj[a].push_back(b), adj[b].push_back(a); } walk(1, -1); for (int i = 1; i <= n; i++) { data[i].insert({1, -1}); } curr = n; go(1, -1, true); printf("%lld\n", ans); return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename T> void in(T &x) { T c = getchar(); while (((c < 48) || (c > 57)) && (c != '-')) c = getchar(); bool neg = false; if (c == '-') neg = true; x = 0; for (; c < 48 || c > 57; c = getchar()) ; for (; c > 47 && c < 58; c = getchar()) x = (x * 10) + (c - 48); if (neg) x = -x; } const int MAXN = 3e5 + 10; int n; vector<int> adj[MAXN]; vector<vector<int> > values[MAXN]; vector<int> dp[MAXN]; int sub[MAXN]; void walk(int r, int p) { values[r].resize(adj[r].size() + 1); sub[r] = 1; int sons = 0; for (int c : adj[r]) { if (c == p) continue; walk(c, r), sons++; sub[r] += sub[c]; } dp[r].resize(sons + 1); for (int i = 1; i < dp[r].size(); i++) { if (values[r][i].size() >= i) { sort(values[r][i].begin(), values[r][i].end(), greater<int>()); dp[r][i] = values[r][i][i - 1] + 1; } else dp[r][i] = 2; if (p != -1 and values[p].size() > i) values[p][i].push_back(dp[r][i]); } } set<pair<int, int> > data[MAXN]; long long ans = 0, curr = 0; bool big[MAXN]; void add(int r, int p) { for (int k = 1; k < dp[r].size(); k++) { curr -= data[k].rbegin()->first; data[k].insert({dp[r][k], r}); curr += data[k].rbegin()->first; } for (int c : adj[r]) { if (c != p and big[c] == false) { add(c, r); } } } void rem(int r, int p) { for (int k = 1; k < dp[r].size(); k++) { curr -= data[k].rbegin()->first; data[k].erase({dp[r][k], r}); curr += data[k].rbegin()->first; } for (int c : adj[r]) { if (c != p) { rem(c, r); } } } void go(int r, int p, bool keep) { int maxim = 0, bc = -1, sons = 0; for (int c : adj[r]) { if (c != p) { if (maxim < sub[c]) maxim = sub[c], bc = c; sons++; } } if (bc != -1) big[bc] = true; for (int c : adj[r]) { if (c != p and big[c] == false) { go(c, r, false); } } if (bc != -1) go(bc, r, true); add(r, p); ans += curr; if (bc != -1) big[bc] = false; if (!keep) rem(r, p); } int main() { int a, b; in(n); for (int i = 1; i < n; i++) { in(a), in(b); adj[a].push_back(b), adj[b].push_back(a); } walk(1, -1); for (int i = 1; i <= n; i++) { data[i].insert({1, -1}); } curr = n; go(1, -1, true); printf("%lld\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int inf = 1e9 + 7; const long long linf = 1ll * inf * inf; const int N = 300000 + 7; const int M = 20; const int multipleTest = 0; vector<int> adj[N]; int n; long long ans = 0; int maxLen[N]; int maxK[N][M]; int maxP[N][M]; bool check(int u, int len, int k, int r) { int cnt = 0; for (int v : adj[u]) if (v != r) { if (maxK[v][len - 1] >= k) ++cnt; } return cnt >= k; } void dfs(int u, int r) { maxLen[u] = 1; for (int v : adj[u]) if (v != r) { dfs(v, u); maxLen[u] = max(maxLen[v] + 1, maxLen[u]); } ans += maxLen[u]; for (int len = M - 1; len > 1; --len) { int lo = (len == M - 1) ? 2 : maxK[u][len + 1] + 1; int hi = n; int res = lo - 1; while (lo <= hi) { int mid = (lo + hi) >> 1; if (check(u, len, mid, r)) { res = mid; lo = mid + 1; } else hi = mid - 1; } maxK[u][len] = res; } maxK[u][1] = n; for (int len = M - 1; len > 0; --len) maxP[u][len] = maxK[u][len]; for (int len = M - 1; len > 0; --len) { for (int v : adj[u]) if (v != r) { maxP[u][len] = max(maxP[u][len], maxP[v][len]); } if (len == M - 1) ans += (maxP[u][len] - 1) * len; else ans += (maxP[u][len] - maxP[u][len + 1]) * len; } } void solve() { cin >> n; for (int i = (1), _b = (n); i < _b; ++i) { int u, v; scanf("%d%d", &u, &v); adj[u].push_back(v); adj[v].push_back(u); } dfs(1, -1); cout << ans << '\n'; } int main() { int Test = 1; if (multipleTest) { cin >> Test; } for (int i = 0; i < Test; ++i) { solve(); } }
### Prompt Construct a Cpp code solution to the problem outlined: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int inf = 1e9 + 7; const long long linf = 1ll * inf * inf; const int N = 300000 + 7; const int M = 20; const int multipleTest = 0; vector<int> adj[N]; int n; long long ans = 0; int maxLen[N]; int maxK[N][M]; int maxP[N][M]; bool check(int u, int len, int k, int r) { int cnt = 0; for (int v : adj[u]) if (v != r) { if (maxK[v][len - 1] >= k) ++cnt; } return cnt >= k; } void dfs(int u, int r) { maxLen[u] = 1; for (int v : adj[u]) if (v != r) { dfs(v, u); maxLen[u] = max(maxLen[v] + 1, maxLen[u]); } ans += maxLen[u]; for (int len = M - 1; len > 1; --len) { int lo = (len == M - 1) ? 2 : maxK[u][len + 1] + 1; int hi = n; int res = lo - 1; while (lo <= hi) { int mid = (lo + hi) >> 1; if (check(u, len, mid, r)) { res = mid; lo = mid + 1; } else hi = mid - 1; } maxK[u][len] = res; } maxK[u][1] = n; for (int len = M - 1; len > 0; --len) maxP[u][len] = maxK[u][len]; for (int len = M - 1; len > 0; --len) { for (int v : adj[u]) if (v != r) { maxP[u][len] = max(maxP[u][len], maxP[v][len]); } if (len == M - 1) ans += (maxP[u][len] - 1) * len; else ans += (maxP[u][len] - maxP[u][len + 1]) * len; } } void solve() { cin >> n; for (int i = (1), _b = (n); i < _b; ++i) { int u, v; scanf("%d%d", &u, &v); adj[u].push_back(v); adj[v].push_back(u); } dfs(1, -1); cout << ans << '\n'; } int main() { int Test = 1; if (multipleTest) { cin >> Test; } for (int i = 0; i < Test; ++i) { solve(); } } ```
#include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5, M = 20; long long ans, sum; int n, h[N], edge[N << 1], nxt[N << 1], cnt, f[N][M], g[N], d[N], dep[N], p, q, fa[N], a[N]; bool vis[N]; vector<pair<int, int> > hep[N]; inline void add(int x, int y) { edge[++cnt] = y; nxt[cnt] = h[x]; h[x] = cnt; } void dfs(int x) { f[x][1] = n; g[x] = 1; for (int i = h[x]; i; i = nxt[i]) if (edge[i] != fa[x]) fa[edge[i]] = x, dfs(edge[i]), g[x] = max(g[x], g[edge[i]] + 1); ans += g[x]; for (int j = 2; j < M; j++) { int cnt = 0, i; for (i = h[x]; i; i = nxt[i]) if (edge[i] != fa[x] && f[edge[i]][j - 1] > 0) a[++cnt] = f[edge[i]][j - 1]; if (cnt == 0) break; sort(a + 1, a + cnt + 1); for (i = cnt; i > 0 && cnt - i + 1 <= a[i]; i--) ; if (i == 0 || cnt - i + 1 > a[i]) i++; f[x][j] = cnt - i + 1; hep[f[x][j]].push_back(make_pair(x, j)); } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int x, y; scanf("%d%d", &x, &y); add(x, y); add(y, x); } dfs(1); sum = n; for (int i = 1; i <= n; i++) g[i] = 1; for (int k = n; k > 1; k--) { vector<pair<int, int> >::iterator it; for (it = hep[k].begin(); it != hep[k].end(); it++) { pair<int, int> tmp = *it; for (int i = tmp.first; i && g[i] < tmp.second; i = fa[i]) { sum += tmp.second - g[i]; g[i] = tmp.second; } } ans += sum; } printf("%lld\n", ans); return 0; }
### Prompt Please formulate a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5, M = 20; long long ans, sum; int n, h[N], edge[N << 1], nxt[N << 1], cnt, f[N][M], g[N], d[N], dep[N], p, q, fa[N], a[N]; bool vis[N]; vector<pair<int, int> > hep[N]; inline void add(int x, int y) { edge[++cnt] = y; nxt[cnt] = h[x]; h[x] = cnt; } void dfs(int x) { f[x][1] = n; g[x] = 1; for (int i = h[x]; i; i = nxt[i]) if (edge[i] != fa[x]) fa[edge[i]] = x, dfs(edge[i]), g[x] = max(g[x], g[edge[i]] + 1); ans += g[x]; for (int j = 2; j < M; j++) { int cnt = 0, i; for (i = h[x]; i; i = nxt[i]) if (edge[i] != fa[x] && f[edge[i]][j - 1] > 0) a[++cnt] = f[edge[i]][j - 1]; if (cnt == 0) break; sort(a + 1, a + cnt + 1); for (i = cnt; i > 0 && cnt - i + 1 <= a[i]; i--) ; if (i == 0 || cnt - i + 1 > a[i]) i++; f[x][j] = cnt - i + 1; hep[f[x][j]].push_back(make_pair(x, j)); } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int x, y; scanf("%d%d", &x, &y); add(x, y); add(y, x); } dfs(1); sum = n; for (int i = 1; i <= n; i++) g[i] = 1; for (int k = n; k > 1; k--) { vector<pair<int, int> >::iterator it; for (it = hep[k].begin(); it != hep[k].end(); it++) { pair<int, int> tmp = *it; for (int i = tmp.first; i && g[i] < tmp.second; i = fa[i]) { sum += tmp.second - g[i]; g[i] = tmp.second; } } ans += sum; } printf("%lld\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 3e5; int n, dp[N][19]; long long ans; vector<int> g[N]; int intial(int u, int p) { int ret = 0; for (auto i : g[u]) if (i != p) ret = max(ret, intial(i, u)); ans += ret + 1; return ret + 1; } void dfs(int u, int p) { bool leaf = 1; dp[u][1] = n; for (auto i : g[u]) if (i != p) { leaf = 0; dfs(i, u); } if (leaf) return; for (int i = 2; i < 19; i++) { vector<int> v; for (auto j : g[u]) if (j != p && dp[j][i - 1] != -1) v.push_back(dp[j][i - 1]); sort(v.rbegin(), v.rend()); for (int j = 0; j < v.size(); j++) { if (v[j] <= j) break; dp[u][i] = j + 1; } } } void find(int u, int p) { for (auto i : g[u]) if (i != p) { find(i, u); for (int j = 0; j < 19; j++) dp[u][j] = max(dp[u][j], dp[i][j]); } int did = 1; for (int i = 18; i; i--) if (dp[u][i] != -1 && dp[u][i] > did) { ans += i * 1LL * (dp[u][i] - did); did = dp[u][i]; } } int main() { scanf("%d", &n); memset(dp, -1, sizeof dp); for (int i = 1, a, b; i < n; i++) { scanf("%d%d", &a, &b); g[--a].push_back(--b); g[b].push_back(a); } intial(0, -1); dfs(0, -1); find(0, -1); printf("%lld\n", ans); }
### Prompt Your task is to create a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 3e5; int n, dp[N][19]; long long ans; vector<int> g[N]; int intial(int u, int p) { int ret = 0; for (auto i : g[u]) if (i != p) ret = max(ret, intial(i, u)); ans += ret + 1; return ret + 1; } void dfs(int u, int p) { bool leaf = 1; dp[u][1] = n; for (auto i : g[u]) if (i != p) { leaf = 0; dfs(i, u); } if (leaf) return; for (int i = 2; i < 19; i++) { vector<int> v; for (auto j : g[u]) if (j != p && dp[j][i - 1] != -1) v.push_back(dp[j][i - 1]); sort(v.rbegin(), v.rend()); for (int j = 0; j < v.size(); j++) { if (v[j] <= j) break; dp[u][i] = j + 1; } } } void find(int u, int p) { for (auto i : g[u]) if (i != p) { find(i, u); for (int j = 0; j < 19; j++) dp[u][j] = max(dp[u][j], dp[i][j]); } int did = 1; for (int i = 18; i; i--) if (dp[u][i] != -1 && dp[u][i] > did) { ans += i * 1LL * (dp[u][i] - did); did = dp[u][i]; } } int main() { scanf("%d", &n); memset(dp, -1, sizeof dp); for (int i = 1, a, b; i < n; i++) { scanf("%d%d", &a, &b); g[--a].push_back(--b); g[b].push_back(a); } intial(0, -1); dfs(0, -1); find(0, -1); printf("%lld\n", ans); } ```
#include <bits/stdc++.h> using namespace std; const long long N = 3e5 + 2; const long long inf = 1e9 + 7; long long dp[N][22], f[N], max1[N][22]; long long ans = 0; vector<long long> adj[N]; void dfs(long long x, long long p) { vector<long long> temp[22]; long long i, j, lef, rig, mid; for (i = 0; i < adj[x].size(); i++) { if (adj[x][i] != p) { dfs(adj[x][i], x); f[x] = max(f[x], f[adj[x][i]] + 1); for (j = 1; j <= 20; j++) { if (dp[adj[x][i]][j - 1] != 0) { temp[j].push_back(dp[adj[x][i]][j - 1]); } max1[x][j] = max(max1[x][j], max1[adj[x][i]][j]); } dp[x][1]++; } } for (i = 2; i <= 20; i++) { sort(temp[i].begin(), temp[i].end(), [&](long long x, long long y) { return x > y; }); rig = temp[i].size(); lef = 1; while (rig > lef) { mid = (lef + rig + 1) / 2; if (temp[i][mid - 1] >= mid) { lef = mid; } else { rig = mid - 1; } } dp[x][i] = rig; } for (i = 1; i <= 20; i++) { max1[x][i] = max(max1[x][i], dp[x][i]); } for (i = 1; i <= 20; i++) { j = 2; if (i != 20) { j = max(j, max1[x][i + 1] + 1); } if (max1[x][i] >= j) { ans += (max1[x][i] - j + 1) * i; } } ans += f[x]; } signed main() { ios::sync_with_stdio(0); cin.tie(0); long long n, i, j, k, l; cin >> n; for (i = 1; i < n; i++) { cin >> j >> k; adj[j].push_back(k); adj[k].push_back(j); } dfs(1, 1); cout << ans + n * n; }
### Prompt In cpp, your task is to solve the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long N = 3e5 + 2; const long long inf = 1e9 + 7; long long dp[N][22], f[N], max1[N][22]; long long ans = 0; vector<long long> adj[N]; void dfs(long long x, long long p) { vector<long long> temp[22]; long long i, j, lef, rig, mid; for (i = 0; i < adj[x].size(); i++) { if (adj[x][i] != p) { dfs(adj[x][i], x); f[x] = max(f[x], f[adj[x][i]] + 1); for (j = 1; j <= 20; j++) { if (dp[adj[x][i]][j - 1] != 0) { temp[j].push_back(dp[adj[x][i]][j - 1]); } max1[x][j] = max(max1[x][j], max1[adj[x][i]][j]); } dp[x][1]++; } } for (i = 2; i <= 20; i++) { sort(temp[i].begin(), temp[i].end(), [&](long long x, long long y) { return x > y; }); rig = temp[i].size(); lef = 1; while (rig > lef) { mid = (lef + rig + 1) / 2; if (temp[i][mid - 1] >= mid) { lef = mid; } else { rig = mid - 1; } } dp[x][i] = rig; } for (i = 1; i <= 20; i++) { max1[x][i] = max(max1[x][i], dp[x][i]); } for (i = 1; i <= 20; i++) { j = 2; if (i != 20) { j = max(j, max1[x][i + 1] + 1); } if (max1[x][i] >= j) { ans += (max1[x][i] - j + 1) * i; } } ans += f[x]; } signed main() { ios::sync_with_stdio(0); cin.tie(0); long long n, i, j, k, l; cin >> n; for (i = 1; i < n; i++) { cin >> j >> k; adj[j].push_back(k); adj[k].push_back(j); } dfs(1, 1); cout << ans + n * n; } ```
#include <bits/stdc++.h> using namespace std; const int NMAX = 3e5 + 10, LGMAX = 19; int N; int MaxLevel; int64_t answer; int DP[LGMAX][NMAX], father[NMAX], val[NMAX]; vector<int> T[NMAX], LevelNodes[NMAX]; vector<pair<int, int>> GoUp[NMAX]; int DFS(int node, int from, int level) { father[node] = from; MaxLevel = max(MaxLevel, level); LevelNodes[level].push_back(node); if (from != -1 && T[node].size() == 1) { ++answer; return 1; } int height = 1; for (int next : T[node]) { if (next == from) continue; ++DP[2][node]; height = max(height, 1 + DFS(next, node, level + 1)); } GoUp[DP[2][node]].push_back({2, node}); answer += height; return height; } int main() { scanf("%d", &N); for (int i = 0; i < N - 1; ++i) { int x, y; scanf("%d %d", &x, &y); T[x].push_back(y); T[y].push_back(x); } DFS(1, -1, 0); for (int i = 3; i < LGMAX; ++i) { for (int j = MaxLevel; j >= 0; --j) { for (int node : LevelNodes[j]) { vector<int> values; for (int next : T[node]) { if (next == father[node]) continue; values.push_back(DP[i - 1][next]); } sort(values.begin(), values.end(), greater<int>()); int k = 0; while (k < (int)values.size() && k + 1 <= values[k]) ++k; if (k > 0 && k <= values[k - 1]) { DP[i][node] = k; GoUp[DP[i][node]].push_back({i, node}); } } } } int64_t value = N; for (int i = 1; i <= N; ++i) val[i] = 1; for (int i = N; i >= 2; --i) { for (auto det : GoUp[i]) { int depth = det.first; int node = det.second; while (node != -1 && depth > val[node]) { value += depth - val[node]; val[node] = depth; node = father[node]; } } answer += value; } cout << answer << '\n'; return 0; }
### Prompt Generate a CPP solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int NMAX = 3e5 + 10, LGMAX = 19; int N; int MaxLevel; int64_t answer; int DP[LGMAX][NMAX], father[NMAX], val[NMAX]; vector<int> T[NMAX], LevelNodes[NMAX]; vector<pair<int, int>> GoUp[NMAX]; int DFS(int node, int from, int level) { father[node] = from; MaxLevel = max(MaxLevel, level); LevelNodes[level].push_back(node); if (from != -1 && T[node].size() == 1) { ++answer; return 1; } int height = 1; for (int next : T[node]) { if (next == from) continue; ++DP[2][node]; height = max(height, 1 + DFS(next, node, level + 1)); } GoUp[DP[2][node]].push_back({2, node}); answer += height; return height; } int main() { scanf("%d", &N); for (int i = 0; i < N - 1; ++i) { int x, y; scanf("%d %d", &x, &y); T[x].push_back(y); T[y].push_back(x); } DFS(1, -1, 0); for (int i = 3; i < LGMAX; ++i) { for (int j = MaxLevel; j >= 0; --j) { for (int node : LevelNodes[j]) { vector<int> values; for (int next : T[node]) { if (next == father[node]) continue; values.push_back(DP[i - 1][next]); } sort(values.begin(), values.end(), greater<int>()); int k = 0; while (k < (int)values.size() && k + 1 <= values[k]) ++k; if (k > 0 && k <= values[k - 1]) { DP[i][node] = k; GoUp[DP[i][node]].push_back({i, node}); } } } } int64_t value = N; for (int i = 1; i <= N; ++i) val[i] = 1; for (int i = N; i >= 2; --i) { for (auto det : GoUp[i]) { int depth = det.first; int node = det.second; while (node != -1 && depth > val[node]) { value += depth - val[node]; val[node] = depth; node = father[node]; } } answer += value; } cout << answer << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; template <class T, class U> bool cmax(T& a, const U& b) { return a < b ? a = b, 1 : 0; } template <class T, class U> bool cmin(T& a, const U& b) { return b < a ? a = b, 1 : 0; } void _BG(const char* s) { cerr << s << endl; }; template <class T, class... TT> void _BG(const char* s, T a, TT... b) { for (int c = 0; *s && (c || *s != ','); ++s) { cerr << *s; for (char x : "([{") c += *s == x; for (char x : ")]}") c -= *s == x; } cerr << " = " << a; if (sizeof...(b)) { cerr << ", "; ++s; } _BG(s, b...); } bool RD() { return 1; } bool RD(char& a) { return scanf(" %c", &a) == 1; } bool RD(char* a) { return scanf("%s", a) == 1; } bool RD(double& a) { return scanf("%lf", &a) == 1; } bool RD(int& a) { return scanf("%d", &a) == 1; } bool RD(long long& a) { return scanf("%lld", &a) == 1; } template <class T, class... TT> bool RD(T& a, TT&... b) { return RD(a) && RD(b...); } void PT(const char& a) { putchar(a); } void PT(char const* const& a) { fputs(a, stdout); } void PT(const double& a) { printf("%.16f", a); } void PT(const int& a) { printf("%d", a); } void PT(const long long& a) { printf("%lld", a); } template <char s = ' ', char e = '\n'> void PL() { if (e) PT(e); } template <char s = ' ', char e = '\n', class T, class... TT> void PL(const T& a, const TT&... b) { PT(a); if (sizeof...(b) && s) PT(s); PL<s, e>(b...); } const int N = 3e5 + 87; int n; struct dp { vector<int> v; long long s; void upd(int i, int x) { if (((int)(v).size()) <= i) v.resize(i + 1); int y = max(v[i], x); s += y - v[i]; v[i] = y; } void join(dp& x) { if (x.v.size() > v.size()) { s = x.s; v.swap(x.v); } for (int i(0); i < (((int)(x.v).size())); ++i) upd(i, x.v[i]); } long long sum() { return s + n - ((int)(v).size()); } void dbg(int u) { for (int i(0); i < (((int)(v).size())); ++i) cerr << "dp[" << i + 1 << "][" << u << "]=" << v[i] << endl; for (int i(((int)(v).size())); i < (n); ++i) cerr << "dp[" << i + 1 << "][" << u << "]=" << 1 << endl; } } d[N]; vector<int> g[N], ans[N]; long long dfs(int p, int u) { int k = ((int)(g[u]).size()) + (p ? -1 : 0); vector<priority_queue<int, vector<int>, greater<int>>> pq(k); long long sum = 0; for (int v : g[u]) if (v != p) { sum += dfs(u, v); d[u].join(d[v]); for (int i(0); i < (min(k, ((int)(ans[v]).size()))); ++i) { pq[i].push(ans[v][i]); if (((int)(pq[i]).size()) == i + 2) pq[i].pop(); } } ans[u].resize(k); for (int i(0); i < (k); ++i) d[u].upd(i, ans[u][i] = ((int)(pq[i]).size()) == i + 1 ? pq[i].top() + 1 : 2); return sum + d[u].sum(); } int main() { RD(n); for (int __i(0); __i < (n - 1); ++__i) { int u, v; RD(u, v); g[u].push_back(v); g[v].push_back(u); } PL(dfs(0, 1)); }
### Prompt In CPP, your task is to solve the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <class T, class U> bool cmax(T& a, const U& b) { return a < b ? a = b, 1 : 0; } template <class T, class U> bool cmin(T& a, const U& b) { return b < a ? a = b, 1 : 0; } void _BG(const char* s) { cerr << s << endl; }; template <class T, class... TT> void _BG(const char* s, T a, TT... b) { for (int c = 0; *s && (c || *s != ','); ++s) { cerr << *s; for (char x : "([{") c += *s == x; for (char x : ")]}") c -= *s == x; } cerr << " = " << a; if (sizeof...(b)) { cerr << ", "; ++s; } _BG(s, b...); } bool RD() { return 1; } bool RD(char& a) { return scanf(" %c", &a) == 1; } bool RD(char* a) { return scanf("%s", a) == 1; } bool RD(double& a) { return scanf("%lf", &a) == 1; } bool RD(int& a) { return scanf("%d", &a) == 1; } bool RD(long long& a) { return scanf("%lld", &a) == 1; } template <class T, class... TT> bool RD(T& a, TT&... b) { return RD(a) && RD(b...); } void PT(const char& a) { putchar(a); } void PT(char const* const& a) { fputs(a, stdout); } void PT(const double& a) { printf("%.16f", a); } void PT(const int& a) { printf("%d", a); } void PT(const long long& a) { printf("%lld", a); } template <char s = ' ', char e = '\n'> void PL() { if (e) PT(e); } template <char s = ' ', char e = '\n', class T, class... TT> void PL(const T& a, const TT&... b) { PT(a); if (sizeof...(b) && s) PT(s); PL<s, e>(b...); } const int N = 3e5 + 87; int n; struct dp { vector<int> v; long long s; void upd(int i, int x) { if (((int)(v).size()) <= i) v.resize(i + 1); int y = max(v[i], x); s += y - v[i]; v[i] = y; } void join(dp& x) { if (x.v.size() > v.size()) { s = x.s; v.swap(x.v); } for (int i(0); i < (((int)(x.v).size())); ++i) upd(i, x.v[i]); } long long sum() { return s + n - ((int)(v).size()); } void dbg(int u) { for (int i(0); i < (((int)(v).size())); ++i) cerr << "dp[" << i + 1 << "][" << u << "]=" << v[i] << endl; for (int i(((int)(v).size())); i < (n); ++i) cerr << "dp[" << i + 1 << "][" << u << "]=" << 1 << endl; } } d[N]; vector<int> g[N], ans[N]; long long dfs(int p, int u) { int k = ((int)(g[u]).size()) + (p ? -1 : 0); vector<priority_queue<int, vector<int>, greater<int>>> pq(k); long long sum = 0; for (int v : g[u]) if (v != p) { sum += dfs(u, v); d[u].join(d[v]); for (int i(0); i < (min(k, ((int)(ans[v]).size()))); ++i) { pq[i].push(ans[v][i]); if (((int)(pq[i]).size()) == i + 2) pq[i].pop(); } } ans[u].resize(k); for (int i(0); i < (k); ++i) d[u].upd(i, ans[u][i] = ((int)(pq[i]).size()) == i + 1 ? pq[i].top() + 1 : 2); return sum + d[u].sum(); } int main() { RD(n); for (int __i(0); __i < (n - 1); ++__i) { int u, v; RD(u, v); g[u].push_back(v); g[v].push_back(u); } PL(dfs(0, 1)); } ```
#include <bits/stdc++.h> using namespace std; long long int gcd(long long int a, long long int b) { return (b == 0LL ? a : gcd(b, a % b)); } long double dist(long double x, long double arayikhalatyan, long double x2, long double y2) { return sqrt((x - x2) * (x - x2) + (arayikhalatyan - y2) * (arayikhalatyan - y2)); } long long int S(long long int a) { return (a * (a - 1LL)) / 2; } mt19937 rnd(363542); char vow[] = {'a', 'e', 'i', 'o', 'u'}; int dx[] = {0, -1, 0, 1, -1, -1, 1, 1, 0}; int dy[] = {-1, 0, 1, 0, -1, 1, -1, 1, 0}; const int N = 3e5 + 30; const long long int mod = 1e15 + 7; const long double pi = acos(-1); const int T = 550; long long int bp(long long int a, long long int b = mod - 2LL) { long long int ret = 1; while (b) { if (b & 1) ret *= a, ret %= mod; a *= a; a %= mod; b >>= 1; } return ret; } ostream& operator<<(ostream& c, pair<int, int> a) { c << a.first << " " << a.second; return c; } void maxi(long long int& a, long long int b) { a = max(a, b); } int n; vector<int> g[N]; int a[N][101], b[N][101]; long long int pat; long long int dfs(int v, int par) { long long int mx = 0, qn = 0; for (auto p : g[v]) { if (p == par) continue; qn++; mx = max(mx, dfs(p, v)); for (int i = 1; i <= min(n, 70); i++) b[v][i] = max(b[v][i], b[p][i]); } mx = max(mx, qn); if (n >= 71) { if (mx >= 71) pat += 2LL * (mx - 70) + n - mx; else pat += (long long int)(n - 70); } for (int i = 1; i <= min(n, 70); i++) { if (qn < i) { a[v][i] = 1; b[v][i] = max(b[v][i], a[v][i]); pat += b[v][i]; continue; } vector<int> fp; for (auto p : g[v]) { if (p == par) continue; fp.push_back(-a[p][i]); } nth_element(fp.begin(), fp.begin() + i - 1, fp.end()); a[v][i] = -fp[i - 1] + 1; b[v][i] = max(b[v][i], a[v][i]); pat += b[v][i]; } return mx; } long long int dfs1(int v, int par) { long long int mx = 0; vector<int> fp; for (auto p : g[v]) { if (p == par) continue; mx = max(mx, dfs1(p, v)); fp.push_back(g[p].size() - 1); } sort((fp).begin(), (fp).end()); reverse((fp).begin(), (fp).end()); bool bl = 0; for (int i = 0; i < fp.size(); i++) { if (fp[i] < i + 1) { bl = 1; mx = max(mx, (long long int)i); break; } } if (!bl) mx = max(mx, (long long int)fp.size()); pat += max(0LL, mx - 70); return mx; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); ; cin >> n; for (int i = 0; i < n - 1; i++) { int a, b; cin >> a >> b; g[a].push_back(b); g[b].push_back(a); } dfs(1, 1); dfs1(1, 1); cout << pat << endl; return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long int gcd(long long int a, long long int b) { return (b == 0LL ? a : gcd(b, a % b)); } long double dist(long double x, long double arayikhalatyan, long double x2, long double y2) { return sqrt((x - x2) * (x - x2) + (arayikhalatyan - y2) * (arayikhalatyan - y2)); } long long int S(long long int a) { return (a * (a - 1LL)) / 2; } mt19937 rnd(363542); char vow[] = {'a', 'e', 'i', 'o', 'u'}; int dx[] = {0, -1, 0, 1, -1, -1, 1, 1, 0}; int dy[] = {-1, 0, 1, 0, -1, 1, -1, 1, 0}; const int N = 3e5 + 30; const long long int mod = 1e15 + 7; const long double pi = acos(-1); const int T = 550; long long int bp(long long int a, long long int b = mod - 2LL) { long long int ret = 1; while (b) { if (b & 1) ret *= a, ret %= mod; a *= a; a %= mod; b >>= 1; } return ret; } ostream& operator<<(ostream& c, pair<int, int> a) { c << a.first << " " << a.second; return c; } void maxi(long long int& a, long long int b) { a = max(a, b); } int n; vector<int> g[N]; int a[N][101], b[N][101]; long long int pat; long long int dfs(int v, int par) { long long int mx = 0, qn = 0; for (auto p : g[v]) { if (p == par) continue; qn++; mx = max(mx, dfs(p, v)); for (int i = 1; i <= min(n, 70); i++) b[v][i] = max(b[v][i], b[p][i]); } mx = max(mx, qn); if (n >= 71) { if (mx >= 71) pat += 2LL * (mx - 70) + n - mx; else pat += (long long int)(n - 70); } for (int i = 1; i <= min(n, 70); i++) { if (qn < i) { a[v][i] = 1; b[v][i] = max(b[v][i], a[v][i]); pat += b[v][i]; continue; } vector<int> fp; for (auto p : g[v]) { if (p == par) continue; fp.push_back(-a[p][i]); } nth_element(fp.begin(), fp.begin() + i - 1, fp.end()); a[v][i] = -fp[i - 1] + 1; b[v][i] = max(b[v][i], a[v][i]); pat += b[v][i]; } return mx; } long long int dfs1(int v, int par) { long long int mx = 0; vector<int> fp; for (auto p : g[v]) { if (p == par) continue; mx = max(mx, dfs1(p, v)); fp.push_back(g[p].size() - 1); } sort((fp).begin(), (fp).end()); reverse((fp).begin(), (fp).end()); bool bl = 0; for (int i = 0; i < fp.size(); i++) { if (fp[i] < i + 1) { bl = 1; mx = max(mx, (long long int)i); break; } } if (!bl) mx = max(mx, (long long int)fp.size()); pat += max(0LL, mx - 70); return mx; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); ; cin >> n; for (int i = 0; i < n - 1; i++) { int a, b; cin >> a >> b; g[a].push_back(b); g[b].push_back(a); } dfs(1, 1); dfs1(1, 1); cout << pat << endl; return 0; } ```
#include <bits/stdc++.h> #pragma comment(linker, "/STACK:66777216") using namespace std; const int N = 300000 + 10, M = 20 + 2; int n; vector<int> V[N]; int depth[N]; int d[M][N], d_max[M][N]; void dfs(int v, int parent) { depth[v] = 1; for (int i = 0; i < (((int)((V[v]).size()))); ++i) { int to = V[v][i]; if (to == parent) continue; dfs(to, v); depth[v] = max(depth[v], depth[to] + 1); } for (int i = (int)(2); i <= (int)(M - 1); ++i) { d[i][v] = 1; int b = 1, e = n; while (b < e) { int m = (b + e + 1) / 2; int cnt = 0; for (int j = 0; j < (((int)((V[v]).size()))); ++j) { int to = V[v][j]; if (to == parent) continue; if (d[i - 1][to] >= m) cnt++; } if (cnt >= m) b = m; else e = m - 1; } d[i][v] = max(d[i][v], b); } } void dfs2(int v, int parent) { for (int j = 0; j < (M); ++j) d_max[j][v] = d[j][v]; for (int i = 0; i < (((int)((V[v]).size()))); ++i) { int to = V[v][i]; if (to == parent) continue; dfs2(to, v); for (int j = 0; j < (M); ++j) d_max[j][v] = max(d_max[j][v], d_max[j][to]); } } void sol() { scanf("%d", &n); for (int i = 0; i < (n - 1); ++i) { int x, y; scanf("%d%d", &x, &y); V[x].push_back(y); V[y].push_back(x); } for (int i = 1; i <= (int)(n); ++i) d[1][i] = n; dfs(1, -1); dfs2(1, -1); long long ans = 0; for (int i = 1; i <= (int)(n); ++i) { ans += depth[i]; for (int m = 1; m <= (int)(M - 1); ++m) ans += max(0, d_max[m][i] - 1); } cout << ans << endl; } void clear() {} void once() {} void solve() { int T; T = 1; once(); for (int i = 1; i <= (int)(T); ++i) { clear(); sol(); } } void testgen() { FILE* f = fopen("input.txt", "w"); int n = 2000, m = 1000000000; fprintf(f, "1\n", n); fprintf(f, "%d %d\n", n, m); srand(time(NULL)); for (int i = 0; i < (n); ++i) fprintf(f, "%d\n", rand() % 2000); fclose(f); } int main() { cout << fixed; cout.precision(10); cerr << fixed; cerr.precision(3); solve(); return 0; }
### Prompt Develop a solution in Cpp to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> #pragma comment(linker, "/STACK:66777216") using namespace std; const int N = 300000 + 10, M = 20 + 2; int n; vector<int> V[N]; int depth[N]; int d[M][N], d_max[M][N]; void dfs(int v, int parent) { depth[v] = 1; for (int i = 0; i < (((int)((V[v]).size()))); ++i) { int to = V[v][i]; if (to == parent) continue; dfs(to, v); depth[v] = max(depth[v], depth[to] + 1); } for (int i = (int)(2); i <= (int)(M - 1); ++i) { d[i][v] = 1; int b = 1, e = n; while (b < e) { int m = (b + e + 1) / 2; int cnt = 0; for (int j = 0; j < (((int)((V[v]).size()))); ++j) { int to = V[v][j]; if (to == parent) continue; if (d[i - 1][to] >= m) cnt++; } if (cnt >= m) b = m; else e = m - 1; } d[i][v] = max(d[i][v], b); } } void dfs2(int v, int parent) { for (int j = 0; j < (M); ++j) d_max[j][v] = d[j][v]; for (int i = 0; i < (((int)((V[v]).size()))); ++i) { int to = V[v][i]; if (to == parent) continue; dfs2(to, v); for (int j = 0; j < (M); ++j) d_max[j][v] = max(d_max[j][v], d_max[j][to]); } } void sol() { scanf("%d", &n); for (int i = 0; i < (n - 1); ++i) { int x, y; scanf("%d%d", &x, &y); V[x].push_back(y); V[y].push_back(x); } for (int i = 1; i <= (int)(n); ++i) d[1][i] = n; dfs(1, -1); dfs2(1, -1); long long ans = 0; for (int i = 1; i <= (int)(n); ++i) { ans += depth[i]; for (int m = 1; m <= (int)(M - 1); ++m) ans += max(0, d_max[m][i] - 1); } cout << ans << endl; } void clear() {} void once() {} void solve() { int T; T = 1; once(); for (int i = 1; i <= (int)(T); ++i) { clear(); sol(); } } void testgen() { FILE* f = fopen("input.txt", "w"); int n = 2000, m = 1000000000; fprintf(f, "1\n", n); fprintf(f, "%d %d\n", n, m); srand(time(NULL)); for (int i = 0; i < (n); ++i) fprintf(f, "%d\n", rand() % 2000); fclose(f); } int main() { cout << fixed; cout.precision(10); cerr << fixed; cerr.precision(3); solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; long long ans; int dp[300000 + 5][20], n; vector<int> e[300000 + 5]; void upd(int &x, int y) { if (x < y) x = y; } int dfs(int now, int fa) { int mxdep = 0; for (auto v : e[now]) if (v != fa) upd(mxdep, dfs(v, now)); mxdep++; ans += mxdep; dp[now][1] = n; for (int m = 2; m <= 19; m++) { vector<int> tmp; for (auto v : e[now]) if (v != fa) tmp.push_back(dp[v][m - 1]); sort(tmp.begin(), tmp.end(), greater<int>()); int t = 1; while (t <= (int)tmp.size() && tmp[t - 1] >= t) t++; dp[now][m] = t - 1; upd(dp[now][m], 1); } return mxdep; } void dfs2(int now, int fa) { for (auto v : e[now]) if (v != fa) { dfs2(v, now); for (int m = 1; m <= 19; m++) upd(dp[now][m], dp[v][m]); } for (int m = 1; m <= 18; m++) ans += 1ll * m * (dp[now][m] - dp[now][m + 1]); } int main() { scanf("%d", &n); for (int i = 1; i <= n - 1; i++) { int x, y; scanf("%d%d", &x, &y); e[x].push_back(y); e[y].push_back(x); } dfs(1, 0); dfs2(1, 0); printf("%lld\n", ans); return 0; }
### Prompt Please provide a cpp coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long ans; int dp[300000 + 5][20], n; vector<int> e[300000 + 5]; void upd(int &x, int y) { if (x < y) x = y; } int dfs(int now, int fa) { int mxdep = 0; for (auto v : e[now]) if (v != fa) upd(mxdep, dfs(v, now)); mxdep++; ans += mxdep; dp[now][1] = n; for (int m = 2; m <= 19; m++) { vector<int> tmp; for (auto v : e[now]) if (v != fa) tmp.push_back(dp[v][m - 1]); sort(tmp.begin(), tmp.end(), greater<int>()); int t = 1; while (t <= (int)tmp.size() && tmp[t - 1] >= t) t++; dp[now][m] = t - 1; upd(dp[now][m], 1); } return mxdep; } void dfs2(int now, int fa) { for (auto v : e[now]) if (v != fa) { dfs2(v, now); for (int m = 1; m <= 19; m++) upd(dp[now][m], dp[v][m]); } for (int m = 1; m <= 18; m++) ans += 1ll * m * (dp[now][m] - dp[now][m + 1]); } int main() { scanf("%d", &n); for (int i = 1; i <= n - 1; i++) { int x, y; scanf("%d%d", &x, &y); e[x].push_back(y); e[y].push_back(x); } dfs(1, 0); dfs2(1, 0); printf("%lld\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; int n; const int MaxN = 3e5; vector<int> adj[MaxN]; vector<int> prec[MaxN]; void dfs(const int u, const int p) { prec[u] = {1, n}; adj[u].erase(remove(adj[u].begin(), adj[u].end(), p), adj[u].end()); for (auto &&v : adj[u]) { dfs(v, u); prec[u][0] = max(prec[u][0], 1 + prec[v][0]); } for (int i = 2;; ++i) { int lo = 1; int hi = adj[u].size(); while (lo < hi) { int mid = (lo + hi + 1) >> 1; int count = 0; for (auto &&v : adj[u]) count += i <= prec[v].size() && prec[v][i - 1] >= mid; if (count >= mid) lo = mid; else hi = mid - 1; } if (lo <= 1) break; prec[u].push_back(lo); } } void dfs2(const int u, long long &ans) { for (auto &&v : adj[u]) { dfs2(v, ans); if (prec[u].size() < prec[v].size()) prec[u].resize(prec[v].size(), 0); for (int i = 2; i < prec[v].size(); ++i) prec[u][i] = max(prec[u][i], prec[v][i]); } ans -= prec[u].size() - 1; for (auto &&x : prec[u]) ans += x; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 1; i < n; ++i) { int u, v; cin >> u >> v; --u, --v; adj[u].push_back(v); adj[v].push_back(u); } dfs(0, -1); long long ans = 0; dfs2(0, ans); cout << ans; return 0; }
### Prompt Your task is to create a CPP solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n; const int MaxN = 3e5; vector<int> adj[MaxN]; vector<int> prec[MaxN]; void dfs(const int u, const int p) { prec[u] = {1, n}; adj[u].erase(remove(adj[u].begin(), adj[u].end(), p), adj[u].end()); for (auto &&v : adj[u]) { dfs(v, u); prec[u][0] = max(prec[u][0], 1 + prec[v][0]); } for (int i = 2;; ++i) { int lo = 1; int hi = adj[u].size(); while (lo < hi) { int mid = (lo + hi + 1) >> 1; int count = 0; for (auto &&v : adj[u]) count += i <= prec[v].size() && prec[v][i - 1] >= mid; if (count >= mid) lo = mid; else hi = mid - 1; } if (lo <= 1) break; prec[u].push_back(lo); } } void dfs2(const int u, long long &ans) { for (auto &&v : adj[u]) { dfs2(v, ans); if (prec[u].size() < prec[v].size()) prec[u].resize(prec[v].size(), 0); for (int i = 2; i < prec[v].size(); ++i) prec[u][i] = max(prec[u][i], prec[v][i]); } ans -= prec[u].size() - 1; for (auto &&x : prec[u]) ans += x; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 1; i < n; ++i) { int u, v; cin >> u >> v; --u, --v; adj[u].push_back(v); adj[v].push_back(u); } dfs(0, -1); long long ans = 0; dfs2(0, ans); cout << ans; return 0; } ```
#include <bits/stdc++.h> using namespace std; int head[524288], last[1048576], to[1048576], cnt = 0; void add(int u, int v) { cnt++; last[cnt] = head[u]; head[u] = cnt; to[cnt] = v; } int dp[524288]; int a[524288]; long long answer = 0; int n; void dfs1(int u, int f, int k) { for (int i = head[u]; i; i = last[i]) { int v = to[i]; if (v == f) { continue; } dfs1(v, u, k); } int cnt = 0; for (int i = head[u]; i; i = last[i]) { int v = to[i]; if (v == f) { continue; } a[cnt] = dp[v]; cnt++; } if (cnt < k) { dp[u] = 1; return; } sort(a, a + cnt); dp[u] = a[cnt - k] + 1; } int sol1(int u, int f) { int ans = dp[u]; for (int i = head[u]; i; i = last[i]) { int v = to[i]; if (v == f) { continue; } int ans2 = sol1(v, u); if (ans2 > ans) { ans = ans2; } } answer += ans; return ans; } void dfs2(int u, int f, int a) { if (a == 1) { dp[u] = n; } else { int l = 8, r = dp[u]; while (l < r) { int mid = (l + r + 1) >> 1; int cnt = 0; for (int i = head[u]; i; i = last[i]) { int v = to[i]; if (v == f) { continue; } if (dp[v] >= mid) { cnt++; } } if (cnt >= mid) { l = mid; } else { r = mid - 1; } } dp[u] = l; } for (int i = head[u]; i; i = last[i]) { int v = to[i]; if (v == f) { continue; } dfs2(v, u, a); } } int sol2(int u, int f) { int ans = dp[u]; for (int i = head[u]; i; i = last[i]) { int v = to[i]; if (v == f) { continue; } int ans2 = sol2(v, u); if (ans2 > ans) { ans = ans2; } } answer += ans - 8; return ans; } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int u, v; scanf("%d%d", &u, &v); add(u, v); add(v, u); } if (n <= 8) { for (int i = 1; i <= n; i++) { dfs1(1, 0, i); sol1(1, 0); } printf("%lld\n", answer); return 0; } for (int i = 1; i <= 8; i++) { dfs1(1, 0, i); sol1(1, 0); } for (int i = 1; i <= 8; i++) { dfs2(1, 0, i); sol2(1, 0); } printf("%lld\n", answer); return 0; }
### Prompt Please formulate a cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int head[524288], last[1048576], to[1048576], cnt = 0; void add(int u, int v) { cnt++; last[cnt] = head[u]; head[u] = cnt; to[cnt] = v; } int dp[524288]; int a[524288]; long long answer = 0; int n; void dfs1(int u, int f, int k) { for (int i = head[u]; i; i = last[i]) { int v = to[i]; if (v == f) { continue; } dfs1(v, u, k); } int cnt = 0; for (int i = head[u]; i; i = last[i]) { int v = to[i]; if (v == f) { continue; } a[cnt] = dp[v]; cnt++; } if (cnt < k) { dp[u] = 1; return; } sort(a, a + cnt); dp[u] = a[cnt - k] + 1; } int sol1(int u, int f) { int ans = dp[u]; for (int i = head[u]; i; i = last[i]) { int v = to[i]; if (v == f) { continue; } int ans2 = sol1(v, u); if (ans2 > ans) { ans = ans2; } } answer += ans; return ans; } void dfs2(int u, int f, int a) { if (a == 1) { dp[u] = n; } else { int l = 8, r = dp[u]; while (l < r) { int mid = (l + r + 1) >> 1; int cnt = 0; for (int i = head[u]; i; i = last[i]) { int v = to[i]; if (v == f) { continue; } if (dp[v] >= mid) { cnt++; } } if (cnt >= mid) { l = mid; } else { r = mid - 1; } } dp[u] = l; } for (int i = head[u]; i; i = last[i]) { int v = to[i]; if (v == f) { continue; } dfs2(v, u, a); } } int sol2(int u, int f) { int ans = dp[u]; for (int i = head[u]; i; i = last[i]) { int v = to[i]; if (v == f) { continue; } int ans2 = sol2(v, u); if (ans2 > ans) { ans = ans2; } } answer += ans - 8; return ans; } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int u, v; scanf("%d%d", &u, &v); add(u, v); add(v, u); } if (n <= 8) { for (int i = 1; i <= n; i++) { dfs1(1, 0, i); sol1(1, 0); } printf("%lld\n", answer); return 0; } for (int i = 1; i <= 8; i++) { dfs1(1, 0, i); sol1(1, 0); } for (int i = 1; i <= 8; i++) { dfs2(1, 0, i); sol2(1, 0); } printf("%lld\n", answer); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int inf = 1e9 + 7; const long long linf = 1ll * inf * inf; const int N = 300000 + 7; const int M = 19; const int multipleTest = 0; vector<int> adj[N]; int n; long long ans = 0; int maxLen[N]; int maxK[N][M]; int maxP[N][M]; bool check(int u, int len, int k, int r) { int cnt = 0; for (int v : adj[u]) if (v != r) { if (maxK[v][len - 1] >= k) ++cnt; } return cnt >= k; } void dfs(int u, int r) { maxLen[u] = 1; for (int v : adj[u]) if (v != r) { dfs(v, u); maxLen[u] = max(maxLen[v] + 1, maxLen[u]); } ans += maxLen[u]; for (int len = M - 1; len > 1; --len) { int lo = (len == M - 1) ? 2 : maxK[u][len + 1] + 1; int hi = n; int res = lo - 1; while (lo <= hi) { int mid = (lo + hi) >> 1; if (check(u, len, mid, r)) { res = mid; lo = mid + 1; } else hi = mid - 1; } maxK[u][len] = res; } maxK[u][1] = n; for (int len = M - 1; len > 0; --len) maxP[u][len] = maxK[u][len]; for (int len = M - 1; len > 0; --len) { for (int v : adj[u]) if (v != r) { maxP[u][len] = max(maxP[u][len], maxP[v][len]); } if (len == M - 1) ans += (maxP[u][len] - 1) * len; else ans += (maxP[u][len] - maxP[u][len + 1]) * len; } } void solve() { cin >> n; for (int i = (1), _b = (n); i < _b; ++i) { int u, v; scanf("%d%d", &u, &v); adj[u].push_back(v); adj[v].push_back(u); } dfs(1, -1); cout << ans << '\n'; } int main() { int Test = 1; if (multipleTest) { cin >> Test; } for (int i = 0; i < Test; ++i) { solve(); } }
### Prompt Please create a solution in CPP to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int inf = 1e9 + 7; const long long linf = 1ll * inf * inf; const int N = 300000 + 7; const int M = 19; const int multipleTest = 0; vector<int> adj[N]; int n; long long ans = 0; int maxLen[N]; int maxK[N][M]; int maxP[N][M]; bool check(int u, int len, int k, int r) { int cnt = 0; for (int v : adj[u]) if (v != r) { if (maxK[v][len - 1] >= k) ++cnt; } return cnt >= k; } void dfs(int u, int r) { maxLen[u] = 1; for (int v : adj[u]) if (v != r) { dfs(v, u); maxLen[u] = max(maxLen[v] + 1, maxLen[u]); } ans += maxLen[u]; for (int len = M - 1; len > 1; --len) { int lo = (len == M - 1) ? 2 : maxK[u][len + 1] + 1; int hi = n; int res = lo - 1; while (lo <= hi) { int mid = (lo + hi) >> 1; if (check(u, len, mid, r)) { res = mid; lo = mid + 1; } else hi = mid - 1; } maxK[u][len] = res; } maxK[u][1] = n; for (int len = M - 1; len > 0; --len) maxP[u][len] = maxK[u][len]; for (int len = M - 1; len > 0; --len) { for (int v : adj[u]) if (v != r) { maxP[u][len] = max(maxP[u][len], maxP[v][len]); } if (len == M - 1) ans += (maxP[u][len] - 1) * len; else ans += (maxP[u][len] - maxP[u][len + 1]) * len; } } void solve() { cin >> n; for (int i = (1), _b = (n); i < _b; ++i) { int u, v; scanf("%d%d", &u, &v); adj[u].push_back(v); adj[v].push_back(u); } dfs(1, -1); cout << ans << '\n'; } int main() { int Test = 1; if (multipleTest) { cin >> Test; } for (int i = 0; i < Test; ++i) { solve(); } } ```
#include <bits/stdc++.h> using namespace std; inline char gc() { static char buf[100000], *p1 = buf, *p2 = buf; return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++; } inline int read() { int x = 0; char ch = getchar(); bool positive = 1; for (; !isdigit(ch); ch = getchar()) if (ch == '-') positive = 0; for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0'; return positive ? x : -x; } inline void write(int a) { if (a >= 10) write(a / 10); putchar('0' + a % 10); } inline void writeln(int a) { if (a < 0) { a = -a; putchar('-'); } write(a); puts(""); } const int N = 300005, B = 600; int BBB, n, quan, q[N], ycl[N]; unsigned char dp[N][B]; long long ans; vector<int> v[N]; int dfs(int p, int fa) { for (vector<int>::iterator it = v[p].begin(); it != v[p].end(); it++) if (*it == fa) { v[p].erase(it); break; } int son = v[p].size(), t = v[p].size(); for (unsigned i = 0; i < v[p].size(); i++) { t = max(t, dfs(v[p][i], p)); ycl[p] = max(ycl[p], ycl[v[p][i]]); } ans += ++ycl[p]; for (int i = 1; i * i <= n; i++) if (v[p].size() >= i) { for (unsigned j = 0; j < v[p].size(); j++) { q[j] = dp[v[p][j]][i]; } nth_element(&q[0], q + (int)v[p].size() - i, &q[v[p].size()]); dp[p][i] = q[v[p].size() - i] + 1; } else { dp[p][i] = 1; } ans += max(t - BBB, 0) * 2 + (n - max(t, BBB)); return t; } void solve(int p) { for (unsigned i = 0; i < v[p].size(); i++) { solve(v[p][i]); for (int j = 1; j * j <= n; j++) dp[p][j] = max(dp[p][j], dp[v[p][i]][j]); } for (int i = 2; i * i <= n; i++) ans += dp[p][i]; } int main() { n = read(); BBB = sqrt(n); for (int i = 1; i < n; i++) { int s = read(), t = read(); v[s].push_back(t); v[t].push_back(s); } dfs(1, 0); solve(1); cout << ans << endl; }
### Prompt Please create a solution in cpp to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; inline char gc() { static char buf[100000], *p1 = buf, *p2 = buf; return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++; } inline int read() { int x = 0; char ch = getchar(); bool positive = 1; for (; !isdigit(ch); ch = getchar()) if (ch == '-') positive = 0; for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0'; return positive ? x : -x; } inline void write(int a) { if (a >= 10) write(a / 10); putchar('0' + a % 10); } inline void writeln(int a) { if (a < 0) { a = -a; putchar('-'); } write(a); puts(""); } const int N = 300005, B = 600; int BBB, n, quan, q[N], ycl[N]; unsigned char dp[N][B]; long long ans; vector<int> v[N]; int dfs(int p, int fa) { for (vector<int>::iterator it = v[p].begin(); it != v[p].end(); it++) if (*it == fa) { v[p].erase(it); break; } int son = v[p].size(), t = v[p].size(); for (unsigned i = 0; i < v[p].size(); i++) { t = max(t, dfs(v[p][i], p)); ycl[p] = max(ycl[p], ycl[v[p][i]]); } ans += ++ycl[p]; for (int i = 1; i * i <= n; i++) if (v[p].size() >= i) { for (unsigned j = 0; j < v[p].size(); j++) { q[j] = dp[v[p][j]][i]; } nth_element(&q[0], q + (int)v[p].size() - i, &q[v[p].size()]); dp[p][i] = q[v[p].size() - i] + 1; } else { dp[p][i] = 1; } ans += max(t - BBB, 0) * 2 + (n - max(t, BBB)); return t; } void solve(int p) { for (unsigned i = 0; i < v[p].size(); i++) { solve(v[p][i]); for (int j = 1; j * j <= n; j++) dp[p][j] = max(dp[p][j], dp[v[p][i]][j]); } for (int i = 2; i * i <= n; i++) ans += dp[p][i]; } int main() { n = read(); BBB = sqrt(n); for (int i = 1; i < n; i++) { int s = read(), t = read(); v[s].push_back(t); v[t].push_back(s); } dfs(1, 0); solve(1); cout << ans << endl; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 3E5 + 77; const int log2maxn = 23; struct EDGE { int to, next; } edges[maxn * 2]; int cEdge = 1, head[maxn]; void addEdge(int from, int to) { edges[cEdge] = (EDGE){to, head[from]}; head[from] = cEdge++; } int N, V[maxn][log2maxn]; int X[maxn], Y[maxn], ce = 0, C[maxn], K[maxn]; void dfs1(int u, int f) { for (int k = head[u]; k; k = edges[k].next) { int v = edges[k].to; if (v == f) continue; X[ce] = u; Y[ce] = v; ++ce; ++C[u]; dfs1(v, u); } } void dfs2(int u) { for (int d = 1; d < log2maxn; ++d) V[u][d] = max(V[u][d], 1); for (int k = head[u]; k; k = edges[k].next) { int v = edges[k].to; dfs2(v); for (int d = 1; d < log2maxn; ++d) V[u][d] = max(V[u][d], V[v][d]); } } int dfs3(int u, long long &ans) { int d = 1; for (int k = head[u]; k; k = edges[k].next) { int v = edges[k].to; d = max(d, dfs3(v, ans) + 1); } ans += d; return d; } int main() { scanf("%d", &N); for (int i = 1; i <= N; ++i) V[i][1] = N; for (int i = 1; i < N; ++i) { int u, v; scanf("%d%d", &u, &v); addEdge(u, v); addEdge(v, u); } dfs1(1, 0); cEdge = 1; memset(head, 0, sizeof(head)); for (int i = 0; i < ce; ++i) addEdge(X[i], Y[i]); for (int d = 2; d < log2maxn; ++d) for (int u = 1; u <= N; ++u) { for (int k = head[u]; k; k = edges[k].next) { int v = edges[k].to, w = V[v][d - 1]; if (w >= C[u]) w = C[u]; K[w]++; } for (int i = C[u] - 1; i >= 0; --i) K[i] += K[i + 1]; for (int i = C[u]; i; --i) if (K[i] >= i) { V[u][d] = i; break; } for (int i = 0; i <= C[u]; ++i) K[i] = 0; } dfs2(1); long long ans = 0; for (int u = 1; u <= N; ++u) { for (int d = 1; d < log2maxn - 1; ++d) { if (V[d][d] < V[d][d + 1]) cerr << "??" << endl; ans += d * (V[u][d] - V[u][d + 1]); } } dfs3(1, ans); cout << ans << endl; }
### Prompt Please create a solution in Cpp to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 3E5 + 77; const int log2maxn = 23; struct EDGE { int to, next; } edges[maxn * 2]; int cEdge = 1, head[maxn]; void addEdge(int from, int to) { edges[cEdge] = (EDGE){to, head[from]}; head[from] = cEdge++; } int N, V[maxn][log2maxn]; int X[maxn], Y[maxn], ce = 0, C[maxn], K[maxn]; void dfs1(int u, int f) { for (int k = head[u]; k; k = edges[k].next) { int v = edges[k].to; if (v == f) continue; X[ce] = u; Y[ce] = v; ++ce; ++C[u]; dfs1(v, u); } } void dfs2(int u) { for (int d = 1; d < log2maxn; ++d) V[u][d] = max(V[u][d], 1); for (int k = head[u]; k; k = edges[k].next) { int v = edges[k].to; dfs2(v); for (int d = 1; d < log2maxn; ++d) V[u][d] = max(V[u][d], V[v][d]); } } int dfs3(int u, long long &ans) { int d = 1; for (int k = head[u]; k; k = edges[k].next) { int v = edges[k].to; d = max(d, dfs3(v, ans) + 1); } ans += d; return d; } int main() { scanf("%d", &N); for (int i = 1; i <= N; ++i) V[i][1] = N; for (int i = 1; i < N; ++i) { int u, v; scanf("%d%d", &u, &v); addEdge(u, v); addEdge(v, u); } dfs1(1, 0); cEdge = 1; memset(head, 0, sizeof(head)); for (int i = 0; i < ce; ++i) addEdge(X[i], Y[i]); for (int d = 2; d < log2maxn; ++d) for (int u = 1; u <= N; ++u) { for (int k = head[u]; k; k = edges[k].next) { int v = edges[k].to, w = V[v][d - 1]; if (w >= C[u]) w = C[u]; K[w]++; } for (int i = C[u] - 1; i >= 0; --i) K[i] += K[i + 1]; for (int i = C[u]; i; --i) if (K[i] >= i) { V[u][d] = i; break; } for (int i = 0; i <= C[u]; ++i) K[i] = 0; } dfs2(1); long long ans = 0; for (int u = 1; u <= N; ++u) { for (int d = 1; d < log2maxn - 1; ++d) { if (V[d][d] < V[d][d + 1]) cerr << "??" << endl; ans += d * (V[u][d] - V[u][d + 1]); } } dfs3(1, ans); cout << ans << endl; } ```
#include <bits/stdc++.h> using namespace std; int m, k; long long ans; const int N = 330000; int h[N], dp[N], mdp[N], cnt[N], par[N], chd[N]; vector<int> adj[N]; vector<int> V; void dfs(int u, int p) { V.push_back(u); par[u] = p; for (int v : adj[u]) { if (v == p) continue; dfs(v, u); } chd[u] = adj[u].size() - (u != 1); for (int v : adj[u]) { if (v == p) continue; h[u] = max(h[u], h[v] + 1); chd[u] = max(chd[u], chd[v]); } ans += h[u]; } int from[N], cc[N]; int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { int u, v; scanf("%d%d", &u, &v); adj[u].push_back(v); adj[v].push_back(u); } m = 0; ans = 1LL * n * n; m = 1; dfs(1, 0); reverse(V.begin(), V.end()); int sum = 0; int _m = 1; for (m = 2; 1LL * m * (m + 1) + 1 <= n; m++) { long long s = 1, t = 1; k = 0; while (s <= n) t *= m, s += t, k++; for (int i = 1; i <= n; i++) mdp[i] = 0; sum += k; if (k >= 4) { for (int u : V) { for (int v : adj[u]) { if (v == par[u]) continue; mdp[u] = max(mdp[u], mdp[v]); } int c = adj[u].size() - (u != 1); dp[u] = 0; if (mdp[u] < k - 1) { if (c >= m) { for (int j = 0; j < k; j++) cnt[j] = 0; for (int v : adj[u]) { if (v == par[u]) continue; cnt[dp[v]]++; } for (int j = k - 2; j >= 0; j--) { cnt[j] += cnt[j + 1]; if (cnt[j] >= m) { dp[u] = j + 1; break; } } mdp[u] = max(mdp[u], dp[u]); } } ans += mdp[u]; } _m = m; } else { for (int u : V) { cc[u] = adj[u].size() - (u != 1); from[u] = 0; int cn = 0; for (int v : adj[u]) { if (v == par[u]) continue; cnt[cn++] = cc[v]; from[u] = max(from[u], from[v]); } sort(cnt, cnt + cn); int t = 0; for (int j = cn - 1; j >= 0; j--) { if (cnt[j] < cn - j) break; t = max(t, cn - j); } from[u] = max(from[u], t); if (from[u] >= m) ans += from[u] - m + 1; } break; } } for (int i = 0; i <= n; i++) cnt[i] = 0; for (int i = 1; i <= n; i++) cnt[chd[i]]++; for (int i = n - 1; i >= 0; i--) cnt[i] += cnt[i + 1]; for (m = _m + 1; m <= n; m++) ans += cnt[m]; cout << ans << endl; return 0; }
### Prompt Please create a solution in CPP to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int m, k; long long ans; const int N = 330000; int h[N], dp[N], mdp[N], cnt[N], par[N], chd[N]; vector<int> adj[N]; vector<int> V; void dfs(int u, int p) { V.push_back(u); par[u] = p; for (int v : adj[u]) { if (v == p) continue; dfs(v, u); } chd[u] = adj[u].size() - (u != 1); for (int v : adj[u]) { if (v == p) continue; h[u] = max(h[u], h[v] + 1); chd[u] = max(chd[u], chd[v]); } ans += h[u]; } int from[N], cc[N]; int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { int u, v; scanf("%d%d", &u, &v); adj[u].push_back(v); adj[v].push_back(u); } m = 0; ans = 1LL * n * n; m = 1; dfs(1, 0); reverse(V.begin(), V.end()); int sum = 0; int _m = 1; for (m = 2; 1LL * m * (m + 1) + 1 <= n; m++) { long long s = 1, t = 1; k = 0; while (s <= n) t *= m, s += t, k++; for (int i = 1; i <= n; i++) mdp[i] = 0; sum += k; if (k >= 4) { for (int u : V) { for (int v : adj[u]) { if (v == par[u]) continue; mdp[u] = max(mdp[u], mdp[v]); } int c = adj[u].size() - (u != 1); dp[u] = 0; if (mdp[u] < k - 1) { if (c >= m) { for (int j = 0; j < k; j++) cnt[j] = 0; for (int v : adj[u]) { if (v == par[u]) continue; cnt[dp[v]]++; } for (int j = k - 2; j >= 0; j--) { cnt[j] += cnt[j + 1]; if (cnt[j] >= m) { dp[u] = j + 1; break; } } mdp[u] = max(mdp[u], dp[u]); } } ans += mdp[u]; } _m = m; } else { for (int u : V) { cc[u] = adj[u].size() - (u != 1); from[u] = 0; int cn = 0; for (int v : adj[u]) { if (v == par[u]) continue; cnt[cn++] = cc[v]; from[u] = max(from[u], from[v]); } sort(cnt, cnt + cn); int t = 0; for (int j = cn - 1; j >= 0; j--) { if (cnt[j] < cn - j) break; t = max(t, cn - j); } from[u] = max(from[u], t); if (from[u] >= m) ans += from[u] - m + 1; } break; } } for (int i = 0; i <= n; i++) cnt[i] = 0; for (int i = 1; i <= n; i++) cnt[chd[i]]++; for (int i = n - 1; i >= 0; i--) cnt[i] += cnt[i + 1]; for (m = _m + 1; m <= n; m++) ans += cnt[m]; cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int mod1 = 1e9 + 7, mod2 = 998244353, maxn = 3e5 + 5, maxlog = 20, K = 26; const long long infll = 1e18; const double pi = acos(-1); int n, h[maxn], f[maxn][20], g[maxn][20]; long long res = 0; vector<int> gr[maxn]; void dfs(int u, int pa) { for (auto v : gr[u]) { if (v != pa) { dfs(v, u); h[u] = max(h[u], h[v] + 1); } } f[u][1] = g[u][1] = n; for (long long dep = 2; dep <= 19; ++dep) { int lo = 0, hi = n; while (lo < hi) { int mid = (lo + hi + 1) >> 1; int cnt = 0; for (auto v : gr[u]) { if (v != pa) { if (g[v][dep - 1] >= mid) { cnt++; } } } if (cnt >= mid) lo = mid; else hi = mid - 1; } g[u][dep] = lo; for (auto v : gr[u]) { if (v != pa) f[u][dep] = max(f[u][dep], f[v][dep]); } f[u][dep] = max(f[u][dep], g[u][dep]); } } void solve() { cin >> n; for (long long i = 1; i < n; ++i) { int u, v; cin >> u >> v; gr[u].push_back(v); gr[v].push_back(u); } dfs(1, 0); for (long long u = 1; u <= n; ++u) { res += h[u]; } for (long long u = 1; u <= n; ++u) { for (long long dep = 1; dep <= 19; ++dep) { int lo = 2; if (dep < 19) lo = max(lo, f[u][dep + 1] + 1); int hi = f[u][dep]; if (lo <= hi) { res += 1ll * (hi - lo + 1) * (dep - 1); } } } res += 1ll * n * n; cout << res; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); solve(); }
### Prompt Your task is to create a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int mod1 = 1e9 + 7, mod2 = 998244353, maxn = 3e5 + 5, maxlog = 20, K = 26; const long long infll = 1e18; const double pi = acos(-1); int n, h[maxn], f[maxn][20], g[maxn][20]; long long res = 0; vector<int> gr[maxn]; void dfs(int u, int pa) { for (auto v : gr[u]) { if (v != pa) { dfs(v, u); h[u] = max(h[u], h[v] + 1); } } f[u][1] = g[u][1] = n; for (long long dep = 2; dep <= 19; ++dep) { int lo = 0, hi = n; while (lo < hi) { int mid = (lo + hi + 1) >> 1; int cnt = 0; for (auto v : gr[u]) { if (v != pa) { if (g[v][dep - 1] >= mid) { cnt++; } } } if (cnt >= mid) lo = mid; else hi = mid - 1; } g[u][dep] = lo; for (auto v : gr[u]) { if (v != pa) f[u][dep] = max(f[u][dep], f[v][dep]); } f[u][dep] = max(f[u][dep], g[u][dep]); } } void solve() { cin >> n; for (long long i = 1; i < n; ++i) { int u, v; cin >> u >> v; gr[u].push_back(v); gr[v].push_back(u); } dfs(1, 0); for (long long u = 1; u <= n; ++u) { res += h[u]; } for (long long u = 1; u <= n; ++u) { for (long long dep = 1; dep <= 19; ++dep) { int lo = 2; if (dep < 19) lo = max(lo, f[u][dep + 1] + 1); int hi = f[u][dep]; if (lo <= hi) { res += 1ll * (hi - lo + 1) * (dep - 1); } } } res += 1ll * n * n; cout << res; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); solve(); } ```
#include <bits/stdc++.h> using namespace std; const int oo = 0x3f3f3f3f; const long long ooo = 9223372036854775807ll; const int _cnt = 1000 * 1000 + 7; const int _p = 1000 * 1000 * 1000 + 7; const int N = 300005; const double PI = acos(-1.0); const double eps = 1e-9; int o(int x) { return x % _p; } int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } int lcm(int a, int b) { return a / gcd(a, b) * b; } void file_put() { freopen("filename.in", "r", stdin); freopen("filename.out", "w", stdout); } vector<int> V[N]; int n, dp[N][21], h[N][21], tmp[N], len[N], tot, x, y; long long ans = 0; inline bool cmp(int x, int y) { return x > y; } void dfs(int x, int f) { for (__typeof((V[x]).begin()) it = (V[x]).begin(); it != (V[x]).end(); it++) if (*it != f) dfs(*it, x), len[x] = ((len[x]) > (len[*it]) ? (len[x]) : (len[*it])); ans += ++len[x]; dp[x][1] = h[x][1] = n; for (int p = (2); p <= (20); ++p) { tot = 0; for (__typeof((V[x]).begin()) it = (V[x]).begin(); it != (V[x]).end(); it++) if (*it != f) tmp[++tot] = dp[*it][p - 1]; sort(tmp + 1, tmp + 1 + tot, cmp); for (int k = (tot); k >= (2); --k) if (tmp[k] >= k) { h[x][p] = dp[x][p] = k; break; } for (__typeof((V[x]).begin()) it = (V[x]).begin(); it != (V[x]).end(); it++) if (*it != f) h[x][p] = ((h[x][p]) > (h[*it][p]) ? (h[x][p]) : (h[*it][p])); } for (int i = (1); i <= (20); ++i) { ans += (long long)i * (h[x][i] - h[x][i + 1]); if (!h[x][i + 1]) { ans -= i; break; } } } int main() { scanf("%d", &n); for (int i = (1); i <= (n - 1); ++i) scanf("%d%d", &x, &y), V[x].push_back(y), V[y].push_back(x); dfs(1, 0); printf("%I64d\n", ans); return 0; }
### Prompt Create a solution in Cpp for the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int oo = 0x3f3f3f3f; const long long ooo = 9223372036854775807ll; const int _cnt = 1000 * 1000 + 7; const int _p = 1000 * 1000 * 1000 + 7; const int N = 300005; const double PI = acos(-1.0); const double eps = 1e-9; int o(int x) { return x % _p; } int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } int lcm(int a, int b) { return a / gcd(a, b) * b; } void file_put() { freopen("filename.in", "r", stdin); freopen("filename.out", "w", stdout); } vector<int> V[N]; int n, dp[N][21], h[N][21], tmp[N], len[N], tot, x, y; long long ans = 0; inline bool cmp(int x, int y) { return x > y; } void dfs(int x, int f) { for (__typeof((V[x]).begin()) it = (V[x]).begin(); it != (V[x]).end(); it++) if (*it != f) dfs(*it, x), len[x] = ((len[x]) > (len[*it]) ? (len[x]) : (len[*it])); ans += ++len[x]; dp[x][1] = h[x][1] = n; for (int p = (2); p <= (20); ++p) { tot = 0; for (__typeof((V[x]).begin()) it = (V[x]).begin(); it != (V[x]).end(); it++) if (*it != f) tmp[++tot] = dp[*it][p - 1]; sort(tmp + 1, tmp + 1 + tot, cmp); for (int k = (tot); k >= (2); --k) if (tmp[k] >= k) { h[x][p] = dp[x][p] = k; break; } for (__typeof((V[x]).begin()) it = (V[x]).begin(); it != (V[x]).end(); it++) if (*it != f) h[x][p] = ((h[x][p]) > (h[*it][p]) ? (h[x][p]) : (h[*it][p])); } for (int i = (1); i <= (20); ++i) { ans += (long long)i * (h[x][i] - h[x][i + 1]); if (!h[x][i + 1]) { ans -= i; break; } } } int main() { scanf("%d", &n); for (int i = (1); i <= (n - 1); ++i) scanf("%d%d", &x, &y), V[x].push_back(y), V[y].push_back(x); dfs(1, 0); printf("%I64d\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const long long int Maxn3 = 1e3 + 10; const long long int Maxn4 = 1e4 + 10; const long long int Maxn5 = 1e5 + 10; const long long int Maxn6 = 1e6 + 10; const long long int Maxn7 = 1e7 + 10; const long long int Maxn8 = 1e8 + 10; const long long int Maxn9 = 1e9 + 10; const long long int Maxn18 = 1e18 + 10; const long long int Mod1 = 1e7 + 7; const long long int Mod2 = 1e9 + 7; const long long int LLMax = LLONG_MAX; const long long int LLMin = LLONG_MIN; const long long int INTMax = INT_MAX; const long long int INTMin = INT_MIN; long long int mn = LLMax, mx = LLMin; vector<long long int> g[3 * Maxn5]; long long int f[3 * Maxn5][32], w[3 * Maxn5], a[3 * Maxn5], m, n; void dfs(long long int x, long long int p) { w[x] = 1; for (long long int y : g[x]) if (y != p) dfs(y, x), ((w[x]) = max((w[x]), (1 + w[y]))); f[x][1] = n; for (long long int i = 2; i < 21; i++) { long long int m = 0; for (long long int y : g[x]) if (y != p) a[m++] = f[y][i - 1]; sort(a, a + m); reverse(a, a + m); f[x][i] = 0; while (f[x][i] < m and a[f[x][i]] > f[x][i]) f[x][i]++; ((f[x][i]) = max((f[x][i]), (1ll))); } f[x][21] = 1; } void dfs2(long long int x, long long int p) { for (long long int y : g[x]) if (y != p) { dfs2(y, x); for (long long int i = 1; i < 21; i++) ((f[x][i]) = max((f[x][i]), (f[y][i]))); } } int main() { ios_base::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL); scanf("%lld", &n); for (long long int i = 1; i < n; i++) { long long int u, v; scanf("%lld %lld", &u, &v); u--; v--; g[u].push_back(v), g[v].push_back(u); } dfs(0ll, -1ll); dfs2(0ll, -1ll); long long int res = 0; for (long long int i = 0; i < n; i++) { res += w[i]; for (long long int j = 1; j < 21; j++) res += j * (f[i][j] - f[i][j + 1]); } return cout << res, 0; }
### Prompt In Cpp, your task is to solve the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long int Maxn3 = 1e3 + 10; const long long int Maxn4 = 1e4 + 10; const long long int Maxn5 = 1e5 + 10; const long long int Maxn6 = 1e6 + 10; const long long int Maxn7 = 1e7 + 10; const long long int Maxn8 = 1e8 + 10; const long long int Maxn9 = 1e9 + 10; const long long int Maxn18 = 1e18 + 10; const long long int Mod1 = 1e7 + 7; const long long int Mod2 = 1e9 + 7; const long long int LLMax = LLONG_MAX; const long long int LLMin = LLONG_MIN; const long long int INTMax = INT_MAX; const long long int INTMin = INT_MIN; long long int mn = LLMax, mx = LLMin; vector<long long int> g[3 * Maxn5]; long long int f[3 * Maxn5][32], w[3 * Maxn5], a[3 * Maxn5], m, n; void dfs(long long int x, long long int p) { w[x] = 1; for (long long int y : g[x]) if (y != p) dfs(y, x), ((w[x]) = max((w[x]), (1 + w[y]))); f[x][1] = n; for (long long int i = 2; i < 21; i++) { long long int m = 0; for (long long int y : g[x]) if (y != p) a[m++] = f[y][i - 1]; sort(a, a + m); reverse(a, a + m); f[x][i] = 0; while (f[x][i] < m and a[f[x][i]] > f[x][i]) f[x][i]++; ((f[x][i]) = max((f[x][i]), (1ll))); } f[x][21] = 1; } void dfs2(long long int x, long long int p) { for (long long int y : g[x]) if (y != p) { dfs2(y, x); for (long long int i = 1; i < 21; i++) ((f[x][i]) = max((f[x][i]), (f[y][i]))); } } int main() { ios_base::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL); scanf("%lld", &n); for (long long int i = 1; i < n; i++) { long long int u, v; scanf("%lld %lld", &u, &v); u--; v--; g[u].push_back(v), g[v].push_back(u); } dfs(0ll, -1ll); dfs2(0ll, -1ll); long long int res = 0; for (long long int i = 0; i < n; i++) { res += w[i]; for (long long int j = 1; j < 21; j++) res += j * (f[i][j] - f[i][j + 1]); } return cout << res, 0; } ```
#include <bits/stdc++.h> using namespace std; template <typename T> void maxify(T& x, const T& y) { y > x && (x = y); } typedef const int& ci; struct node { int v, nxt; __inline__ __attribute__((always_inline)) node() {} __inline__ __attribute__((always_inline)) node(ci _v, ci _nxt) : v(_v), nxt(_nxt) {} }; struct graph { int head[300000 + 1], cnt; node edge[300000 << 1]; __inline__ __attribute__((always_inline)) void build() { memset(head, 0, sizeof(head)), cnt = 0; } __inline__ __attribute__((always_inline)) void insert(ci u, ci v) { push(u, v); push(v, u); } __inline__ __attribute__((always_inline)) void push(ci u, ci v) { edge[++cnt] = node(v, head[u]); head[u] = cnt; } }; graph g; int dp1[300000 + 1][20 + 1], dp2[300000 + 1][20 + 1], dp3[300000 + 1]; int son[300000 + 1], tmp[300000 + 1]; int n; long long ans = 0; void dfs(ci u, ci p = 0) { int x = 0; for (int i = g.head[u], v; i; i = g.edge[i].nxt) if ((v = g.edge[i].v) != p) { dfs(v, u); maxify(x, dp3[v]); } ans += dp3[u] = x + 1; int* cnt = son; for (int i = g.head[u], v; i; i = g.edge[i].nxt) if ((v = g.edge[i].v) != p) *++cnt = v; dp1[u][1] = dp2[u][1] = n; if (cnt == son) { ans += n - 1; memset(dp1[0] + 1, 0, ((20 - 1) << 2)); memset(dp2[0] + 1, 0, ((20 - 1) << 2)); return; } for (int k = 1, *i, *tp, kk = 1; k < 20; k = kk, maxify(dp2[u][kk], dp1[u][kk] = tp - i)) { tp = tmp, ++kk; for (int *i = son, &t = dp2[u][kk]; ++i <= cnt; *++tp = dp1[*i][k], maxify(t, dp2[*i][kk])) ; sort(tmp + 1, tp + 1), i = tp; for (int* x = tp + 1; i > tmp && x - i <= *i; --i) ; } for (int k = 1; k < 20; ++k) { int x = dp2[u][k], y = dp2[u][k + 1]; if (!y) y = 1; ans += k * (long long)(x - y); if (y == 1) break; } } int main() { scanf("%d", &n), g.build(); for (int i = n, u, v; --i; g.insert(u, v)) scanf("%d%d", &u, &v); dfs(1); printf("%lld\n", ans); return 0; }
### Prompt Generate a cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename T> void maxify(T& x, const T& y) { y > x && (x = y); } typedef const int& ci; struct node { int v, nxt; __inline__ __attribute__((always_inline)) node() {} __inline__ __attribute__((always_inline)) node(ci _v, ci _nxt) : v(_v), nxt(_nxt) {} }; struct graph { int head[300000 + 1], cnt; node edge[300000 << 1]; __inline__ __attribute__((always_inline)) void build() { memset(head, 0, sizeof(head)), cnt = 0; } __inline__ __attribute__((always_inline)) void insert(ci u, ci v) { push(u, v); push(v, u); } __inline__ __attribute__((always_inline)) void push(ci u, ci v) { edge[++cnt] = node(v, head[u]); head[u] = cnt; } }; graph g; int dp1[300000 + 1][20 + 1], dp2[300000 + 1][20 + 1], dp3[300000 + 1]; int son[300000 + 1], tmp[300000 + 1]; int n; long long ans = 0; void dfs(ci u, ci p = 0) { int x = 0; for (int i = g.head[u], v; i; i = g.edge[i].nxt) if ((v = g.edge[i].v) != p) { dfs(v, u); maxify(x, dp3[v]); } ans += dp3[u] = x + 1; int* cnt = son; for (int i = g.head[u], v; i; i = g.edge[i].nxt) if ((v = g.edge[i].v) != p) *++cnt = v; dp1[u][1] = dp2[u][1] = n; if (cnt == son) { ans += n - 1; memset(dp1[0] + 1, 0, ((20 - 1) << 2)); memset(dp2[0] + 1, 0, ((20 - 1) << 2)); return; } for (int k = 1, *i, *tp, kk = 1; k < 20; k = kk, maxify(dp2[u][kk], dp1[u][kk] = tp - i)) { tp = tmp, ++kk; for (int *i = son, &t = dp2[u][kk]; ++i <= cnt; *++tp = dp1[*i][k], maxify(t, dp2[*i][kk])) ; sort(tmp + 1, tp + 1), i = tp; for (int* x = tp + 1; i > tmp && x - i <= *i; --i) ; } for (int k = 1; k < 20; ++k) { int x = dp2[u][k], y = dp2[u][k + 1]; if (!y) y = 1; ans += k * (long long)(x - y); if (y == 1) break; } } int main() { scanf("%d", &n), g.build(); for (int i = n, u, v; --i; g.insert(u, v)) scanf("%d%d", &u, &v); dfs(1); printf("%lld\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 3e5 + 99; struct edge { int to, nxt; } e[maxn << 1]; int head[maxn], tot; void add(int x, int y) { e[++tot].to = y; e[tot].nxt = head[x]; head[x] = tot; } int f[maxn][30], b[maxn], n, siz, top, stac[maxn], g[maxn], fa[maxn]; long long ans = 0; vector<pair<int, int> > h[maxn]; void dp(int x) { g[x] = 1; f[x][1] = n; for (int i = head[x]; i; i = e[i].nxt) { int y = e[i].to; if (y == fa[x]) continue; fa[y] = x; dp(y); g[x] = max(g[x], g[y] + 1); } ans += g[x]; for (int j = 2; j < 30; j++) { top = 0; for (int i = head[x]; i; i = e[i].nxt) { int y = e[i].to; if (y == fa[x]) continue; stac[++top] = f[y][j - 1]; } sort(stac + 1, stac + 1 + top, greater<int>()); for (int i = top; i; i--) if (stac[i] >= i) { f[x][j] = i; break; } h[f[x][j]].push_back(make_pair(x, j)); } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int x, y; scanf("%d%d", &x, &y); add(x, y); add(y, x); } dp(1); long long sum = n; for (int i = 1; i <= n; i++) g[i] = 1; for (int k = n; k > 1; k--) { for (int i = 0; i < h[k].size(); i++) { int x = h[k][i].first, now = h[k][i].second; while (x) { if (now < g[x]) break; sum += now - g[x]; g[x] = now; x = fa[x]; } } ans += sum; } cout << ans; }
### Prompt Please create a solution in Cpp to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 3e5 + 99; struct edge { int to, nxt; } e[maxn << 1]; int head[maxn], tot; void add(int x, int y) { e[++tot].to = y; e[tot].nxt = head[x]; head[x] = tot; } int f[maxn][30], b[maxn], n, siz, top, stac[maxn], g[maxn], fa[maxn]; long long ans = 0; vector<pair<int, int> > h[maxn]; void dp(int x) { g[x] = 1; f[x][1] = n; for (int i = head[x]; i; i = e[i].nxt) { int y = e[i].to; if (y == fa[x]) continue; fa[y] = x; dp(y); g[x] = max(g[x], g[y] + 1); } ans += g[x]; for (int j = 2; j < 30; j++) { top = 0; for (int i = head[x]; i; i = e[i].nxt) { int y = e[i].to; if (y == fa[x]) continue; stac[++top] = f[y][j - 1]; } sort(stac + 1, stac + 1 + top, greater<int>()); for (int i = top; i; i--) if (stac[i] >= i) { f[x][j] = i; break; } h[f[x][j]].push_back(make_pair(x, j)); } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int x, y; scanf("%d%d", &x, &y); add(x, y); add(y, x); } dp(1); long long sum = n; for (int i = 1; i <= n; i++) g[i] = 1; for (int k = n; k > 1; k--) { for (int i = 0; i < h[k].size(); i++) { int x = h[k][i].first, now = h[k][i].second; while (x) { if (now < g[x]) break; sum += now - g[x]; g[x] = now; x = fa[x]; } } ans += sum; } cout << ans; } ```
#include <bits/stdc++.h> using namespace std; const long long N = 3e5 + 5; long long n; vector<long long> G[N]; long long dp[N][20][2]; long long lev[N]; void dfs(long long u, long long p) { vector<long long> ver; for (long long i = 0; i < G[u].size(); ++i) { long long v = G[u][i]; if (v == p) continue; dfs(v, u); lev[u] = max(lev[u], lev[v] + 1); ver.push_back(v); } dp[u][1][0] = dp[u][1][1] = n; for (long long i = 2; i <= 19; ++i) { long long l = 0, r = n; while (l < r) { long long mid = l + r + 1 >> 1; long long cnt = 0; for (long long j = 0; j < ver.size(); ++j) { long long v = ver[j]; if (dp[v][i - 1][0] >= mid) cnt++; } if (cnt >= mid) l = mid; else r = mid - 1; } dp[u][i][0] = l; for (long long j = 0; j < ver.size(); ++j) { long long v = ver[j]; dp[u][i][1] = max(dp[u][i][1], dp[v][i][1]); } dp[u][i][1] = max(dp[u][i][1], dp[u][i][0]); } } signed main() { ios_base::sync_with_stdio(0); cin >> n; for (long long i = 0; i < n - 1; ++i) { long long u, v; cin >> u >> v; G[u].push_back(v), G[v].push_back(u); } dfs(1, 1); long long res = 0; for (long long i = 1; i <= n; ++i) res += lev[i]; for (long long u = 1; u <= n; ++u) { for (long long i = 1; i <= 19; ++i) { long long l = 2; if (i <= 18) l = max(l, dp[u][i + 1][1] + 1); long long r = dp[u][i][1]; if (l <= r) res += (r - l + 1) * (i - 1); } } res += n * n; cout << res << '\n'; }
### Prompt Generate a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const long long N = 3e5 + 5; long long n; vector<long long> G[N]; long long dp[N][20][2]; long long lev[N]; void dfs(long long u, long long p) { vector<long long> ver; for (long long i = 0; i < G[u].size(); ++i) { long long v = G[u][i]; if (v == p) continue; dfs(v, u); lev[u] = max(lev[u], lev[v] + 1); ver.push_back(v); } dp[u][1][0] = dp[u][1][1] = n; for (long long i = 2; i <= 19; ++i) { long long l = 0, r = n; while (l < r) { long long mid = l + r + 1 >> 1; long long cnt = 0; for (long long j = 0; j < ver.size(); ++j) { long long v = ver[j]; if (dp[v][i - 1][0] >= mid) cnt++; } if (cnt >= mid) l = mid; else r = mid - 1; } dp[u][i][0] = l; for (long long j = 0; j < ver.size(); ++j) { long long v = ver[j]; dp[u][i][1] = max(dp[u][i][1], dp[v][i][1]); } dp[u][i][1] = max(dp[u][i][1], dp[u][i][0]); } } signed main() { ios_base::sync_with_stdio(0); cin >> n; for (long long i = 0; i < n - 1; ++i) { long long u, v; cin >> u >> v; G[u].push_back(v), G[v].push_back(u); } dfs(1, 1); long long res = 0; for (long long i = 1; i <= n; ++i) res += lev[i]; for (long long u = 1; u <= n; ++u) { for (long long i = 1; i <= 19; ++i) { long long l = 2; if (i <= 18) l = max(l, dp[u][i + 1][1] + 1); long long r = dp[u][i][1]; if (l <= r) res += (r - l + 1) * (i - 1); } } res += n * n; cout << res << '\n'; } ```
#include <bits/stdc++.h> using namespace std; mt19937 rnd(chrono::high_resolution_clock::now().time_since_epoch().count()); const long long inf = 1e9 + 7; const long long max_n = 3e5 + 3; long long n; vector<long long> gr[max_n]; vector<long long> dp[max_n]; long long mx_k[max_n]; void dfs(long long v, long long pr) { vector<long long> ch; for (long long to : gr[v]) { if (to == pr) continue; dfs(to, v); ch.emplace_back(to); } vector<vector<long long>> a((long long)(ch.size())); for (long long to : ch) { for (long long i = 0; i < min((long long)(ch.size()), mx_k[to]); i++) { if ((long long)(dp[to].size()) > i) a[i].emplace_back(dp[to][i]); else a[i].emplace_back(2); } } for (long long k = 1; k <= (long long)(ch.size()); k++) { sort(a[k - 1].begin(), a[k - 1].end()); reverse(a[k - 1].begin(), a[k - 1].end()); if ((long long)(a[k - 1].size()) > k - 1) dp[v].emplace_back(a[k - 1][k - 1] + 1); } mx_k[v] = (long long)(ch.size()); } void dfs1(long long v, long long pr) { for (long long to : gr[v]) { if (to == pr) continue; dfs1(to, v); for (long long k = 0; k < (long long)(dp[to].size()); k++) { if ((long long)(dp[v].size()) == k) dp[v].emplace_back(dp[to][k]); else dp[v][k] = max(dp[v][k], dp[to][k]); } mx_k[v] = max(mx_k[v], mx_k[to]); } } void solve() { cin >> n; for (long long i = 0; i < n - 1; i++) { long long v1, v2; cin >> v1 >> v2; gr[--v1].emplace_back(--v2); gr[v2].emplace_back(v1); } dfs(0, -1); dfs1(0, -1); long long res = 0; for (long long i = 0; i < n; i++) { for (long long j : dp[i]) res += j; res += (mx_k[i] - (long long)(dp[i].size())) * 2 + (n - mx_k[i]); } cout << res; } signed main() { cin.tie(0); cout.tie(0); ios_base::sync_with_stdio(0); cout.precision(10); solve(); }
### Prompt Please provide a cpp coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; mt19937 rnd(chrono::high_resolution_clock::now().time_since_epoch().count()); const long long inf = 1e9 + 7; const long long max_n = 3e5 + 3; long long n; vector<long long> gr[max_n]; vector<long long> dp[max_n]; long long mx_k[max_n]; void dfs(long long v, long long pr) { vector<long long> ch; for (long long to : gr[v]) { if (to == pr) continue; dfs(to, v); ch.emplace_back(to); } vector<vector<long long>> a((long long)(ch.size())); for (long long to : ch) { for (long long i = 0; i < min((long long)(ch.size()), mx_k[to]); i++) { if ((long long)(dp[to].size()) > i) a[i].emplace_back(dp[to][i]); else a[i].emplace_back(2); } } for (long long k = 1; k <= (long long)(ch.size()); k++) { sort(a[k - 1].begin(), a[k - 1].end()); reverse(a[k - 1].begin(), a[k - 1].end()); if ((long long)(a[k - 1].size()) > k - 1) dp[v].emplace_back(a[k - 1][k - 1] + 1); } mx_k[v] = (long long)(ch.size()); } void dfs1(long long v, long long pr) { for (long long to : gr[v]) { if (to == pr) continue; dfs1(to, v); for (long long k = 0; k < (long long)(dp[to].size()); k++) { if ((long long)(dp[v].size()) == k) dp[v].emplace_back(dp[to][k]); else dp[v][k] = max(dp[v][k], dp[to][k]); } mx_k[v] = max(mx_k[v], mx_k[to]); } } void solve() { cin >> n; for (long long i = 0; i < n - 1; i++) { long long v1, v2; cin >> v1 >> v2; gr[--v1].emplace_back(--v2); gr[v2].emplace_back(v1); } dfs(0, -1); dfs1(0, -1); long long res = 0; for (long long i = 0; i < n; i++) { for (long long j : dp[i]) res += j; res += (mx_k[i] - (long long)(dp[i].size())) * 2 + (n - mx_k[i]); } cout << res; } signed main() { cin.tie(0); cout.tie(0); ios_base::sync_with_stdio(0); cout.precision(10); solve(); } ```
#include <bits/stdc++.h> using namespace std; int n; const int MaxN = 3e5; vector<int> adj[MaxN]; vector<int> prec[MaxN]; void dfs(const int u, const int p) { prec[u] = {1, n}; adj[u].erase(remove(adj[u].begin(), adj[u].end(), p), adj[u].end()); for (auto &&v : adj[u]) { dfs(v, u); prec[u][0] = max(prec[u][0], 1 + prec[v][0]); } for (int i = 2;; ++i) { int lo = 1; int hi = adj[u].size(); while (lo < hi) { int mid = (lo + hi + 1) >> 1; int count = 0; for (auto &&v : adj[u]) count += i <= prec[v].size() && prec[v][i - 1] >= mid; if (count >= mid) lo = mid; else hi = mid - 1; } if (lo <= 1) break; prec[u].push_back(lo); } } void dfs2(const int u, long long &ans) { for (auto &&v : adj[u]) { dfs2(v, ans); if (prec[u].size() < prec[v].size()) prec[u].resize(prec[v].size(), 0); for (int i = 2; i < prec[v].size(); ++i) prec[u][i] = max(prec[u][i], prec[v][i]); } ans -= prec[u].size() - 1; for (auto &&x : prec[u]) ans += x; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 1; i < n; ++i) { int u, v; cin >> u >> v; --u, --v; adj[u].push_back(v); adj[v].push_back(u); } dfs(0, -1); long long ans = 0; dfs2(0, ans); cout << ans; return 0; }
### Prompt Generate a CPP solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n; const int MaxN = 3e5; vector<int> adj[MaxN]; vector<int> prec[MaxN]; void dfs(const int u, const int p) { prec[u] = {1, n}; adj[u].erase(remove(adj[u].begin(), adj[u].end(), p), adj[u].end()); for (auto &&v : adj[u]) { dfs(v, u); prec[u][0] = max(prec[u][0], 1 + prec[v][0]); } for (int i = 2;; ++i) { int lo = 1; int hi = adj[u].size(); while (lo < hi) { int mid = (lo + hi + 1) >> 1; int count = 0; for (auto &&v : adj[u]) count += i <= prec[v].size() && prec[v][i - 1] >= mid; if (count >= mid) lo = mid; else hi = mid - 1; } if (lo <= 1) break; prec[u].push_back(lo); } } void dfs2(const int u, long long &ans) { for (auto &&v : adj[u]) { dfs2(v, ans); if (prec[u].size() < prec[v].size()) prec[u].resize(prec[v].size(), 0); for (int i = 2; i < prec[v].size(); ++i) prec[u][i] = max(prec[u][i], prec[v][i]); } ans -= prec[u].size() - 1; for (auto &&x : prec[u]) ans += x; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 1; i < n; ++i) { int u, v; cin >> u >> v; --u, --v; adj[u].push_back(v); adj[v].push_back(u); } dfs(0, -1); long long ans = 0; dfs2(0, ans); cout << ans; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5, bzmax = 20; int n; int h[N]; int f[N][bzmax]; int buf[N], par[N]; vector<pair<int, int> > upd[N]; vector<int> g[N]; long long res; int dres; inline void init() { scanf("%d", &n); for (int i = 1, u, v; i < n; i++) { scanf("%d%d", &u, &v); g[u].push_back(v); g[v].push_back(u); } } int dp(int p, int fa) { int rt = 0; par[p] = fa; for (int i = 0; i < (signed)g[p].size(); i++) { int e = g[p][i]; if (e ^ fa) rt = max(rt, dp(e, p)); } f[p][1] = n; for (int t = 2; t < bzmax; t++) { int tp = 0; for (int i = 0; i < (signed)g[p].size(); i++) { int e = g[p][i]; if ((e ^ fa) && f[e][t - 1]) buf[++tp] = f[e][t - 1]; } sort(buf + 1, buf + tp + 1, greater<int>()); for (int i = tp; i && !f[p][t]; i--) if (buf[i] >= i) f[p][t] = i; if (f[p][t] > 1) upd[f[p][t]].push_back(pair<int, int>(p, t)); } res += rt + 1; return rt + 1; } void update(int p, int v) { while (p) { if (v <= h[p]) break; dres += v - h[p]; h[p] = v, p = par[p]; } } inline void solve() { dp(1, 0); dres = n; for (int i = 1; i <= n; i++) h[i] = 1; for (int k = n; k > 1; k--) { for (int i = 0; i < (signed)upd[k].size(); i++) update(upd[k][i].first, upd[k][i].second); res += dres; } printf("%lld", res); } int main() { init(); solve(); return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5, bzmax = 20; int n; int h[N]; int f[N][bzmax]; int buf[N], par[N]; vector<pair<int, int> > upd[N]; vector<int> g[N]; long long res; int dres; inline void init() { scanf("%d", &n); for (int i = 1, u, v; i < n; i++) { scanf("%d%d", &u, &v); g[u].push_back(v); g[v].push_back(u); } } int dp(int p, int fa) { int rt = 0; par[p] = fa; for (int i = 0; i < (signed)g[p].size(); i++) { int e = g[p][i]; if (e ^ fa) rt = max(rt, dp(e, p)); } f[p][1] = n; for (int t = 2; t < bzmax; t++) { int tp = 0; for (int i = 0; i < (signed)g[p].size(); i++) { int e = g[p][i]; if ((e ^ fa) && f[e][t - 1]) buf[++tp] = f[e][t - 1]; } sort(buf + 1, buf + tp + 1, greater<int>()); for (int i = tp; i && !f[p][t]; i--) if (buf[i] >= i) f[p][t] = i; if (f[p][t] > 1) upd[f[p][t]].push_back(pair<int, int>(p, t)); } res += rt + 1; return rt + 1; } void update(int p, int v) { while (p) { if (v <= h[p]) break; dres += v - h[p]; h[p] = v, p = par[p]; } } inline void solve() { dp(1, 0); dres = n; for (int i = 1; i <= n; i++) h[i] = 1; for (int k = n; k > 1; k--) { for (int i = 0; i < (signed)upd[k].size(); i++) update(upd[k][i].first, upd[k][i].second); res += dres; } printf("%lld", res); } int main() { init(); solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<int> g[300005]; int dp[300005][25], dp2[300005][25]; int D[300005]; int n; void dfs(int u, int p) { D[u] = 1; for (int i = 0; i < (int)(g[u]).size(); i++) { int v = g[u][i]; if (v != p) { dfs(v, u); D[u] = max(D[u], D[v] + 1); for (int d = 1; d < 20; d++) dp2[u][d] = max(dp2[u][d], dp2[v][d]); } } for (int d = 2; d < 20; d++) { vector<int> sum; for (int i = 0; i < (int)(g[u]).size(); i++) { int v = g[u][i]; if (v != p) sum.emplace_back(dp[v][d - 1]); } sort((sum).begin(), (sum).end()); reverse((sum).begin(), (sum).end()); for (int i = 0; i < (int)(sum).size(); i++) { dp[u][d] = max(dp[u][d], min(i + 1, sum[i])); dp2[u][d] = max(dp2[u][d], dp[u][d]); } } dp[u][1] = n; dp2[u][1] = n; } int main() { scanf("%d", &n); for (int i = 1; i <= n - 1; i++) { int a, b; scanf("%d%d", &a, &b); g[a].emplace_back(b); g[b].emplace_back(a); } dfs(1, 0); long long ans = 0; for (int u = 1; u <= n; u++) { if (D[u] > 19) ans += D[u]; for (int d = 19; d >= 1; d--) { int diff = dp2[u][d] - dp2[u][d + 1]; if (D[u] > 19 && d == 19) diff--; ans += diff * 1ll * d; } } printf("%lld\n", ans); }
### Prompt Please create a solution in CPP to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> g[300005]; int dp[300005][25], dp2[300005][25]; int D[300005]; int n; void dfs(int u, int p) { D[u] = 1; for (int i = 0; i < (int)(g[u]).size(); i++) { int v = g[u][i]; if (v != p) { dfs(v, u); D[u] = max(D[u], D[v] + 1); for (int d = 1; d < 20; d++) dp2[u][d] = max(dp2[u][d], dp2[v][d]); } } for (int d = 2; d < 20; d++) { vector<int> sum; for (int i = 0; i < (int)(g[u]).size(); i++) { int v = g[u][i]; if (v != p) sum.emplace_back(dp[v][d - 1]); } sort((sum).begin(), (sum).end()); reverse((sum).begin(), (sum).end()); for (int i = 0; i < (int)(sum).size(); i++) { dp[u][d] = max(dp[u][d], min(i + 1, sum[i])); dp2[u][d] = max(dp2[u][d], dp[u][d]); } } dp[u][1] = n; dp2[u][1] = n; } int main() { scanf("%d", &n); for (int i = 1; i <= n - 1; i++) { int a, b; scanf("%d%d", &a, &b); g[a].emplace_back(b); g[b].emplace_back(a); } dfs(1, 0); long long ans = 0; for (int u = 1; u <= n; u++) { if (D[u] > 19) ans += D[u]; for (int d = 19; d >= 1; d--) { int diff = dp2[u][d] - dp2[u][d + 1]; if (D[u] > 19 && d == 19) diff--; ans += diff * 1ll * d; } } printf("%lld\n", ans); } ```
#include <bits/stdc++.h> using namespace std; long long ans = 0; int n, f1[300010], dp[300010][20], fa[300010], buf[300010], dep[300010]; vector<int> v[300010]; vector<pair<int, int> > upd[300010]; void dfs(int np, int fath) { f1[np] = 1; fa[np] = fath; for (int &x : v[np]) { if (x == fath) continue; dfs(x, np); f1[np] = max(f1[np], f1[x] + 1); } dp[np][1] = n; for (int i = 2; i < 20; i++) { int tp = 0; for (int &x : v[np]) { if (x == fath) continue; buf[++tp] = dp[x][i - 1]; } sort(buf + 1, buf + tp + 1, greater<int>()); for (int j = tp; j >= 1; j--) { if (buf[j] >= j) { dp[np][i] = j; break; } } if (dp[np][i] > 1) upd[dp[np][i]].push_back(make_pair(np, i)); } ans += f1[np]; } long long cur = 0; void update(int x, int y) { while (x) { if (dep[x] >= y) return; cur += y - dep[x]; dep[x] = y; x = fa[x]; } } int main() { scanf("%d", &n); fill(dep + 1, dep + n + 1, 1); cur = n; for (int i = 1, ti, tj; i < n; i++) { scanf("%d%d", &ti, &tj); v[ti].push_back(tj); v[tj].push_back(ti); } dfs(1, 0); for (int i = n; i >= 2; i--) { for (auto &x : upd[i]) update(x.first, x.second); ans += cur; } printf("%lld\n", ans); return 0; }
### Prompt Generate a CPP solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long ans = 0; int n, f1[300010], dp[300010][20], fa[300010], buf[300010], dep[300010]; vector<int> v[300010]; vector<pair<int, int> > upd[300010]; void dfs(int np, int fath) { f1[np] = 1; fa[np] = fath; for (int &x : v[np]) { if (x == fath) continue; dfs(x, np); f1[np] = max(f1[np], f1[x] + 1); } dp[np][1] = n; for (int i = 2; i < 20; i++) { int tp = 0; for (int &x : v[np]) { if (x == fath) continue; buf[++tp] = dp[x][i - 1]; } sort(buf + 1, buf + tp + 1, greater<int>()); for (int j = tp; j >= 1; j--) { if (buf[j] >= j) { dp[np][i] = j; break; } } if (dp[np][i] > 1) upd[dp[np][i]].push_back(make_pair(np, i)); } ans += f1[np]; } long long cur = 0; void update(int x, int y) { while (x) { if (dep[x] >= y) return; cur += y - dep[x]; dep[x] = y; x = fa[x]; } } int main() { scanf("%d", &n); fill(dep + 1, dep + n + 1, 1); cur = n; for (int i = 1, ti, tj; i < n; i++) { scanf("%d%d", &ti, &tj); v[ti].push_back(tj); v[tj].push_back(ti); } dfs(1, 0); for (int i = n; i >= 2; i--) { for (auto &x : upd[i]) update(x.first, x.second); ans += cur; } printf("%lld\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int C = 600001, D = 70; vector<vector<int> > tr(C); int ij[C], a, b, n, dp[C], ih[C], bst[C], maxson[C]; long long wynn = 0; int pom[C]; void Sebasort(int tab[], int l, int r) { int lim = 2, limi = l + 1, limj = l + 2, j = limi, i = l, k = l; while (lim / 2 <= r - l + 1) { while (i <= r) { if (limj > r) limj = r + 1; if ((j < limj && tab[j] > tab[i]) || i >= limi) pom[k] = tab[j], j++; else pom[k] = tab[i], i++; k++; if (i == limi && j == limj) limi += lim, limj += lim, i = j, j = limi; } for (i = l; i <= r; i++) tab[i] = pom[i]; lim *= 2, limi = l + lim / 2, limj = l + lim, j = limi, i = k = l; } } int s[C], is = 0, ip = 1, pre[C], apre[C], par[C], ji[C]; void proc_tree(int a, int n, vector<vector<int> >& tab, int ij[]) { s[0] = a, is = 1, pre[a] = 1, apre[1] = a, ip = 2; int b; maxson[a] = ij[a]; for (int z = 1; z <= n; z++) ji[z] = ij[z], par[z] = 0; while (is > 0) { a = s[is - 1]; if (ji[a] > 0 && tab[a][ji[a] - 1] == par[a]) ji[a]--; if (ji[a] > 0) b = s[is] = tab[a][ji[a] - 1], maxson[b] = ij[b] - 1, pre[b] = ip, apre[ip] = b, par[b] = a, ip++, is++, ji[a]--; else { if (maxson[a] > maxson[par[a]]) maxson[par[a]] = maxson[a]; is--; } } } int main() { int i, j, ji, y, x, sn; scanf("%d", &n); for (int z = 1; z < n; z++) scanf("%d %d", &a, &b), tr[a].push_back(b), tr[b].push_back(a), ij[a]++, ij[b]++; proc_tree(1, n, tr, ij); int** hp = new int*[C]; for (i = 0; i <= n; i++) hp[i] = new int[ij[i] + 1], ih[i] = 0; for (i = 1; i <= min(D, n); i++) { for (j = n; j > 0; j--) { y = apre[j], x = par[y], sn = ij[y]; if (y == 1) sn++; if (sn - 1 < i) dp[y] = 1; else if (ih[y] < i) dp[y] = 2; else { Sebasort(hp[y], 0, ih[y] - 1); dp[y] = hp[y][i - 1] + 1; } bst[y] = max(bst[y], dp[y]); if (dp[y] > 1) hp[x][ih[x]] = dp[y], ih[x]++; wynn += bst[y]; if (bst[y] > bst[x]) bst[x] = bst[y]; ih[y] = 0, dp[y] = bst[y] = 0; } ih[0] = 0; } if (n > D) { for (i = n; i > 0; i--) { y = apre[i], x = par[y], sn = ij[y]; if (y == 1) sn++; if (ih[y] > 1) Sebasort(hp[y], 0, ih[y] - 1); for (j = D; j < ih[y]; j++) if (hp[y][j] <= j) break; bst[y] = max(j, bst[y]); wynn = wynn + (bst[y] - D); bst[x] = max(bst[y], bst[x]); hp[x][ih[x]] = sn - 1, ih[x]++; if (maxson[i] < D) wynn = wynn + (n - D); else wynn = wynn + (maxson[i] - D) * 2 + (n - maxson[i]); } } printf("%I64d\n", wynn); return 0; }
### Prompt In Cpp, your task is to solve the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int C = 600001, D = 70; vector<vector<int> > tr(C); int ij[C], a, b, n, dp[C], ih[C], bst[C], maxson[C]; long long wynn = 0; int pom[C]; void Sebasort(int tab[], int l, int r) { int lim = 2, limi = l + 1, limj = l + 2, j = limi, i = l, k = l; while (lim / 2 <= r - l + 1) { while (i <= r) { if (limj > r) limj = r + 1; if ((j < limj && tab[j] > tab[i]) || i >= limi) pom[k] = tab[j], j++; else pom[k] = tab[i], i++; k++; if (i == limi && j == limj) limi += lim, limj += lim, i = j, j = limi; } for (i = l; i <= r; i++) tab[i] = pom[i]; lim *= 2, limi = l + lim / 2, limj = l + lim, j = limi, i = k = l; } } int s[C], is = 0, ip = 1, pre[C], apre[C], par[C], ji[C]; void proc_tree(int a, int n, vector<vector<int> >& tab, int ij[]) { s[0] = a, is = 1, pre[a] = 1, apre[1] = a, ip = 2; int b; maxson[a] = ij[a]; for (int z = 1; z <= n; z++) ji[z] = ij[z], par[z] = 0; while (is > 0) { a = s[is - 1]; if (ji[a] > 0 && tab[a][ji[a] - 1] == par[a]) ji[a]--; if (ji[a] > 0) b = s[is] = tab[a][ji[a] - 1], maxson[b] = ij[b] - 1, pre[b] = ip, apre[ip] = b, par[b] = a, ip++, is++, ji[a]--; else { if (maxson[a] > maxson[par[a]]) maxson[par[a]] = maxson[a]; is--; } } } int main() { int i, j, ji, y, x, sn; scanf("%d", &n); for (int z = 1; z < n; z++) scanf("%d %d", &a, &b), tr[a].push_back(b), tr[b].push_back(a), ij[a]++, ij[b]++; proc_tree(1, n, tr, ij); int** hp = new int*[C]; for (i = 0; i <= n; i++) hp[i] = new int[ij[i] + 1], ih[i] = 0; for (i = 1; i <= min(D, n); i++) { for (j = n; j > 0; j--) { y = apre[j], x = par[y], sn = ij[y]; if (y == 1) sn++; if (sn - 1 < i) dp[y] = 1; else if (ih[y] < i) dp[y] = 2; else { Sebasort(hp[y], 0, ih[y] - 1); dp[y] = hp[y][i - 1] + 1; } bst[y] = max(bst[y], dp[y]); if (dp[y] > 1) hp[x][ih[x]] = dp[y], ih[x]++; wynn += bst[y]; if (bst[y] > bst[x]) bst[x] = bst[y]; ih[y] = 0, dp[y] = bst[y] = 0; } ih[0] = 0; } if (n > D) { for (i = n; i > 0; i--) { y = apre[i], x = par[y], sn = ij[y]; if (y == 1) sn++; if (ih[y] > 1) Sebasort(hp[y], 0, ih[y] - 1); for (j = D; j < ih[y]; j++) if (hp[y][j] <= j) break; bst[y] = max(j, bst[y]); wynn = wynn + (bst[y] - D); bst[x] = max(bst[y], bst[x]); hp[x][ih[x]] = sn - 1, ih[x]++; if (maxson[i] < D) wynn = wynn + (n - D); else wynn = wynn + (maxson[i] - D) * 2 + (n - maxson[i]); } } printf("%I64d\n", wynn); return 0; } ```
#include <bits/stdc++.h> using namespace std; int n; vector<int> v[300007]; int lvl[300007]; int cnt[300007]; int f[300007][21]; int dp[300007][21]; long long ans = 0; void dfs(int vertex, int prv) { int sz = v[vertex].size(); lvl[vertex] = 1; for (int i = 0; i < sz; ++i) { int h = v[vertex][i]; if (h == prv) { continue; } dfs(h, vertex); lvl[vertex] = max(lvl[vertex], lvl[h] + 1); for (int j = 1; j < 21; ++j) { dp[vertex][j] = max(dp[vertex][j], dp[h][j]); } } ans += lvl[vertex]; f[vertex][1] = n; for (int j = 2; j < 21; ++j) { for (int i = 0; i < sz; ++i) { int h = v[vertex][i]; if (h == prv) { continue; } if (f[h][j - 1] <= sz) { ++cnt[f[h][j - 1]]; } else { ++cnt[sz]; } } int suff = 0; for (int i = sz; i >= 0; --i) { suff += cnt[i]; if (suff >= i) { f[vertex][j] = i; break; } } for (int i = 0; i <= sz; ++i) { cnt[i] = 0; } } int lst = 1; for (int j = 21 - 1; j >= 0; --j) { dp[vertex][j] = max(dp[vertex][j], f[vertex][j]); if (dp[vertex][j] > lst) { ans += 1LL * (dp[vertex][j] - lst) * j; lst = dp[vertex][j]; } } } void input() { scanf("%d", &n); for (int i = 1; i < n; ++i) { int x, y; scanf("%d%d", &x, &y); v[x].push_back(y); v[y].push_back(x); } } void solve() { dfs(1, -1); printf("%I64d\n", ans); } int main() { ios_base ::sync_with_stdio(false); cin.tie(NULL); input(); solve(); return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int n; vector<int> v[300007]; int lvl[300007]; int cnt[300007]; int f[300007][21]; int dp[300007][21]; long long ans = 0; void dfs(int vertex, int prv) { int sz = v[vertex].size(); lvl[vertex] = 1; for (int i = 0; i < sz; ++i) { int h = v[vertex][i]; if (h == prv) { continue; } dfs(h, vertex); lvl[vertex] = max(lvl[vertex], lvl[h] + 1); for (int j = 1; j < 21; ++j) { dp[vertex][j] = max(dp[vertex][j], dp[h][j]); } } ans += lvl[vertex]; f[vertex][1] = n; for (int j = 2; j < 21; ++j) { for (int i = 0; i < sz; ++i) { int h = v[vertex][i]; if (h == prv) { continue; } if (f[h][j - 1] <= sz) { ++cnt[f[h][j - 1]]; } else { ++cnt[sz]; } } int suff = 0; for (int i = sz; i >= 0; --i) { suff += cnt[i]; if (suff >= i) { f[vertex][j] = i; break; } } for (int i = 0; i <= sz; ++i) { cnt[i] = 0; } } int lst = 1; for (int j = 21 - 1; j >= 0; --j) { dp[vertex][j] = max(dp[vertex][j], f[vertex][j]); if (dp[vertex][j] > lst) { ans += 1LL * (dp[vertex][j] - lst) * j; lst = dp[vertex][j]; } } } void input() { scanf("%d", &n); for (int i = 1; i < n; ++i) { int x, y; scanf("%d%d", &x, &y); v[x].push_back(y); v[y].push_back(x); } } void solve() { dfs(1, -1); printf("%I64d\n", ans); } int main() { ios_base ::sync_with_stdio(false); cin.tie(NULL); input(); solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 300005; long long ans; int ne[N << 1], fi[N], zz[N << 1], tot, x, y, dp[N][25], T, n, Max[N], dp2[N][25]; void jb(int x, int y) { ne[++tot] = fi[x]; fi[x] = tot; zz[tot] = y; } int cmp(int x, int y) { return dp[x][T] > dp[y][T]; } void dfs(int x, int y) { Max[x] = 1; vector<int> v; for (int i = fi[x]; i; i = ne[i]) if (zz[i] != y) { dfs(zz[i], x); Max[x] = max(Max[x], Max[zz[i]] + 1); v.push_back(zz[i]); } dp[x][0] = 1e9; ans += n - 1; for (int i = 1; i <= 20; i++) { T = i - 1; sort(v.begin(), v.end(), cmp); for (int j = 0; j < (int)v.size(); j++) if (dp[v[j]][i - 1] >= j + 1) dp[x][i] = j + 1; dp2[x][i] = dp[x][i]; for (int j : v) dp2[x][i] = max(dp2[x][i], dp2[j][i]); if (dp2[x][i] > 1) ans += dp2[x][i] - 1; } ans += Max[x]; } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { scanf("%d%d", &x, &y); jb(x, y); jb(y, x); } dfs(1, 0); printf("%lld\n", ans); return 0; }
### Prompt Your task is to create a cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 300005; long long ans; int ne[N << 1], fi[N], zz[N << 1], tot, x, y, dp[N][25], T, n, Max[N], dp2[N][25]; void jb(int x, int y) { ne[++tot] = fi[x]; fi[x] = tot; zz[tot] = y; } int cmp(int x, int y) { return dp[x][T] > dp[y][T]; } void dfs(int x, int y) { Max[x] = 1; vector<int> v; for (int i = fi[x]; i; i = ne[i]) if (zz[i] != y) { dfs(zz[i], x); Max[x] = max(Max[x], Max[zz[i]] + 1); v.push_back(zz[i]); } dp[x][0] = 1e9; ans += n - 1; for (int i = 1; i <= 20; i++) { T = i - 1; sort(v.begin(), v.end(), cmp); for (int j = 0; j < (int)v.size(); j++) if (dp[v[j]][i - 1] >= j + 1) dp[x][i] = j + 1; dp2[x][i] = dp[x][i]; for (int j : v) dp2[x][i] = max(dp2[x][i], dp2[j][i]); if (dp2[x][i] > 1) ans += dp2[x][i] - 1; } ans += Max[x]; } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { scanf("%d%d", &x, &y); jb(x, y); jb(y, x); } dfs(1, 0); printf("%lld\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int sz = 3e5 + 10, x = 5; vector<int> sv[sz]; int n, k = 1, dp[sz], dp2[sz][x + 1], dp3[sz][x + 1]; long long an = 0; int dfs(int v, int pr) { int re = 0; dp[v] = 1; vector<int> sp; for (int a = 0; a < sv[v].size(); a++) { int ne = sv[v][a]; if (ne != pr) { re = max(re, dfs(ne, v)); sp.push_back(dp[ne]); } } if (sp.size() >= k) { sort(sp.begin(), sp.end(), greater<int>()); dp[v] = sp[k - 1] + 1; } re = max(re, dp[v]); an += re; return re; } void dfs2(int v, int pr) { dp2[v][1] = n; vector<int> sp[x + 1]; for (int a = 0; a < sv[v].size(); a++) { int ne = sv[v][a]; if (ne != pr) { dfs2(ne, v); for (int b = 1; b <= x; b++) dp3[v][b] = max(dp3[v][b], dp3[ne][b]); for (int b = 2; b <= x; b++) sp[b].push_back(dp2[ne][b - 1]); } } for (int a = 2; a <= x; a++) { sort(sp[a].begin(), sp[a].end(), greater<int>()); for (int b = 0; b < sp[a].size(); b++) if (sp[a][b] >= b + 1) dp2[v][a] = max(dp2[v][a], b + 1); } for (int a = 1; a <= x; a++) dp3[v][a] = max(dp3[v][a], dp2[v][a]); for (int a = 1; a <= x; a++) { int va = max(dp3[v][a], k - 1), pr = k - 1; if (a < x) pr = max(dp3[v][a + 1], k - 1); an += (va - pr) * a; } } int main() { cin >> n; for (int a = 0; a < n - 1; a++) { int u, v; scanf("%d%d", &u, &v); u--, v--; sv[u].push_back(v); sv[v].push_back(u); } while (1) { int q = 0, va = 1; for (int a = 0; a <= x; a++) { q += va, va *= k; } if (q > n) break; dfs(0, -1); k++; } dfs2(0, -1); cout << an; }
### Prompt Please provide a cpp coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int sz = 3e5 + 10, x = 5; vector<int> sv[sz]; int n, k = 1, dp[sz], dp2[sz][x + 1], dp3[sz][x + 1]; long long an = 0; int dfs(int v, int pr) { int re = 0; dp[v] = 1; vector<int> sp; for (int a = 0; a < sv[v].size(); a++) { int ne = sv[v][a]; if (ne != pr) { re = max(re, dfs(ne, v)); sp.push_back(dp[ne]); } } if (sp.size() >= k) { sort(sp.begin(), sp.end(), greater<int>()); dp[v] = sp[k - 1] + 1; } re = max(re, dp[v]); an += re; return re; } void dfs2(int v, int pr) { dp2[v][1] = n; vector<int> sp[x + 1]; for (int a = 0; a < sv[v].size(); a++) { int ne = sv[v][a]; if (ne != pr) { dfs2(ne, v); for (int b = 1; b <= x; b++) dp3[v][b] = max(dp3[v][b], dp3[ne][b]); for (int b = 2; b <= x; b++) sp[b].push_back(dp2[ne][b - 1]); } } for (int a = 2; a <= x; a++) { sort(sp[a].begin(), sp[a].end(), greater<int>()); for (int b = 0; b < sp[a].size(); b++) if (sp[a][b] >= b + 1) dp2[v][a] = max(dp2[v][a], b + 1); } for (int a = 1; a <= x; a++) dp3[v][a] = max(dp3[v][a], dp2[v][a]); for (int a = 1; a <= x; a++) { int va = max(dp3[v][a], k - 1), pr = k - 1; if (a < x) pr = max(dp3[v][a + 1], k - 1); an += (va - pr) * a; } } int main() { cin >> n; for (int a = 0; a < n - 1; a++) { int u, v; scanf("%d%d", &u, &v); u--, v--; sv[u].push_back(v); sv[v].push_back(u); } while (1) { int q = 0, va = 1; for (int a = 0; a <= x; a++) { q += va, va *= k; } if (q > n) break; dfs(0, -1); k++; } dfs2(0, -1); cout << an; } ```
#include <bits/stdc++.h> inline bool C(int a, int b) { return a > b; } inline void inc(int& a, const int& b) { if (a < b) a = b; } struct d { d* n; int t; d(d* a, int b) : n(a), t(b) {} } * G[300005]; void I(int f, int t) { G[f] = new d(G[f], t); } int A[300005], M[300005][20], F[300005][20], V[300005], n; long long T; void s(int x, int f) { V[x] = 1; M[x][1] = F[x][1] = n; for (d* i = G[x]; i; i = i->n) if (i->t != f) s(i->t, x), inc(V[x], V[i->t] + 1); for (int i = 2, m; m = 0, i < 19; ++i) { for (d* j = G[x]; j; j = j->n) if (j->t != f) A[m++] = F[j->t][i - 1]; std::sort(A, A + m, C); A[m] = 0; while (F[x][i] < A[F[x][i]]) ++F[x][i]; inc(F[x][i], 1); M[x][i] = F[x][i]; for (d* j = G[x]; j; j = j->n) if (j->t != f) inc(M[x][i], M[j->t][i]); } M[x][19] = F[x][19] = 1; T += V[x]; for (int i = 1; i < 19; ++i) T += i * (M[x][i] - M[x][i + 1]); } int main() { scanf("%d", &n); for (int i = 1, a, b; i < n; ++i) { scanf("%d%d", &a, &b); I(a, b); I(b, a); } s(1, 0); return !printf("%lld\n", T); }
### Prompt Construct a cpp code solution to the problem outlined: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> inline bool C(int a, int b) { return a > b; } inline void inc(int& a, const int& b) { if (a < b) a = b; } struct d { d* n; int t; d(d* a, int b) : n(a), t(b) {} } * G[300005]; void I(int f, int t) { G[f] = new d(G[f], t); } int A[300005], M[300005][20], F[300005][20], V[300005], n; long long T; void s(int x, int f) { V[x] = 1; M[x][1] = F[x][1] = n; for (d* i = G[x]; i; i = i->n) if (i->t != f) s(i->t, x), inc(V[x], V[i->t] + 1); for (int i = 2, m; m = 0, i < 19; ++i) { for (d* j = G[x]; j; j = j->n) if (j->t != f) A[m++] = F[j->t][i - 1]; std::sort(A, A + m, C); A[m] = 0; while (F[x][i] < A[F[x][i]]) ++F[x][i]; inc(F[x][i], 1); M[x][i] = F[x][i]; for (d* j = G[x]; j; j = j->n) if (j->t != f) inc(M[x][i], M[j->t][i]); } M[x][19] = F[x][19] = 1; T += V[x]; for (int i = 1; i < 19; ++i) T += i * (M[x][i] - M[x][i + 1]); } int main() { scanf("%d", &n); for (int i = 1, a, b; i < n; ++i) { scanf("%d%d", &a, &b); I(a, b); I(b, a); } s(1, 0); return !printf("%lld\n", T); } ```
#include <bits/stdc++.h> using namespace std; const int inf = 0x3f3f3f3f, oo = inf; inline long long read() { register long long x = 0, f = 1; register char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -1; for (; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48); return x * f; } void write(long long x) { if (x < 0) x = -x, putchar('-'); if (x >= 10) write(x / 10); putchar(x % 10 + '0'); } void writeln(long long x) { write(x); puts(""); } const long long maxn = 3e5 + 233; struct Edge { long long to, nxt; Edge() {} Edge(long long to, long long nxt) : to(to), nxt(nxt) {} } edge[maxn * 2]; long long first[maxn], nume; long long deep[maxn], dp[maxn][20], n; long long ans = 0; void Addedge(long long a, long long b) { edge[nume] = Edge(b, first[a]); first[a] = nume++; } bool cmp(long long a, long long b) { return a > b; } long long q[maxn]; void dfs(long long u, long long fa) { for (long long e = first[u]; ~e; e = edge[e].nxt) { long long v = edge[e].to; if (v == fa) continue; dfs(v, u); deep[u] = max(deep[u], deep[v]); } deep[u]++; ans += deep[u]; dp[u][1] = n; for (long long i = 2; i < 20; i++) { long long tot = 0; for (long long e = first[u]; ~e; e = edge[e].nxt) { long long v = edge[e].to; if (v == fa) continue; if (dp[v][i - 1] > 1) q[++tot] = dp[v][i - 1]; } sort(q + 1, q + 1 + tot, cmp); for (long long j = tot; j >= 2; j--) if (q[j] >= j) { dp[u][i] = j; break; } } } void pushup(long long u, long long fa) { for (long long e = first[u]; ~e; e = edge[e].nxt) { long long v = edge[e].to; if (v == fa) continue; pushup(v, u); for (long long i = 0; i < 20; i++) { dp[u][i] = max(dp[u][i], dp[v][i]); } } for (long long i = 1; i < 19; i++) { ans = ans + i * (dp[u][i] - dp[u][i + 1]); if (dp[u][i + 1] == 0) { ans -= i; break; } } } signed main() { n = read(); memset(first, -1, sizeof(first)); nume = 0; for (register long long i = (1); i < (n); ++i) { long long a = read(), b = read(); Addedge(a, b); Addedge(b, a); } dfs(1, 0); pushup(1, 0); writeln(ans); return 0; }
### Prompt In cpp, your task is to solve the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int inf = 0x3f3f3f3f, oo = inf; inline long long read() { register long long x = 0, f = 1; register char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -1; for (; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48); return x * f; } void write(long long x) { if (x < 0) x = -x, putchar('-'); if (x >= 10) write(x / 10); putchar(x % 10 + '0'); } void writeln(long long x) { write(x); puts(""); } const long long maxn = 3e5 + 233; struct Edge { long long to, nxt; Edge() {} Edge(long long to, long long nxt) : to(to), nxt(nxt) {} } edge[maxn * 2]; long long first[maxn], nume; long long deep[maxn], dp[maxn][20], n; long long ans = 0; void Addedge(long long a, long long b) { edge[nume] = Edge(b, first[a]); first[a] = nume++; } bool cmp(long long a, long long b) { return a > b; } long long q[maxn]; void dfs(long long u, long long fa) { for (long long e = first[u]; ~e; e = edge[e].nxt) { long long v = edge[e].to; if (v == fa) continue; dfs(v, u); deep[u] = max(deep[u], deep[v]); } deep[u]++; ans += deep[u]; dp[u][1] = n; for (long long i = 2; i < 20; i++) { long long tot = 0; for (long long e = first[u]; ~e; e = edge[e].nxt) { long long v = edge[e].to; if (v == fa) continue; if (dp[v][i - 1] > 1) q[++tot] = dp[v][i - 1]; } sort(q + 1, q + 1 + tot, cmp); for (long long j = tot; j >= 2; j--) if (q[j] >= j) { dp[u][i] = j; break; } } } void pushup(long long u, long long fa) { for (long long e = first[u]; ~e; e = edge[e].nxt) { long long v = edge[e].to; if (v == fa) continue; pushup(v, u); for (long long i = 0; i < 20; i++) { dp[u][i] = max(dp[u][i], dp[v][i]); } } for (long long i = 1; i < 19; i++) { ans = ans + i * (dp[u][i] - dp[u][i + 1]); if (dp[u][i + 1] == 0) { ans -= i; break; } } } signed main() { n = read(); memset(first, -1, sizeof(first)); nume = 0; for (register long long i = (1); i < (n); ++i) { long long a = read(), b = read(); Addedge(a, b); Addedge(b, a); } dfs(1, 0); pushup(1, 0); writeln(ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; long long ans; const int C = 20; vector<int> adj[300010]; int dp[C + 2][300010]; int mx[C + 2][300010]; int h[300010]; int n; void dfs(int root, int dad = -1) { h[root] = 1; for (auto x : adj[root]) if (x != dad) { dfs(x, root); h[root] = max(h[root], h[x] + 1); for (int(k) = (0); (k) < (C); (k)++) mx[k][root] = max(mx[k][root], mx[k][x]); } dp[1][root] = n; mx[1][root] = n; for (int(d) = (2); (d) < (C); (d)++) { int st = 0; int en = n + 1; while (st != en - 1) { int mid = (st + en) / 2; int cnt = 0; for (auto x : adj[root]) if (x != dad && dp[d - 1][x] >= mid) cnt++; if (cnt >= mid) st = mid; else en = mid; } dp[d][root] = st; mx[d][root] = max(mx[d][root], st); } int mm = 0; for (int d = C - 1; d > 0; d--) { ans += d * (mx[d][root] - mx[d + 1][root]); if (mx[d][root]) mm = max(mm, d); } ans -= mm; ans += h[root]; } int main() { ios::sync_with_stdio(false); cin >> n; for (int(i) = (1); (i) < (n); (i)++) { int v, u; cin >> v >> u; v--, u--; adj[v].push_back(u); adj[u].push_back(v); } dfs(0); cout << ans << "\n"; }
### Prompt Create a solution in Cpp for the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long ans; const int C = 20; vector<int> adj[300010]; int dp[C + 2][300010]; int mx[C + 2][300010]; int h[300010]; int n; void dfs(int root, int dad = -1) { h[root] = 1; for (auto x : adj[root]) if (x != dad) { dfs(x, root); h[root] = max(h[root], h[x] + 1); for (int(k) = (0); (k) < (C); (k)++) mx[k][root] = max(mx[k][root], mx[k][x]); } dp[1][root] = n; mx[1][root] = n; for (int(d) = (2); (d) < (C); (d)++) { int st = 0; int en = n + 1; while (st != en - 1) { int mid = (st + en) / 2; int cnt = 0; for (auto x : adj[root]) if (x != dad && dp[d - 1][x] >= mid) cnt++; if (cnt >= mid) st = mid; else en = mid; } dp[d][root] = st; mx[d][root] = max(mx[d][root], st); } int mm = 0; for (int d = C - 1; d > 0; d--) { ans += d * (mx[d][root] - mx[d + 1][root]); if (mx[d][root]) mm = max(mm, d); } ans -= mm; ans += h[root]; } int main() { ios::sync_with_stdio(false); cin >> n; for (int(i) = (1); (i) < (n); (i)++) { int v, u; cin >> v >> u; v--, u--; adj[v].push_back(u); adj[u].push_back(v); } dfs(0); cout << ans << "\n"; } ```
#include <bits/stdc++.h> using namespace std; vector<int> g[300005]; int dp[300005][25]; int D[300005]; int n; void dfs1(int u, int p) { D[u] = 1; for (int i = 0; i < (int)(g[u]).size(); i++) { int v = g[u][i]; if (v != p) { dfs1(v, u); D[u] = max(D[u], D[v] + 1); } } for (int d = 2; d < 20; d++) { vector<int> sum; for (int i = 0; i < (int)(g[u]).size(); i++) { int v = g[u][i]; if (v != p) sum.emplace_back(dp[v][d - 1]); } sort((sum).begin(), (sum).end()); reverse((sum).begin(), (sum).end()); int mn = 1e9; for (int i = 0; i < (int)(sum).size(); i++) { mn = min(mn, sum[i]); dp[u][d] = max(dp[u][d], min(i + 1, mn)); } } dp[u][1] = n; } void dfs2(int u, int p) { for (int i = 0; i < (int)(g[u]).size(); i++) { int v = g[u][i]; if (v != p) { dfs2(v, u); for (int d = 1; d < 20; d++) { dp[u][d] = max(dp[u][d], dp[v][d]); } } } for (int d = 18; d >= 1; d--) dp[u][d] = max(dp[u][d], dp[u][d + 1]); } int main() { scanf("%d", &n); for (int i = 1; i <= n - 1; i++) { int a, b; scanf("%d%d", &a, &b); g[a].emplace_back(b); g[b].emplace_back(a); } dfs1(1, 0); dfs2(1, 0); long long ans = 0; for (int u = 1; u <= n; u++) { if (D[u] > 19) { ans += D[u]; } for (int d = 19; d >= 1; d--) { int diff = dp[u][d] - dp[u][d + 1]; if (D[u] > 19 && d == 19) diff--; ans += diff * 1ll * d; } } printf("%lld\n", ans); }
### Prompt Please create a solution in CPP to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> g[300005]; int dp[300005][25]; int D[300005]; int n; void dfs1(int u, int p) { D[u] = 1; for (int i = 0; i < (int)(g[u]).size(); i++) { int v = g[u][i]; if (v != p) { dfs1(v, u); D[u] = max(D[u], D[v] + 1); } } for (int d = 2; d < 20; d++) { vector<int> sum; for (int i = 0; i < (int)(g[u]).size(); i++) { int v = g[u][i]; if (v != p) sum.emplace_back(dp[v][d - 1]); } sort((sum).begin(), (sum).end()); reverse((sum).begin(), (sum).end()); int mn = 1e9; for (int i = 0; i < (int)(sum).size(); i++) { mn = min(mn, sum[i]); dp[u][d] = max(dp[u][d], min(i + 1, mn)); } } dp[u][1] = n; } void dfs2(int u, int p) { for (int i = 0; i < (int)(g[u]).size(); i++) { int v = g[u][i]; if (v != p) { dfs2(v, u); for (int d = 1; d < 20; d++) { dp[u][d] = max(dp[u][d], dp[v][d]); } } } for (int d = 18; d >= 1; d--) dp[u][d] = max(dp[u][d], dp[u][d + 1]); } int main() { scanf("%d", &n); for (int i = 1; i <= n - 1; i++) { int a, b; scanf("%d%d", &a, &b); g[a].emplace_back(b); g[b].emplace_back(a); } dfs1(1, 0); dfs2(1, 0); long long ans = 0; for (int u = 1; u <= n; u++) { if (D[u] > 19) { ans += D[u]; } for (int d = 19; d >= 1; d--) { int diff = dp[u][d] - dp[u][d + 1]; if (D[u] > 19 && d == 19) diff--; ans += diff * 1ll * d; } } printf("%lld\n", ans); } ```
#include <bits/stdc++.h> using namespace std; const int inf = 1e9; const long long inf_ll = 1e18; const int N = 3e5 + 5; long long d[N], pt[N], ans, sum; vector<long long> adj[N], dp[N], s; multiset<long long> f[N]; void dfs1(int i, int p) { pt[i] = d[i] = adj[i].size() - (i != 0); dp[i].resize(d[i]); for (auto& j : adj[i]) if (j != p) { dfs1(j, i); for (int k = 0; k < min(d[i], d[j]); k++) dp[i][k]++; pt[i] += pt[j]; } for (long long k = 0; k < d[i]; k++) { if (dp[i][k] <= k) dp[i][k] = 1; else { s.clear(); for (auto& j : adj[i]) if (j != p && d[j] > k) s.push_back(dp[j][k]); nth_element(s.begin(), s.end() - 1 - k, s.end()); ; dp[i][k] = s[s.size() - 1 - k] + 1; } }; } void ins(int i, int p) { for (int j = 0; j < d[i]; j++) { long long pre = f[j].empty() ? 0 : *--f[j].end(); f[j].insert(dp[i][j]); sum += *--f[j].end() - pre; } for (auto& j : adj[i]) if (j != p) ins(j, i); } void rem(int i, int p) { for (int j = 0; j < d[i]; j++) { long long pre = *--f[j].end(); f[j].erase(f[j].find(dp[i][j])); sum += (f[j].empty() ? 0 : *--f[j].end()) - pre; } for (auto& j : adj[i]) if (j != p) rem(j, i); } void dfs2(int i, int p) { int k = -1; for (auto& j : adj[i]) if (j != p && (k == -1 || pt[j] > pt[k])) k = j; for (auto& j : adj[i]) if (j != p && j != k) dfs2(j, i), rem(j, i); if (k != -1) dfs2(k, i); for (auto& j : adj[i]) if (j != p && j != k) ins(j, i); for (int j = 0; j < d[i]; j++) { long long pre = f[j].empty() ? 0 : *--f[j].end(); f[j].insert(dp[i][j]); sum += *--f[j].end() - pre; }; ans += sum; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long n; cin >> n; for (int i = 0; i < n - 1; i++) { int u, v; cin >> u >> v; u--, v--; adj[u].push_back(v), adj[v].push_back(u); } dfs1(0, 0); dfs2(0, 0); cout << ans + n * n << "\n"; }
### Prompt In Cpp, your task is to solve the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int inf = 1e9; const long long inf_ll = 1e18; const int N = 3e5 + 5; long long d[N], pt[N], ans, sum; vector<long long> adj[N], dp[N], s; multiset<long long> f[N]; void dfs1(int i, int p) { pt[i] = d[i] = adj[i].size() - (i != 0); dp[i].resize(d[i]); for (auto& j : adj[i]) if (j != p) { dfs1(j, i); for (int k = 0; k < min(d[i], d[j]); k++) dp[i][k]++; pt[i] += pt[j]; } for (long long k = 0; k < d[i]; k++) { if (dp[i][k] <= k) dp[i][k] = 1; else { s.clear(); for (auto& j : adj[i]) if (j != p && d[j] > k) s.push_back(dp[j][k]); nth_element(s.begin(), s.end() - 1 - k, s.end()); ; dp[i][k] = s[s.size() - 1 - k] + 1; } }; } void ins(int i, int p) { for (int j = 0; j < d[i]; j++) { long long pre = f[j].empty() ? 0 : *--f[j].end(); f[j].insert(dp[i][j]); sum += *--f[j].end() - pre; } for (auto& j : adj[i]) if (j != p) ins(j, i); } void rem(int i, int p) { for (int j = 0; j < d[i]; j++) { long long pre = *--f[j].end(); f[j].erase(f[j].find(dp[i][j])); sum += (f[j].empty() ? 0 : *--f[j].end()) - pre; } for (auto& j : adj[i]) if (j != p) rem(j, i); } void dfs2(int i, int p) { int k = -1; for (auto& j : adj[i]) if (j != p && (k == -1 || pt[j] > pt[k])) k = j; for (auto& j : adj[i]) if (j != p && j != k) dfs2(j, i), rem(j, i); if (k != -1) dfs2(k, i); for (auto& j : adj[i]) if (j != p && j != k) ins(j, i); for (int j = 0; j < d[i]; j++) { long long pre = f[j].empty() ? 0 : *--f[j].end(); f[j].insert(dp[i][j]); sum += *--f[j].end() - pre; }; ans += sum; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long n; cin >> n; for (int i = 0; i < n - 1; i++) { int u, v; cin >> u >> v; u--, v--; adj[u].push_back(v), adj[v].push_back(u); } dfs1(0, 0); dfs2(0, 0); cout << ans + n * n << "\n"; } ```
#include <bits/stdc++.h> using namespace std; using ll = long long; int const nmax = 300000; vector<int> g[1 + nmax]; vector<pair<int, int>> dp[1 + nmax]; int n; int extract(int node, int l) { int pos = 0; for (int jump = 16; 0 < jump; jump /= 2) if (pos + jump < dp[node].size() && dp[node][pos + jump].second <= l) pos += jump; return dp[node][pos].first; } int eval(int node, int l) { if (g[node].size() < l) return 1; else { vector<int> v; for (int h = 0; h < g[node].size(); h++) { int to = g[node][h]; v.push_back(extract(to, l)); } sort(v.begin(), v.end()); reverse(v.begin(), v.end()); return v[l - 1] + 1; } } void dfs(int node, int parent) { for (int h = 0; h < g[node].size(); h++) { int to = g[node][h]; if (to == parent) g[node].erase(g[node].begin() + h); } for (int h = 0; h < g[node].size(); h++) { int to = g[node][h]; dfs(to, node); } if (g[node].size() == 0) { dp[node].push_back({1, 1}); dp[node].push_back({0, n + 1}); } else { int ptr = 1; while (ptr <= n) { int sol = eval(node, ptr); dp[node].push_back({sol, ptr}); for (int jump = (1 << 17); 0 < jump; jump /= 2) if (eval(node, ptr + jump) == sol) ptr += jump; ptr++; } dp[node].push_back({0, n + 1}); } } int neweval(int node, int l) { int result = extract(node, l); for (int h = 0; h < g[node].size(); h++) { int to = g[node][h]; result = max(result, extract(to, l)); } return result; } void dfs2(int node, int parent) { for (int h = 0; h < g[node].size(); h++) { int to = g[node][h]; dfs2(to, node); } vector<pair<int, int>> newdp; int ptr = 1; while (ptr <= n) { int sol = neweval(node, ptr); newdp.push_back({sol, ptr}); for (int jump = (1 << 17); 0 < jump; jump /= 2) if (neweval(node, ptr + jump) == sol) ptr += jump; ptr++; } newdp.push_back({0, n + 1}); dp[node] = newdp; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 1; i < n; i++) { int x, y; cin >> x >> y; g[x].push_back(y); g[y].push_back(x); } dfs(1, 0); dfs2(1, 0); ll result = 0; for (int i = 1; i <= n; i++) for (int h = 0; h < dp[i].size() - 1; h++) result += 1LL * dp[i][h].first * (dp[i][h + 1].second - dp[i][h].second); cout << result; return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; using ll = long long; int const nmax = 300000; vector<int> g[1 + nmax]; vector<pair<int, int>> dp[1 + nmax]; int n; int extract(int node, int l) { int pos = 0; for (int jump = 16; 0 < jump; jump /= 2) if (pos + jump < dp[node].size() && dp[node][pos + jump].second <= l) pos += jump; return dp[node][pos].first; } int eval(int node, int l) { if (g[node].size() < l) return 1; else { vector<int> v; for (int h = 0; h < g[node].size(); h++) { int to = g[node][h]; v.push_back(extract(to, l)); } sort(v.begin(), v.end()); reverse(v.begin(), v.end()); return v[l - 1] + 1; } } void dfs(int node, int parent) { for (int h = 0; h < g[node].size(); h++) { int to = g[node][h]; if (to == parent) g[node].erase(g[node].begin() + h); } for (int h = 0; h < g[node].size(); h++) { int to = g[node][h]; dfs(to, node); } if (g[node].size() == 0) { dp[node].push_back({1, 1}); dp[node].push_back({0, n + 1}); } else { int ptr = 1; while (ptr <= n) { int sol = eval(node, ptr); dp[node].push_back({sol, ptr}); for (int jump = (1 << 17); 0 < jump; jump /= 2) if (eval(node, ptr + jump) == sol) ptr += jump; ptr++; } dp[node].push_back({0, n + 1}); } } int neweval(int node, int l) { int result = extract(node, l); for (int h = 0; h < g[node].size(); h++) { int to = g[node][h]; result = max(result, extract(to, l)); } return result; } void dfs2(int node, int parent) { for (int h = 0; h < g[node].size(); h++) { int to = g[node][h]; dfs2(to, node); } vector<pair<int, int>> newdp; int ptr = 1; while (ptr <= n) { int sol = neweval(node, ptr); newdp.push_back({sol, ptr}); for (int jump = (1 << 17); 0 < jump; jump /= 2) if (neweval(node, ptr + jump) == sol) ptr += jump; ptr++; } newdp.push_back({0, n + 1}); dp[node] = newdp; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 1; i < n; i++) { int x, y; cin >> x >> y; g[x].push_back(y); g[y].push_back(x); } dfs(1, 0); dfs2(1, 0); ll result = 0; for (int i = 1; i <= n; i++) for (int h = 0; h < dp[i].size() - 1; h++) result += 1LL * dp[i][h].first * (dp[i][h + 1].second - dp[i][h].second); cout << result; return 0; } ```
#include <bits/stdc++.h> using namespace std; bool home = 1; signed realMain(); signed main() { home = 0; if (home) { freopen("input", "r", stdin); } else { ios::sync_with_stdio(0); cin.tie(0); } realMain(); } const long long N = (long long)3e5 + 7; const long long M = 20; long long n, dep[N], ret, dp[N][M], down[N]; vector<long long> g[N]; void build(long long a) { down[a] = 1; vector<long long> kids; for (auto &b : g[a]) { if (dep[b]) continue; kids.push_back(b); dep[b] = 1 + dep[a]; build(b); down[a] = max(down[a], 1 + down[b]); } g[a] = kids; for (long long j = 0; j < M; j++) dp[a][j] = -1; } void dfs(long long a) { dp[a][1] = n; for (auto &b : g[a]) dfs(b); for (long long h = 2; h < M; h++) { vector<long long> lol; for (auto &b : g[a]) { lol.push_back(dp[b][h - 1]); } sort(lol.rbegin(), lol.rend()); for (long long k = 1; k <= (long long)g[a].size(); k++) { if (k <= lol[k - 1]) { dp[a][h] = k; } } } } void dfs2(long long a) { for (auto &b : g[a]) { dfs2(b); for (long long h = 1; h < M; h++) { dp[a][h] = max(dp[a][h], dp[b][h]); } } } signed realMain() { cin >> n; for (long long i = 1; i < n; i++) { long long x, y; cin >> x >> y; g[x].push_back(y); g[y].push_back(x); } dep[1] = 1; build(1); for (long long i = 1; i <= n; i++) { ret += down[i]; } dfs(1); dfs2(1); for (long long i = 1; i <= n; i++) { long long last = 1; for (long long h = M - 1; h >= 1; h--) { if (dp[i][h] != -1) { ret += (dp[i][h] - last) * h; last = dp[i][h]; } } } cout << ret << "\n"; return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; bool home = 1; signed realMain(); signed main() { home = 0; if (home) { freopen("input", "r", stdin); } else { ios::sync_with_stdio(0); cin.tie(0); } realMain(); } const long long N = (long long)3e5 + 7; const long long M = 20; long long n, dep[N], ret, dp[N][M], down[N]; vector<long long> g[N]; void build(long long a) { down[a] = 1; vector<long long> kids; for (auto &b : g[a]) { if (dep[b]) continue; kids.push_back(b); dep[b] = 1 + dep[a]; build(b); down[a] = max(down[a], 1 + down[b]); } g[a] = kids; for (long long j = 0; j < M; j++) dp[a][j] = -1; } void dfs(long long a) { dp[a][1] = n; for (auto &b : g[a]) dfs(b); for (long long h = 2; h < M; h++) { vector<long long> lol; for (auto &b : g[a]) { lol.push_back(dp[b][h - 1]); } sort(lol.rbegin(), lol.rend()); for (long long k = 1; k <= (long long)g[a].size(); k++) { if (k <= lol[k - 1]) { dp[a][h] = k; } } } } void dfs2(long long a) { for (auto &b : g[a]) { dfs2(b); for (long long h = 1; h < M; h++) { dp[a][h] = max(dp[a][h], dp[b][h]); } } } signed realMain() { cin >> n; for (long long i = 1; i < n; i++) { long long x, y; cin >> x >> y; g[x].push_back(y); g[y].push_back(x); } dep[1] = 1; build(1); for (long long i = 1; i <= n; i++) { ret += down[i]; } dfs(1); dfs2(1); for (long long i = 1; i <= n; i++) { long long last = 1; for (long long h = M - 1; h >= 1; h--) { if (dp[i][h] != -1) { ret += (dp[i][h] - last) * h; last = dp[i][h]; } } } cout << ret << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5; int n; vector<int> adj[N]; int h[N]; int f[N][20], g[N][20]; void dfs(int u, int p) { for (int v : adj[u]) if (v != p) { dfs(v, u); h[u] = max(h[u], h[v] + 1); } f[u][1] = g[u][1] = n; for (int i = 2; i <= 19; ++i) { int l = 0, r = n; while (l < r) { int mid = (l + r + 1) >> 1; int cnt = 0; for (int v : adj[u]) if (v != p) { if (g[v][i - 1] >= mid) cnt++; } if (cnt >= mid) l = mid; else r = mid - 1; } g[u][i] = l; for (int v : adj[u]) if (v != p) { f[u][i] = max(f[u][i], f[v][i]); } f[u][i] = max(f[u][i], g[u][i]); } } int main() { ios_base::sync_with_stdio(false); cin >> n; for (int i = 1; i <= n - 1; ++i) { int u, v; cin >> u >> v; adj[u].push_back(v), adj[v].push_back(u); } dfs(1, 1); long long res = 0; for (int u = 1; u <= n; ++u) res += h[u]; for (int u = 1; u <= n; ++u) { for (int i = 1; i <= 19; ++i) { int l = 2; if (i < 19) l = max(l, f[u][i + 1] + 1); int r = f[u][i]; if (l <= r) res += 1LL * (r - l + 1) * (i - 1); } } res += 1LL * n * n; cout << res << '\n'; }
### Prompt Please provide a cpp coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5; int n; vector<int> adj[N]; int h[N]; int f[N][20], g[N][20]; void dfs(int u, int p) { for (int v : adj[u]) if (v != p) { dfs(v, u); h[u] = max(h[u], h[v] + 1); } f[u][1] = g[u][1] = n; for (int i = 2; i <= 19; ++i) { int l = 0, r = n; while (l < r) { int mid = (l + r + 1) >> 1; int cnt = 0; for (int v : adj[u]) if (v != p) { if (g[v][i - 1] >= mid) cnt++; } if (cnt >= mid) l = mid; else r = mid - 1; } g[u][i] = l; for (int v : adj[u]) if (v != p) { f[u][i] = max(f[u][i], f[v][i]); } f[u][i] = max(f[u][i], g[u][i]); } } int main() { ios_base::sync_with_stdio(false); cin >> n; for (int i = 1; i <= n - 1; ++i) { int u, v; cin >> u >> v; adj[u].push_back(v), adj[v].push_back(u); } dfs(1, 1); long long res = 0; for (int u = 1; u <= n; ++u) res += h[u]; for (int u = 1; u <= n; ++u) { for (int i = 1; i <= 19; ++i) { int l = 2; if (i < 19) l = max(l, f[u][i + 1] + 1); int r = f[u][i]; if (l <= r) res += 1LL * (r - l + 1) * (i - 1); } } res += 1LL * n * n; cout << res << '\n'; } ```
#include <bits/stdc++.h> using namespace std; template <typename T> bool chkmax(T &a, T b) { return (a < b) ? a = b, 1 : 0; } template <typename T> bool chkmin(T &a, T b) { return (a > b) ? a = b, 1 : 0; } inline int read() { int x = 0, fh = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1; for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ '0'); return x * fh; } int n; int he[400005], to[1200005], ne[1200005], e; void add(int x, int y) { to[++e] = y; ne[e] = he[x]; he[x] = e; } long long dp[400005][20]; long long dep[400005]; long long num[400005], tmp; long long ans; void dfs(int x, int ff) { dep[x] = 1; for (int i = he[x]; i; i = ne[i]) { int v = to[i]; if (v == ff) continue; dfs(v, x); chkmax(dep[x], dep[v] + 1); } dp[x][1] = n; for (int i = (2), _end_ = (int)(19); i <= _end_; ++i) { tmp = 0; for (int j = he[x]; j; j = ne[j]) { int v = to[j]; if (v == ff) continue; if (dp[v][i - 1]) { num[++tmp] = dp[v][i - 1]; } } sort(num + 1, num + tmp + 1); for (int j = (tmp), _end_ = (int)(1); j >= _end_; --j) { if (num[tmp - j + 1] >= j) { dp[x][i] = j; break; } } } } void dfs2(int x, int ff) { for (int i = he[x]; i; i = ne[i]) { int v = to[i]; if (v == ff) continue; dfs2(v, x); for (int j = (2), _end_ = (int)(19); j <= _end_; ++j) chkmax(dp[x][j], dp[v][j]); } } int main() { n = read(); for (int i = (1), _end_ = (int)(n - 1); i <= _end_; ++i) { int x = read(), y = read(); add(x, y); add(y, x); } dfs(1, 0); dfs2(1, 0); for (int i = (1), _end_ = (int)(n); i <= _end_; ++i) ans += dep[i]; for (int i = (1), _end_ = (int)(n); i <= _end_; ++i) for (int j = (1), _end_ = (int)(19); j <= _end_; ++j) { if (dp[i][j]) ans += dp[i][j] - 1; } printf("%lld\n", ans); return 0; }
### Prompt Construct a CPP code solution to the problem outlined: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename T> bool chkmax(T &a, T b) { return (a < b) ? a = b, 1 : 0; } template <typename T> bool chkmin(T &a, T b) { return (a > b) ? a = b, 1 : 0; } inline int read() { int x = 0, fh = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1; for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ '0'); return x * fh; } int n; int he[400005], to[1200005], ne[1200005], e; void add(int x, int y) { to[++e] = y; ne[e] = he[x]; he[x] = e; } long long dp[400005][20]; long long dep[400005]; long long num[400005], tmp; long long ans; void dfs(int x, int ff) { dep[x] = 1; for (int i = he[x]; i; i = ne[i]) { int v = to[i]; if (v == ff) continue; dfs(v, x); chkmax(dep[x], dep[v] + 1); } dp[x][1] = n; for (int i = (2), _end_ = (int)(19); i <= _end_; ++i) { tmp = 0; for (int j = he[x]; j; j = ne[j]) { int v = to[j]; if (v == ff) continue; if (dp[v][i - 1]) { num[++tmp] = dp[v][i - 1]; } } sort(num + 1, num + tmp + 1); for (int j = (tmp), _end_ = (int)(1); j >= _end_; --j) { if (num[tmp - j + 1] >= j) { dp[x][i] = j; break; } } } } void dfs2(int x, int ff) { for (int i = he[x]; i; i = ne[i]) { int v = to[i]; if (v == ff) continue; dfs2(v, x); for (int j = (2), _end_ = (int)(19); j <= _end_; ++j) chkmax(dp[x][j], dp[v][j]); } } int main() { n = read(); for (int i = (1), _end_ = (int)(n - 1); i <= _end_; ++i) { int x = read(), y = read(); add(x, y); add(y, x); } dfs(1, 0); dfs2(1, 0); for (int i = (1), _end_ = (int)(n); i <= _end_; ++i) ans += dep[i]; for (int i = (1), _end_ = (int)(n); i <= _end_; ++i) for (int j = (1), _end_ = (int)(19); j <= _end_; ++j) { if (dp[i][j]) ans += dp[i][j] - 1; } printf("%lld\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 300005; int fa[N], f[N], g[N], sn[N], id[N], n, u, v; vector<int> s[N], e[N], tmp[N]; long long ans, sum; int clk; int dfs(int u) { int mx = 1; id[++clk] = u; for (auto v : e[u]) if (v != fa[u]) { fa[v] = u; mx = max(mx, dfs(v) + 1); ++sn[u]; } ans += mx; return mx; } void up(int u, int now) { if (now <= g[u]) return; sum += now - g[u], g[u] = now; if (fa[u]) up(fa[u], now); } int cnt[N]; long long solve(int k) { for (auto u : s[k]) f[u] = n, cnt[u] = 0, tmp[u].clear(); for (auto u : s[k]) { if (cnt[u] < k) f[u] = 2; else { sort(tmp[u].begin(), tmp[u].end(), greater<int>()); f[u] = tmp[u][k - 1]; } if (fa[u]) tmp[fa[u]].push_back(f[u] + 1), cnt[fa[u]]++; } long long res = n - s[k].size(); for (auto u : s[k]) up(u, f[u]); return sum; } int main() { cin >> n; for (int i = (1); i <= (n - 1); i++) { cin >> u >> v; e[u].push_back(v); e[v].push_back(u); } dfs(1); for (int i = (n); i >= (1); i--) { int u = id[i]; for (int j = (1); j <= (sn[u]); j++) s[j].push_back(u); } for (int i = (1); i <= (n); i++) g[i] = 1, sum++; for (int i = (n); i >= (2); i--) ans += solve(i); cout << ans << endl; return 0; }
### Prompt Please create a solution in Cpp to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 300005; int fa[N], f[N], g[N], sn[N], id[N], n, u, v; vector<int> s[N], e[N], tmp[N]; long long ans, sum; int clk; int dfs(int u) { int mx = 1; id[++clk] = u; for (auto v : e[u]) if (v != fa[u]) { fa[v] = u; mx = max(mx, dfs(v) + 1); ++sn[u]; } ans += mx; return mx; } void up(int u, int now) { if (now <= g[u]) return; sum += now - g[u], g[u] = now; if (fa[u]) up(fa[u], now); } int cnt[N]; long long solve(int k) { for (auto u : s[k]) f[u] = n, cnt[u] = 0, tmp[u].clear(); for (auto u : s[k]) { if (cnt[u] < k) f[u] = 2; else { sort(tmp[u].begin(), tmp[u].end(), greater<int>()); f[u] = tmp[u][k - 1]; } if (fa[u]) tmp[fa[u]].push_back(f[u] + 1), cnt[fa[u]]++; } long long res = n - s[k].size(); for (auto u : s[k]) up(u, f[u]); return sum; } int main() { cin >> n; for (int i = (1); i <= (n - 1); i++) { cin >> u >> v; e[u].push_back(v); e[v].push_back(u); } dfs(1); for (int i = (n); i >= (1); i--) { int u = id[i]; for (int j = (1); j <= (sn[u]); j++) s[j].push_back(u); } for (int i = (1); i <= (n); i++) g[i] = 1, sum++; for (int i = (n); i >= (2); i--) ans += solve(i); cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int NMAX = 3e5 + 10, LGMAX = 19; class Reader { public: Reader() : m_pos(kBufferSize - 1), m_buffer(new char[kBufferSize]) { next(); } Reader& operator>>(int& value) { value = 0; while (current() < '0' || current() > '9') next(); while (current() >= '0' && current() <= '9') { value = value * 10 + current() - '0'; next(); } return *this; } private: const int kBufferSize = 32768; char current() { return m_buffer[m_pos]; } void next() { if (!(++m_pos != kBufferSize)) { cin.read(m_buffer.get(), kBufferSize); m_pos = 0; } } int m_pos; unique_ptr<char[]> m_buffer; }; int N; int MaxLevel; int level[NMAX], height[NMAX]; int64_t answer; int DP[LGMAX][NMAX], father[NMAX], val[NMAX]; vector<int> T[NMAX], LevelNodes[NMAX]; vector<pair<int, int>> GoUp[NMAX]; int DFS(int node, int from, int level) { father[node] = from; MaxLevel = max(MaxLevel, level); LevelNodes[level].push_back(node); if (from != -1 && T[node].size() == 1) { ++answer; return 1; } int height = 1; for (int next : T[node]) { if (next == from) continue; ++DP[2][node]; height = max(height, 1 + DFS(next, node, level + 1)); } GoUp[DP[2][node]].push_back({2, node}); answer += height; return height; } void iterativeDFS(int node) { stack<pair<int, int>> S; father[node] = -1; LevelNodes[0].push_back(node); S.push({node, 0}); while (!S.empty()) { int node, i; tie(node, i) = S.top(); if (i == 0) { height[node] = 1; if (father[node] != -1 && T[node].size() == 1) { ++answer; S.pop(); continue; } } if (i < (int)T[node].size()) { S.top().second = i + 1; if (T[node][i] == father[node]) continue; ++DP[2][node]; father[T[node][i]] = node; level[T[node][i]] = level[node] + 1; MaxLevel = max(MaxLevel, level[node] + 1); LevelNodes[level[node] + 1].push_back(T[node][i]); S.push({T[node][i], 0}); } else if (i == (int)T[node].size()) { S.pop(); GoUp[DP[2][node]].push_back({2, node}); for (int next : T[node]) { if (next != father[node]) { height[node] = max(height[node], 1 + height[next]); } } answer += height[node]; } } } int main() { Reader cin; cin >> N; for (int i = 0; i < N - 1; ++i) { int x, y; cin >> x >> y; T[x].push_back(y); T[y].push_back(x); } iterativeDFS(1); for (int i = 3; i < LGMAX; ++i) { for (int j = MaxLevel; j >= 0; --j) { for (int node : LevelNodes[j]) { vector<int> values; for (int next : T[node]) { if (next == father[node]) continue; values.push_back(DP[i - 1][next]); } sort(values.begin(), values.end(), greater<int>()); int k = 0; while (k < (int)values.size() && k + 1 <= values[k]) ++k; if (k > 0 && k <= values[k - 1]) { DP[i][node] = k; GoUp[DP[i][node]].push_back({i, node}); } } } } int64_t value = N; for (int i = 1; i <= N; ++i) val[i] = 1; for (int i = N; i >= 2; --i) { for (auto det : GoUp[i]) { int depth = det.first; int node = det.second; while (node != -1 && depth > val[node]) { value += depth - val[node]; val[node] = depth; node = father[node]; } } answer += value; } cout << answer << '\n'; return 0; }
### Prompt Please provide a cpp coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int NMAX = 3e5 + 10, LGMAX = 19; class Reader { public: Reader() : m_pos(kBufferSize - 1), m_buffer(new char[kBufferSize]) { next(); } Reader& operator>>(int& value) { value = 0; while (current() < '0' || current() > '9') next(); while (current() >= '0' && current() <= '9') { value = value * 10 + current() - '0'; next(); } return *this; } private: const int kBufferSize = 32768; char current() { return m_buffer[m_pos]; } void next() { if (!(++m_pos != kBufferSize)) { cin.read(m_buffer.get(), kBufferSize); m_pos = 0; } } int m_pos; unique_ptr<char[]> m_buffer; }; int N; int MaxLevel; int level[NMAX], height[NMAX]; int64_t answer; int DP[LGMAX][NMAX], father[NMAX], val[NMAX]; vector<int> T[NMAX], LevelNodes[NMAX]; vector<pair<int, int>> GoUp[NMAX]; int DFS(int node, int from, int level) { father[node] = from; MaxLevel = max(MaxLevel, level); LevelNodes[level].push_back(node); if (from != -1 && T[node].size() == 1) { ++answer; return 1; } int height = 1; for (int next : T[node]) { if (next == from) continue; ++DP[2][node]; height = max(height, 1 + DFS(next, node, level + 1)); } GoUp[DP[2][node]].push_back({2, node}); answer += height; return height; } void iterativeDFS(int node) { stack<pair<int, int>> S; father[node] = -1; LevelNodes[0].push_back(node); S.push({node, 0}); while (!S.empty()) { int node, i; tie(node, i) = S.top(); if (i == 0) { height[node] = 1; if (father[node] != -1 && T[node].size() == 1) { ++answer; S.pop(); continue; } } if (i < (int)T[node].size()) { S.top().second = i + 1; if (T[node][i] == father[node]) continue; ++DP[2][node]; father[T[node][i]] = node; level[T[node][i]] = level[node] + 1; MaxLevel = max(MaxLevel, level[node] + 1); LevelNodes[level[node] + 1].push_back(T[node][i]); S.push({T[node][i], 0}); } else if (i == (int)T[node].size()) { S.pop(); GoUp[DP[2][node]].push_back({2, node}); for (int next : T[node]) { if (next != father[node]) { height[node] = max(height[node], 1 + height[next]); } } answer += height[node]; } } } int main() { Reader cin; cin >> N; for (int i = 0; i < N - 1; ++i) { int x, y; cin >> x >> y; T[x].push_back(y); T[y].push_back(x); } iterativeDFS(1); for (int i = 3; i < LGMAX; ++i) { for (int j = MaxLevel; j >= 0; --j) { for (int node : LevelNodes[j]) { vector<int> values; for (int next : T[node]) { if (next == father[node]) continue; values.push_back(DP[i - 1][next]); } sort(values.begin(), values.end(), greater<int>()); int k = 0; while (k < (int)values.size() && k + 1 <= values[k]) ++k; if (k > 0 && k <= values[k - 1]) { DP[i][node] = k; GoUp[DP[i][node]].push_back({i, node}); } } } } int64_t value = N; for (int i = 1; i <= N; ++i) val[i] = 1; for (int i = N; i >= 2; --i) { for (auto det : GoUp[i]) { int depth = det.first; int node = det.second; while (node != -1 && depth > val[node]) { value += depth - val[node]; val[node] = depth; node = father[node]; } } answer += value; } cout << answer << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5; const int mod = 1e9 + 7; long long ans; int n, d[N], son[N], size[N]; vector<int> G[N], dp[N]; bool cmp(int i, int j) { return d[i] > d[j]; } void dfs(int x, int f) { size[x] = 1; if (find(G[x].begin(), G[x].end(), f) != G[x].end()) G[x].erase(find(G[x].begin(), G[x].end(), f)); d[x] = G[x].size(); dp[x].resize(d[x] + 1); for (int u : G[x]) { dfs(u, x); size[x] += size[u]; if (size[u] >= size[son[x]]) son[x] = u; } sort(G[x].begin(), G[x].end(), cmp); for (int i = 1; i <= d[x]; ++i) { multiset<int> S; dp[x][i] = 2; for (int u : G[x]) { if (d[u] < i) break; S.insert(dp[u][i]); } while (S.size() > i) S.erase(S.begin()); if (S.size() == i) dp[x][i] = (*S.begin()) + 1; } } int f[N]; long long sum; void clear(int x) { for (int i = 1; i <= d[x]; ++i) f[i] = 1; for (int u : G[x]) clear(u); } void insert(int x) { for (int i = 1; i <= d[x]; ++i) { if (dp[x][i] > f[i]) { sum += dp[x][i] - f[i]; f[i] = dp[x][i]; } } for (int u : G[x]) insert(u); } void dfs(int x) { for (int u : G[x]) { if (u == son[x]) continue; dfs(u); sum = n; clear(u); } if (son[x]) dfs(son[x]); for (int u : G[x]) if (u != son[x]) insert(u); for (int i = 1; i <= d[x]; ++i) { if (dp[x][i] > f[i]) { sum += dp[x][i] - f[i]; f[i] = dp[x][i]; } } ans += sum; } int main() { cin >> n; for (int i = 1; i < n; ++i) { int x, y; scanf("%d %d", &x, &y); G[x].push_back(y); G[y].push_back(x); } dfs(1, 0); for (int i = 1; i <= n; ++i) f[i] = 1; sum = n; dfs(1); cout << ans; }
### Prompt In cpp, your task is to solve the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5; const int mod = 1e9 + 7; long long ans; int n, d[N], son[N], size[N]; vector<int> G[N], dp[N]; bool cmp(int i, int j) { return d[i] > d[j]; } void dfs(int x, int f) { size[x] = 1; if (find(G[x].begin(), G[x].end(), f) != G[x].end()) G[x].erase(find(G[x].begin(), G[x].end(), f)); d[x] = G[x].size(); dp[x].resize(d[x] + 1); for (int u : G[x]) { dfs(u, x); size[x] += size[u]; if (size[u] >= size[son[x]]) son[x] = u; } sort(G[x].begin(), G[x].end(), cmp); for (int i = 1; i <= d[x]; ++i) { multiset<int> S; dp[x][i] = 2; for (int u : G[x]) { if (d[u] < i) break; S.insert(dp[u][i]); } while (S.size() > i) S.erase(S.begin()); if (S.size() == i) dp[x][i] = (*S.begin()) + 1; } } int f[N]; long long sum; void clear(int x) { for (int i = 1; i <= d[x]; ++i) f[i] = 1; for (int u : G[x]) clear(u); } void insert(int x) { for (int i = 1; i <= d[x]; ++i) { if (dp[x][i] > f[i]) { sum += dp[x][i] - f[i]; f[i] = dp[x][i]; } } for (int u : G[x]) insert(u); } void dfs(int x) { for (int u : G[x]) { if (u == son[x]) continue; dfs(u); sum = n; clear(u); } if (son[x]) dfs(son[x]); for (int u : G[x]) if (u != son[x]) insert(u); for (int i = 1; i <= d[x]; ++i) { if (dp[x][i] > f[i]) { sum += dp[x][i] - f[i]; f[i] = dp[x][i]; } } ans += sum; } int main() { cin >> n; for (int i = 1; i < n; ++i) { int x, y; scanf("%d %d", &x, &y); G[x].push_back(y); G[y].push_back(x); } dfs(1, 0); for (int i = 1; i <= n; ++i) f[i] = 1; sum = n; dfs(1); cout << ans; } ```
#include <bits/stdc++.h> using namespace std; int m, k; long long ans; const int N = 330000; int h[N], dp[N], mdp[N], cnt[N], par[N], chd[N]; vector<int> adj[N]; vector<int> V; void dfs(int u, int p) { V.push_back(u); par[u] = p; for (int v : adj[u]) { if (v == p) continue; dfs(v, u); } chd[u] = adj[u].size() - (u != 1); for (int v : adj[u]) { if (v == p) continue; h[u] = max(h[u], h[v] + 1); chd[u] = max(chd[u], chd[v]); } ans += h[u]; } int from[N], cc[N]; int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { int u, v; scanf("%d%d", &u, &v); adj[u].push_back(v); adj[v].push_back(u); } m = 0; ans = 1LL * n * n; m = 1; dfs(1, 0); reverse(V.begin(), V.end()); int sum = 0; int _m = 1; for (m = 2; 1LL * m * (m + 1) + 1 <= n; m++) { long long s = 1, t = 1; k = 0; while (s <= n) t *= m, s += t, k++; for (int i = 1; i <= n; i++) mdp[i] = 0; sum += k; if (k >= 4) { for (int u : V) { for (int v : adj[u]) { if (v == par[u]) continue; mdp[u] = max(mdp[u], mdp[v]); } int c = adj[u].size() - (u != 1); dp[u] = 0; if (mdp[u] < k - 1) { if (c >= m) { for (int j = 0; j < k; j++) cnt[j] = 0; for (int v : adj[u]) { if (v == par[u]) continue; cnt[dp[v]]++; } for (int j = k - 2; j >= 0; j--) { cnt[j] += cnt[j + 1]; if (cnt[j] >= m) { dp[u] = j + 1; break; } } mdp[u] = max(mdp[u], dp[u]); } } ans += mdp[u]; } _m = m; } else { for (int u : V) { cc[u] = adj[u].size() - (u != 1); from[u] = 0; int cn = 0; for (int v : adj[u]) { if (v == par[u]) continue; cnt[cn++] = cc[v]; from[u] = max(from[u], from[v]); } sort(cnt, cnt + cn); int t = 0; for (int j = cn - 1; j >= 0; j--) { if (cnt[j] < cn - j) break; t = max(t, cn - j); } from[u] = max(from[u], t); if (from[u] >= m) ans += from[u] - m + 1; } break; } } for (int i = 0; i <= n; i++) cnt[i] = 0; for (int i = 1; i <= n; i++) cnt[chd[i]]++; for (int i = n - 1; i >= 0; i--) cnt[i] += cnt[i + 1]; for (m = _m + 1; m <= n; m++) ans += cnt[m]; cout << ans << endl; return 0; }
### Prompt Please formulate a CPP solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int m, k; long long ans; const int N = 330000; int h[N], dp[N], mdp[N], cnt[N], par[N], chd[N]; vector<int> adj[N]; vector<int> V; void dfs(int u, int p) { V.push_back(u); par[u] = p; for (int v : adj[u]) { if (v == p) continue; dfs(v, u); } chd[u] = adj[u].size() - (u != 1); for (int v : adj[u]) { if (v == p) continue; h[u] = max(h[u], h[v] + 1); chd[u] = max(chd[u], chd[v]); } ans += h[u]; } int from[N], cc[N]; int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { int u, v; scanf("%d%d", &u, &v); adj[u].push_back(v); adj[v].push_back(u); } m = 0; ans = 1LL * n * n; m = 1; dfs(1, 0); reverse(V.begin(), V.end()); int sum = 0; int _m = 1; for (m = 2; 1LL * m * (m + 1) + 1 <= n; m++) { long long s = 1, t = 1; k = 0; while (s <= n) t *= m, s += t, k++; for (int i = 1; i <= n; i++) mdp[i] = 0; sum += k; if (k >= 4) { for (int u : V) { for (int v : adj[u]) { if (v == par[u]) continue; mdp[u] = max(mdp[u], mdp[v]); } int c = adj[u].size() - (u != 1); dp[u] = 0; if (mdp[u] < k - 1) { if (c >= m) { for (int j = 0; j < k; j++) cnt[j] = 0; for (int v : adj[u]) { if (v == par[u]) continue; cnt[dp[v]]++; } for (int j = k - 2; j >= 0; j--) { cnt[j] += cnt[j + 1]; if (cnt[j] >= m) { dp[u] = j + 1; break; } } mdp[u] = max(mdp[u], dp[u]); } } ans += mdp[u]; } _m = m; } else { for (int u : V) { cc[u] = adj[u].size() - (u != 1); from[u] = 0; int cn = 0; for (int v : adj[u]) { if (v == par[u]) continue; cnt[cn++] = cc[v]; from[u] = max(from[u], from[v]); } sort(cnt, cnt + cn); int t = 0; for (int j = cn - 1; j >= 0; j--) { if (cnt[j] < cn - j) break; t = max(t, cn - j); } from[u] = max(from[u], t); if (from[u] >= m) ans += from[u] - m + 1; } break; } } for (int i = 0; i <= n; i++) cnt[i] = 0; for (int i = 1; i <= n; i++) cnt[chd[i]]++; for (int i = n - 1; i >= 0; i--) cnt[i] += cnt[i + 1]; for (m = _m + 1; m <= n; m++) ans += cnt[m]; cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5; int n; vector<int> adj[N]; vector<int> karr[N]; multiset<int> ss[N]; vector<int> *val[N]; long long *sum[N]; long long ans = 0; void dfs(int v, int p) { int c = adj[v].size() - (p > 0); for (auto it : adj[v]) { if (it == p) continue; dfs(it, v); } val[v] = new vector<int>(c, 0); sum[v] = new long long(0); for (auto it : adj[v]) { if (it == p) continue; for (int i = 0; i < (int)karr[it].size() && i < c; i++) { ss[i].insert(karr[it][i]); if ((int)ss[i].size() > i + 1) { ss[i].erase(ss[i].begin()); } } if (val[v]->size() < val[it]->size()) { swap(val[v], val[it]); swap(sum[v], sum[it]); } for (int i = 0; i < (int)val[it]->size(); i++) { if ((*val[it])[i] > (*val[v])[i]) { (*sum[v]) += (*val[it])[i] - (*val[v])[i]; (*val[v])[i] = (*val[it])[i]; } } } for (int i = 1; i <= c; i++) { int cnt = 0; if ((int)ss[i - 1].size() == i) { cnt = 1 + (*ss[i - 1].begin()); } else cnt = 2; karr[v].push_back(cnt); ss[i - 1].clear(); if (cnt > (*val[v])[i - 1]) { (*sum[v]) += cnt - (*val[v])[i - 1]; (*val[v])[i - 1] = cnt; } } ans += (*sum[v]); ans += n - val[v]->size(); } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i < n; i++) { int a, b; cin >> a >> b; adj[a].push_back(b); adj[b].push_back(a); } dfs(1, 0); cout << ans << "\n"; return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5; int n; vector<int> adj[N]; vector<int> karr[N]; multiset<int> ss[N]; vector<int> *val[N]; long long *sum[N]; long long ans = 0; void dfs(int v, int p) { int c = adj[v].size() - (p > 0); for (auto it : adj[v]) { if (it == p) continue; dfs(it, v); } val[v] = new vector<int>(c, 0); sum[v] = new long long(0); for (auto it : adj[v]) { if (it == p) continue; for (int i = 0; i < (int)karr[it].size() && i < c; i++) { ss[i].insert(karr[it][i]); if ((int)ss[i].size() > i + 1) { ss[i].erase(ss[i].begin()); } } if (val[v]->size() < val[it]->size()) { swap(val[v], val[it]); swap(sum[v], sum[it]); } for (int i = 0; i < (int)val[it]->size(); i++) { if ((*val[it])[i] > (*val[v])[i]) { (*sum[v]) += (*val[it])[i] - (*val[v])[i]; (*val[v])[i] = (*val[it])[i]; } } } for (int i = 1; i <= c; i++) { int cnt = 0; if ((int)ss[i - 1].size() == i) { cnt = 1 + (*ss[i - 1].begin()); } else cnt = 2; karr[v].push_back(cnt); ss[i - 1].clear(); if (cnt > (*val[v])[i - 1]) { (*sum[v]) += cnt - (*val[v])[i - 1]; (*val[v])[i - 1] = cnt; } } ans += (*sum[v]); ans += n - val[v]->size(); } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i < n; i++) { int a, b; cin >> a >> b; adj[a].push_back(b); adj[b].push_back(a); } dfs(1, 0); cout << ans << "\n"; return 0; } ```
#include <bits/stdc++.h> inline bool C(int a, int b) { return a > b; } inline void inc(int &a, const int &b) { if (a < b) a = b; } struct d { d *n; int t; d(d *a, int b) : n(a), t(b) {} } * G[300005]; void I(int f, int t) { G[f] = new d(G[f], t); } int A[300005], M[300005][20], F[300005][20], V[300005], n; long long T; void s(int x, int f) { V[x] = 1; M[x][1] = F[x][1] = n; for (d *i = G[x]; i; i = i->n) if (i->t != f) s(i->t, x), inc(V[x], V[i->t] + 1); for (int i = 2, m; m = 0, i < 19; ++i) { for (d *j = G[x]; j; j = j->n) if (j->t != f) A[m++] = F[j->t][i - 1]; std::sort(A, A + m, C); A[m] = 0; while (F[x][i] < A[F[x][i]]) ++F[x][i]; inc(F[x][i], 1); M[x][i] = F[x][i]; for (d *j = G[x]; j; j = j->n) if (j->t != f) inc(M[x][i], M[j->t][i]); } M[x][19] = F[x][19] = 1; T += V[x]; for (int i = 1; i < 19; ++i) T += i * (M[x][i] - M[x][i + 1]); } int main() { scanf("%d", &n); for (int i = 1, a, b; i < n; ++i) { scanf("%d%d", &a, &b); I(a, b); I(b, a); } s(1, 0); return !printf("%lld\n", T); }
### Prompt Generate a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> inline bool C(int a, int b) { return a > b; } inline void inc(int &a, const int &b) { if (a < b) a = b; } struct d { d *n; int t; d(d *a, int b) : n(a), t(b) {} } * G[300005]; void I(int f, int t) { G[f] = new d(G[f], t); } int A[300005], M[300005][20], F[300005][20], V[300005], n; long long T; void s(int x, int f) { V[x] = 1; M[x][1] = F[x][1] = n; for (d *i = G[x]; i; i = i->n) if (i->t != f) s(i->t, x), inc(V[x], V[i->t] + 1); for (int i = 2, m; m = 0, i < 19; ++i) { for (d *j = G[x]; j; j = j->n) if (j->t != f) A[m++] = F[j->t][i - 1]; std::sort(A, A + m, C); A[m] = 0; while (F[x][i] < A[F[x][i]]) ++F[x][i]; inc(F[x][i], 1); M[x][i] = F[x][i]; for (d *j = G[x]; j; j = j->n) if (j->t != f) inc(M[x][i], M[j->t][i]); } M[x][19] = F[x][19] = 1; T += V[x]; for (int i = 1; i < 19; ++i) T += i * (M[x][i] - M[x][i + 1]); } int main() { scanf("%d", &n); for (int i = 1, a, b; i < n; ++i) { scanf("%d%d", &a, &b); I(a, b); I(b, a); } s(1, 0); return !printf("%lld\n", T); } ```
#include <bits/stdc++.h> using namespace std; struct EDGE { int to, next; } e[600010]; int n, head[300010], top; void add(int u, int v) { e[top].to = v; e[top].next = head[u]; head[u] = top++; } int dp[300010][20], fa[300010], dep[300010]; void dfs(int x) { dp[x][1] = n; int i, j; for (i = head[x]; ~i; i = e[i].next) { if (e[i].to == fa[x]) continue; fa[e[i].to] = x; dfs(e[i].to); dep[x] = max(dep[x], dep[e[i].to]); } dep[x]++; vector<int> v; for (j = 2; j < 20; j++) { v.push_back(-1); for (i = head[x]; ~i; i = e[i].next) { if (e[i].to == fa[x]) continue; v.push_back(dp[e[i].to][j - 1]); } sort(v.begin() + 1, v.end(), greater<int>()); for (i = 1; i < v.size(); i++) { if (v[i] >= i) dp[x][j] = i; else break; } v.clear(); } } void dfs1(int x) { int i, j; for (i = head[x]; ~i; i = e[i].next) { if (e[i].to == fa[x]) continue; dfs1(e[i].to); for (j = 1; j < 20; j++) dp[x][j] = max(dp[x][j], dp[e[i].to][j]); } } int main() { memset(head, 255, sizeof(head)); ios::sync_with_stdio(0); cin.tie(0), cout.tie(0); cin >> n; int i, u, v; for (i = 1; i < n; i++) cin >> u >> v, add(u, v), add(v, u); dfs(1); dfs1(1); long long ans = 0; int j; for (i = 1; i <= n; i++) { for (j = 1; j < 20; j++) { ans += max(dp[i][j] - 1, 0); } ans += dep[i]; } cout << ans << '\n'; return 0; }
### Prompt In cpp, your task is to solve the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; struct EDGE { int to, next; } e[600010]; int n, head[300010], top; void add(int u, int v) { e[top].to = v; e[top].next = head[u]; head[u] = top++; } int dp[300010][20], fa[300010], dep[300010]; void dfs(int x) { dp[x][1] = n; int i, j; for (i = head[x]; ~i; i = e[i].next) { if (e[i].to == fa[x]) continue; fa[e[i].to] = x; dfs(e[i].to); dep[x] = max(dep[x], dep[e[i].to]); } dep[x]++; vector<int> v; for (j = 2; j < 20; j++) { v.push_back(-1); for (i = head[x]; ~i; i = e[i].next) { if (e[i].to == fa[x]) continue; v.push_back(dp[e[i].to][j - 1]); } sort(v.begin() + 1, v.end(), greater<int>()); for (i = 1; i < v.size(); i++) { if (v[i] >= i) dp[x][j] = i; else break; } v.clear(); } } void dfs1(int x) { int i, j; for (i = head[x]; ~i; i = e[i].next) { if (e[i].to == fa[x]) continue; dfs1(e[i].to); for (j = 1; j < 20; j++) dp[x][j] = max(dp[x][j], dp[e[i].to][j]); } } int main() { memset(head, 255, sizeof(head)); ios::sync_with_stdio(0); cin.tie(0), cout.tie(0); cin >> n; int i, u, v; for (i = 1; i < n; i++) cin >> u >> v, add(u, v), add(v, u); dfs(1); dfs1(1); long long ans = 0; int j; for (i = 1; i <= n; i++) { for (j = 1; j < 20; j++) { ans += max(dp[i][j] - 1, 0); } ans += dep[i]; } cout << ans << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; int mx[300005], f[300005][20], n; long long ans; vector<int> e[300005]; int main() { scanf("%d", &n); for (int i = 1, u, v; i < n; i++) scanf("%d%d", &u, &v), e[u].emplace_back(v), e[v].emplace_back(u); function<void(int, int)> dfs1 = [&](int u, int fa) { mx[u] = 1; for (int v : e[u]) if (v ^ fa) dfs1(v, u), mx[u] = max(mx[u], mx[v] + 1); ans += mx[u]; static int tmp[300005]; f[u][0] = n; for (int i = 1; i < 20; i++) { int top = 0; for (int v : e[u]) if (v ^ fa) tmp[++top] = f[v][i - 1]; sort(tmp + 1, tmp + 1 + top, [](int _, int $) { return _ > $; }); for (f[u][i] = 1; f[u][i] < top && f[u][i] < tmp[f[u][i] + 1]; f[u][i]++) ; } }; dfs1(1, 0); function<void(int, int)> dfs2 = [&](int u, int fa) { for (int v : e[u]) if (v ^ fa) dfs2(v, u); for (int i = 1; i < 20; i++) for (int v : e[u]) if (v ^ fa) f[u][i] = max(f[u][i], f[v][i]); for (int i = 1; i < 20; i++) ans += 1ll * i * (f[u][i - 1] - f[u][i]); }; dfs2(1, 0); printf("%lld\n", ans); }
### Prompt Generate a cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int mx[300005], f[300005][20], n; long long ans; vector<int> e[300005]; int main() { scanf("%d", &n); for (int i = 1, u, v; i < n; i++) scanf("%d%d", &u, &v), e[u].emplace_back(v), e[v].emplace_back(u); function<void(int, int)> dfs1 = [&](int u, int fa) { mx[u] = 1; for (int v : e[u]) if (v ^ fa) dfs1(v, u), mx[u] = max(mx[u], mx[v] + 1); ans += mx[u]; static int tmp[300005]; f[u][0] = n; for (int i = 1; i < 20; i++) { int top = 0; for (int v : e[u]) if (v ^ fa) tmp[++top] = f[v][i - 1]; sort(tmp + 1, tmp + 1 + top, [](int _, int $) { return _ > $; }); for (f[u][i] = 1; f[u][i] < top && f[u][i] < tmp[f[u][i] + 1]; f[u][i]++) ; } }; dfs1(1, 0); function<void(int, int)> dfs2 = [&](int u, int fa) { for (int v : e[u]) if (v ^ fa) dfs2(v, u); for (int i = 1; i < 20; i++) for (int v : e[u]) if (v ^ fa) f[u][i] = max(f[u][i], f[v][i]); for (int i = 1; i < 20; i++) ans += 1ll * i * (f[u][i - 1] - f[u][i]); }; dfs2(1, 0); printf("%lld\n", ans); } ```
#include <bits/stdc++.h> using namespace std; long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } const int MAXN = 300000; const int MAXDEP = 18; int n; vector<int> adj[MAXN]; int par[MAXN]; int top[MAXN], ntop; void dfsinit(int at) { top[ntop++] = at; for (int i = (0); i < (((int)(adj[at]).size())); ++i) { int to = adj[at][i]; if (to == par[at]) continue; par[to] = at; dfsinit(to); } } int jmx[MAXN]; int kmx[MAXN][MAXDEP + 1]; void dfsjmx(int at) { jmx[at] = 1; for (int i = (0); i < (((int)(adj[at]).size())); ++i) { int to = adj[at][i]; if (to == par[at]) continue; dfsjmx(to); jmx[at] = max(jmx[at], jmx[to] + 1); } } int cur[MAXN], ncur; void dfskmx(int at) { for (int i = (0); i < (((int)(adj[at]).size())); ++i) { int to = adj[at][i]; if (to == par[at]) continue; dfskmx(to); } kmx[at][1] = n; for (int j = (2); j <= (MAXDEP); ++j) { ncur = 0; for (int i = (0); i < (((int)(adj[at]).size())); ++i) { int to = adj[at][i]; if (to != par[at]) cur[ncur++] = kmx[to][j - 1]; } sort(cur, cur + ncur); reverse(cur, cur + ncur); kmx[at][j] = 0; for (int pos = (0); pos < (ncur); ++pos) if (cur[pos] >= pos + 1) kmx[at][j] = pos + 1; } } int dp[MAXN]; long long dpsum; vector<pair<int, int> > e[MAXN + 1]; void upddp(int at, int val) { while (at != -1 && val > dp[at]) { dpsum += val - dp[at]; dp[at] = val; at = par[at]; } } void run() { scanf("%d", &n); for (int i = (0); i < (n - 1); ++i) { int a, b; scanf("%d%d", &a, &b); --a, --b; adj[a].push_back(b); adj[b].push_back(a); } par[0] = -1; ntop = 0; dfsinit(0); dfsjmx(0); dfskmx(0); long long ans = 0; for (int i = (0); i < (n); ++i) dp[i] = 0; dpsum = 0; for (int i = (0); i < (n); ++i) for (int j = (1); j <= (MAXDEP); ++j) if (kmx[i][j] >= 2) e[kmx[i][j]].push_back(make_pair(i, j)); for (int k = n; k >= 2; --k) { for (int idx = (0); idx < (((int)(e[k]).size())); ++idx) { int i = e[k][idx].first, j = e[k][idx].second; upddp(i, j); } ans += dpsum; } for (int i = (0); i < (n); ++i) dp[i] = jmx[i]; for (int i = n - 1; i >= 0; --i) { int at = top[i]; ans += dp[at]; if (par[at] != -1) dp[par[at]] = max(dp[par[at]], dp[at]); } printf("%lld\n", ans); } int main() { run(); return 0; }
### Prompt Please provide a cpp coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } const int MAXN = 300000; const int MAXDEP = 18; int n; vector<int> adj[MAXN]; int par[MAXN]; int top[MAXN], ntop; void dfsinit(int at) { top[ntop++] = at; for (int i = (0); i < (((int)(adj[at]).size())); ++i) { int to = adj[at][i]; if (to == par[at]) continue; par[to] = at; dfsinit(to); } } int jmx[MAXN]; int kmx[MAXN][MAXDEP + 1]; void dfsjmx(int at) { jmx[at] = 1; for (int i = (0); i < (((int)(adj[at]).size())); ++i) { int to = adj[at][i]; if (to == par[at]) continue; dfsjmx(to); jmx[at] = max(jmx[at], jmx[to] + 1); } } int cur[MAXN], ncur; void dfskmx(int at) { for (int i = (0); i < (((int)(adj[at]).size())); ++i) { int to = adj[at][i]; if (to == par[at]) continue; dfskmx(to); } kmx[at][1] = n; for (int j = (2); j <= (MAXDEP); ++j) { ncur = 0; for (int i = (0); i < (((int)(adj[at]).size())); ++i) { int to = adj[at][i]; if (to != par[at]) cur[ncur++] = kmx[to][j - 1]; } sort(cur, cur + ncur); reverse(cur, cur + ncur); kmx[at][j] = 0; for (int pos = (0); pos < (ncur); ++pos) if (cur[pos] >= pos + 1) kmx[at][j] = pos + 1; } } int dp[MAXN]; long long dpsum; vector<pair<int, int> > e[MAXN + 1]; void upddp(int at, int val) { while (at != -1 && val > dp[at]) { dpsum += val - dp[at]; dp[at] = val; at = par[at]; } } void run() { scanf("%d", &n); for (int i = (0); i < (n - 1); ++i) { int a, b; scanf("%d%d", &a, &b); --a, --b; adj[a].push_back(b); adj[b].push_back(a); } par[0] = -1; ntop = 0; dfsinit(0); dfsjmx(0); dfskmx(0); long long ans = 0; for (int i = (0); i < (n); ++i) dp[i] = 0; dpsum = 0; for (int i = (0); i < (n); ++i) for (int j = (1); j <= (MAXDEP); ++j) if (kmx[i][j] >= 2) e[kmx[i][j]].push_back(make_pair(i, j)); for (int k = n; k >= 2; --k) { for (int idx = (0); idx < (((int)(e[k]).size())); ++idx) { int i = e[k][idx].first, j = e[k][idx].second; upddp(i, j); } ans += dpsum; } for (int i = (0); i < (n); ++i) dp[i] = jmx[i]; for (int i = n - 1; i >= 0; --i) { int at = top[i]; ans += dp[at]; if (par[at] != -1) dp[par[at]] = max(dp[par[at]], dp[at]); } printf("%lld\n", ans); } int main() { run(); return 0; } ```
#include <bits/stdc++.h> using namespace std; struct edge { int to, next; } e[300005 * 2]; int head[300005], tot; void add(int x, int y) { e[++tot] = (edge){y, head[x]}; head[x] = tot; } int mx[300005], dp[300005][25]; long long ans; int n, q[300005]; bool cmp(int x, int y) { return x > y; } void dfs(int x, int fa) { for (int i = head[x]; i; i = e[i].next) if (e[i].to != fa) { dfs(e[i].to, x); mx[x] = max(mx[x], mx[e[i].to]); } ++mx[x]; ans += mx[x]; dp[x][1] = n; for (int p = 2; p <= 20; p++) { int tp = 0; for (int i = head[x]; i; i = e[i].next) if (e[i].to != fa) q[++tp] = dp[e[i].to][p - 1]; sort(q + 1, q + tp + 1, cmp); for (int j = tp; j >= 2; j--) if (q[j] >= j) { dp[x][p] = j; break; } } } void solve(int x, int fa) { for (int i = head[x]; i; i = e[i].next) if (e[i].to != fa) { solve(e[i].to, x); for (int j = 1; j <= 20; j++) dp[x][j] = max(dp[x][j], dp[e[i].to][j]); } for (int i = 1; i <= 20; i++) { ans += 1ll * (dp[x][i] - dp[x][i + 1]) * i; if (dp[x][i + 1] == 0) { ans -= i; break; } } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int x, y; scanf("%d%d", &x, &y); add(x, y); add(y, x); } dfs(1, 0); solve(1, 0); printf("%lld", ans); }
### Prompt Generate a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; struct edge { int to, next; } e[300005 * 2]; int head[300005], tot; void add(int x, int y) { e[++tot] = (edge){y, head[x]}; head[x] = tot; } int mx[300005], dp[300005][25]; long long ans; int n, q[300005]; bool cmp(int x, int y) { return x > y; } void dfs(int x, int fa) { for (int i = head[x]; i; i = e[i].next) if (e[i].to != fa) { dfs(e[i].to, x); mx[x] = max(mx[x], mx[e[i].to]); } ++mx[x]; ans += mx[x]; dp[x][1] = n; for (int p = 2; p <= 20; p++) { int tp = 0; for (int i = head[x]; i; i = e[i].next) if (e[i].to != fa) q[++tp] = dp[e[i].to][p - 1]; sort(q + 1, q + tp + 1, cmp); for (int j = tp; j >= 2; j--) if (q[j] >= j) { dp[x][p] = j; break; } } } void solve(int x, int fa) { for (int i = head[x]; i; i = e[i].next) if (e[i].to != fa) { solve(e[i].to, x); for (int j = 1; j <= 20; j++) dp[x][j] = max(dp[x][j], dp[e[i].to][j]); } for (int i = 1; i <= 20; i++) { ans += 1ll * (dp[x][i] - dp[x][i + 1]) * i; if (dp[x][i + 1] == 0) { ans -= i; break; } } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int x, y; scanf("%d%d", &x, &y); add(x, y); add(y, x); } dfs(1, 0); solve(1, 0); printf("%lld", ans); } ```
#include <bits/stdc++.h> std::vector<int> node[524288]; int mk[524288][32], km[524288][32]; int dpmk[524288][32], dpkm[524288][32]; long long int ans; int a[524288]; int na; int n, k, m; void dfs(int p, int u) { 0; for (auto v : node[u]) if (v != p) dfs(u, v); for (int i = 1; i < k; ++i) { na = 0; for (auto v : node[u]) if (v != p) a[na++] = mk[v][i]; if (na >= i) { std::nth_element(a, a + na - i, a + na); dpmk[u][i] = mk[u][i] = a[na - i] + 1; } else dpmk[u][i] = mk[u][i] = 1; for (auto v : node[u]) if (v != p) dpmk[u][i] = std::max(dpmk[u][i], dpmk[v][i]); ans += dpmk[u][i]; 0; } dpkm[u][1] = km[u][1] = n; ans += n - (k - 1); for (int i = 2; i < m; ++i) { na = 0; for (auto v : node[u]) if (v != p) a[na++] = km[v][i - 1]; std::sort(a, a + na); km[u][i] = 0; for (int j = 1; j <= na; ++j) if (a[na - j] >= j) km[u][i] = j; dpkm[u][i] = km[u][i]; for (auto v : node[u]) if (v != p) dpkm[u][i] = std::max(dpkm[u][i], dpkm[v][i]); ans += std::max(0, dpkm[u][i] - (k - 1)); 0; } } int main() { scanf("%d", &n), k = std::min(n + 1, 32), m = std::min(n + 1, 32); for (int i = 1; i < n; ++i) { int u, v; scanf("%d%d", &u, &v); node[u].push_back(v); node[v].push_back(u); } dfs(1, 1); printf("%lld\n", ans); return 0; }
### Prompt Create a solution in Cpp for the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> std::vector<int> node[524288]; int mk[524288][32], km[524288][32]; int dpmk[524288][32], dpkm[524288][32]; long long int ans; int a[524288]; int na; int n, k, m; void dfs(int p, int u) { 0; for (auto v : node[u]) if (v != p) dfs(u, v); for (int i = 1; i < k; ++i) { na = 0; for (auto v : node[u]) if (v != p) a[na++] = mk[v][i]; if (na >= i) { std::nth_element(a, a + na - i, a + na); dpmk[u][i] = mk[u][i] = a[na - i] + 1; } else dpmk[u][i] = mk[u][i] = 1; for (auto v : node[u]) if (v != p) dpmk[u][i] = std::max(dpmk[u][i], dpmk[v][i]); ans += dpmk[u][i]; 0; } dpkm[u][1] = km[u][1] = n; ans += n - (k - 1); for (int i = 2; i < m; ++i) { na = 0; for (auto v : node[u]) if (v != p) a[na++] = km[v][i - 1]; std::sort(a, a + na); km[u][i] = 0; for (int j = 1; j <= na; ++j) if (a[na - j] >= j) km[u][i] = j; dpkm[u][i] = km[u][i]; for (auto v : node[u]) if (v != p) dpkm[u][i] = std::max(dpkm[u][i], dpkm[v][i]); ans += std::max(0, dpkm[u][i] - (k - 1)); 0; } } int main() { scanf("%d", &n), k = std::min(n + 1, 32), m = std::min(n + 1, 32); for (int i = 1; i < n; ++i) { int u, v; scanf("%d%d", &u, &v); node[u].push_back(v); node[v].push_back(u); } dfs(1, 1); printf("%lld\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; vector<int> g[300010], ch[300010]; vector<pair<int, int> > up[300010]; int p[300010], dp[300010][30], val[300010]; int u, v, n; long long ans; void dfs1(int u, int f) { p[u] = f; for (int v : g[u]) if (v != f) { ch[u].emplace_back(v); dfs1(v, u); } } void dfs2(int u) { for (int v : ch[u]) dfs2(v); auto &_dp = dp[u]; _dp[1] = n; for (int k = 2; k < 30; k++) { vector<int> hp; for (int v : ch[u]) if (dp[v][k - 1]) hp.emplace_back(dp[v][k - 1]); sort(hp.begin(), hp.end(), greater<int>()); for (int s = hp.size() - 1; s > 0; s--) if (hp[s] >= s + 1) { _dp[k] = s + 1; break; } if (_dp[k]) up[_dp[k]].emplace_back(u, k); } } int dfs3(int u) { if (!ch[u].size()) { ans++; return 1; } int mx = 0; for (int v : ch[u]) mx = max(mx, dfs3(v)); ans += mx + 1; return mx + 1; } int main() { cin >> n; for (int i = 1; i < n; i++) { cin >> u >> v; g[u].emplace_back(v); g[v].emplace_back(u); } dfs1(1, 0); fill_n(&dp[0][0], 300010 * 30, 0); dfs2(1); dfs3(1); long long add = n; fill_n(val, 300010, 1); for (int k = n; k > 1; k--) { for (auto e : up[k]) { int u = e.first, v = e.second; while (u && val[u] < v) { add += v - val[u]; val[u] = v; u = p[u]; } } ans += add; } cout << ans << endl; return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; vector<int> g[300010], ch[300010]; vector<pair<int, int> > up[300010]; int p[300010], dp[300010][30], val[300010]; int u, v, n; long long ans; void dfs1(int u, int f) { p[u] = f; for (int v : g[u]) if (v != f) { ch[u].emplace_back(v); dfs1(v, u); } } void dfs2(int u) { for (int v : ch[u]) dfs2(v); auto &_dp = dp[u]; _dp[1] = n; for (int k = 2; k < 30; k++) { vector<int> hp; for (int v : ch[u]) if (dp[v][k - 1]) hp.emplace_back(dp[v][k - 1]); sort(hp.begin(), hp.end(), greater<int>()); for (int s = hp.size() - 1; s > 0; s--) if (hp[s] >= s + 1) { _dp[k] = s + 1; break; } if (_dp[k]) up[_dp[k]].emplace_back(u, k); } } int dfs3(int u) { if (!ch[u].size()) { ans++; return 1; } int mx = 0; for (int v : ch[u]) mx = max(mx, dfs3(v)); ans += mx + 1; return mx + 1; } int main() { cin >> n; for (int i = 1; i < n; i++) { cin >> u >> v; g[u].emplace_back(v); g[v].emplace_back(u); } dfs1(1, 0); fill_n(&dp[0][0], 300010 * 30, 0); dfs2(1); dfs3(1); long long add = n; fill_n(val, 300010, 1); for (int k = n; k > 1; k--) { for (auto e : up[k]) { int u = e.first, v = e.second; while (u && val[u] < v) { add += v - val[u]; val[u] = v; u = p[u]; } } ans += add; } cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int maxn = 3e5 + 5; const int lg = 21; int n, dp[maxn][lg], k, mx[maxn], d[lg]; long long s; vector<int> ad[maxn]; void fix(int u, int p) { for (auto it = ad[u].begin(); it != ad[u].end(); ++it) { if (*it == p) { ad[u].erase(it); break; } } for (auto v : ad[u]) { fix(v, u); mx[u] = max(mx[u], mx[v]); } mx[u]++; s += mx[u]; } void dfs(int u) { for (auto v : ad[u]) dfs(v); dp[u][1] = n; for (int h = 2; h < lg + 1; ++h) { vector<int> tmp; for (auto v : ad[u]) { if (dp[v][h - 1]) { tmp.push_back(dp[v][h - 1]); } } sort(tmp.begin(), tmp.end()); for (int i = 0; i < tmp.size(); ++i) { if (tmp[i] >= tmp.size() - i) { dp[u][h] = tmp.size() - i; break; } } } } void dsf(int u) { for (auto v : ad[u]) { dsf(v); } for (int h = 2; h < lg + 1; ++h) { for (auto v : ad[u]) { if (dp[v][h]) dp[u][h] = max(dp[u][h], dp[v][h]); } d[h] = dp[u][h]; } d[1] = n; int t = 0; for (int h = lg; h >= 1; h--) if (d[h]) { d[h] -= t; s += h * d[h]; if (!t) s -= h; t += d[h]; } } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n; for (int i = 1; i < n; ++i) { int x, y; cin >> x >> y; ad[x].push_back(y); ad[y].push_back(x); } fix(1, -1); dfs(1); dsf(1); cout << s; return 0; }
### Prompt Generate a cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int maxn = 3e5 + 5; const int lg = 21; int n, dp[maxn][lg], k, mx[maxn], d[lg]; long long s; vector<int> ad[maxn]; void fix(int u, int p) { for (auto it = ad[u].begin(); it != ad[u].end(); ++it) { if (*it == p) { ad[u].erase(it); break; } } for (auto v : ad[u]) { fix(v, u); mx[u] = max(mx[u], mx[v]); } mx[u]++; s += mx[u]; } void dfs(int u) { for (auto v : ad[u]) dfs(v); dp[u][1] = n; for (int h = 2; h < lg + 1; ++h) { vector<int> tmp; for (auto v : ad[u]) { if (dp[v][h - 1]) { tmp.push_back(dp[v][h - 1]); } } sort(tmp.begin(), tmp.end()); for (int i = 0; i < tmp.size(); ++i) { if (tmp[i] >= tmp.size() - i) { dp[u][h] = tmp.size() - i; break; } } } } void dsf(int u) { for (auto v : ad[u]) { dsf(v); } for (int h = 2; h < lg + 1; ++h) { for (auto v : ad[u]) { if (dp[v][h]) dp[u][h] = max(dp[u][h], dp[v][h]); } d[h] = dp[u][h]; } d[1] = n; int t = 0; for (int h = lg; h >= 1; h--) if (d[h]) { d[h] -= t; s += h * d[h]; if (!t) s -= h; t += d[h]; } } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n; for (int i = 1; i < n; ++i) { int x, y; cin >> x >> y; ad[x].push_back(y); ad[y].push_back(x); } fix(1, -1); dfs(1); dsf(1); cout << s; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 3e5 + 100; vector<int> G[N]; int dp[N][75]; int sub[N][75]; int dp1[N], dp2[N]; int M, n; long long ans; void dfs(int u, int p) { int child = 0; vector<int> ch_sz; for (int v : G[u]) { if (v == p) continue; dfs(v, u); for (int k = 1; k < M; k++) { sub[u][k] = max(sub[u][k], sub[v][k]); } dp1[u] = max(dp1[u], dp1[v]); dp2[u] = max(dp2[u], dp2[v]); child++; ch_sz.push_back(G[v].size() - 1); } sort(ch_sz.rbegin(), ch_sz.rend()); for (int k = 1; k <= min(child, M - 1); k++) { vector<int> opts; for (int v : G[u]) { if (v == p) continue; opts.push_back(-dp[v][k]); } nth_element(opts.begin(), opts.begin() + k - 1, opts.end()); dp[u][k] = max(dp[u][k], -opts[k - 1] + 1); } for (int k = 1; k < M; k++) { sub[u][k] = max(sub[u][k], dp[u][k]); ans += sub[u][k] + 1; } if (ch_sz.size() > 0 && ch_sz[0] > 0) { int lo = 1, hi = ch_sz.size(); while (hi > lo) { int mid = (hi + lo + 1) / 2; if (ch_sz[mid - 1] >= mid) lo = mid; else hi = mid - 1; } dp1[u] = max(dp1[u], lo); } dp2[u] = max(dp2[u], (int)ch_sz.size()); ans += (n - M + 1); if (dp1[u] >= M) ans += (dp1[u] - M + 1); if (dp2[u] >= M) ans += (dp2[u] - M + 1); } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; M = min(70, n + 1); for (int i = 1; i < n; i++) { int u, v; cin >> u >> v; G[u].push_back(v); G[v].push_back(u); } dfs(1, -1); cout << ans << endl; return 0; }
### Prompt Create a solution in Cpp for the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 3e5 + 100; vector<int> G[N]; int dp[N][75]; int sub[N][75]; int dp1[N], dp2[N]; int M, n; long long ans; void dfs(int u, int p) { int child = 0; vector<int> ch_sz; for (int v : G[u]) { if (v == p) continue; dfs(v, u); for (int k = 1; k < M; k++) { sub[u][k] = max(sub[u][k], sub[v][k]); } dp1[u] = max(dp1[u], dp1[v]); dp2[u] = max(dp2[u], dp2[v]); child++; ch_sz.push_back(G[v].size() - 1); } sort(ch_sz.rbegin(), ch_sz.rend()); for (int k = 1; k <= min(child, M - 1); k++) { vector<int> opts; for (int v : G[u]) { if (v == p) continue; opts.push_back(-dp[v][k]); } nth_element(opts.begin(), opts.begin() + k - 1, opts.end()); dp[u][k] = max(dp[u][k], -opts[k - 1] + 1); } for (int k = 1; k < M; k++) { sub[u][k] = max(sub[u][k], dp[u][k]); ans += sub[u][k] + 1; } if (ch_sz.size() > 0 && ch_sz[0] > 0) { int lo = 1, hi = ch_sz.size(); while (hi > lo) { int mid = (hi + lo + 1) / 2; if (ch_sz[mid - 1] >= mid) lo = mid; else hi = mid - 1; } dp1[u] = max(dp1[u], lo); } dp2[u] = max(dp2[u], (int)ch_sz.size()); ans += (n - M + 1); if (dp1[u] >= M) ans += (dp1[u] - M + 1); if (dp2[u] >= M) ans += (dp2[u] - M + 1); } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; M = min(70, n + 1); for (int i = 1; i < n; i++) { int u, v; cin >> u >> v; G[u].push_back(v); G[v].push_back(u); } dfs(1, -1); cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; inline char gc() { static char buf[100000], *p1 = buf, *p2 = buf; return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++; } inline int read() { int x = 0; char ch = getchar(); bool positive = 1; for (; !isdigit(ch); ch = getchar()) if (ch == '-') positive = 0; for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0'; return positive ? x : -x; } inline void write(int a) { if (a >= 10) write(a / 10); putchar('0' + a % 10); } inline void writeln(int a) { if (a < 0) { a = -a; putchar('-'); } write(a); puts(""); } const int N = 300005, K = 19; long long ans; int n, tp[N], q[N], dp[N][K]; vector<int> v[N]; inline bool cmp(int a, int b) { return a > b; } void dfs(int p, int fa) { for (unsigned i = 0; i < v[p].size(); i++) if (v[p][i] != fa) { dfs(v[p][i], p); tp[p] = max(tp[v[p][i]], tp[p]); } ans += ++tp[p]; dp[p][1] = n; for (int i = 2; i < K; i++) { int tot = 0; for (unsigned j = 0; j < v[p].size(); j++) q[++tot] = dp[v[p][j]][i - 1]; sort(&q[1], &q[tot + 1], cmp); for (int j = tot; j > 1; j--) { if (q[j] >= j) { dp[p][i] = j; break; } } } } void solve(int p, int fa) { for (unsigned i = 0; i < v[p].size(); i++) if (v[p][i] != fa) { solve(v[p][i], p); for (int j = 0; j < K; j++) dp[p][j] = max(dp[p][j], dp[v[p][i]][j]); } for (int i = 1; i < K; i++) { ans += ((long long)dp[p][i] - (i + 1 == K ? 0 : dp[p][i + 1])) * i; if (i + 1 == K || dp[p][i + 1] == 0) { ans -= i; break; } } } int main() { n = read(); for (int i = 1; i < n; i++) { int s = read(), t = read(); v[s].push_back(t); v[t].push_back(s); } dfs(1, 0); solve(1, 0); cout << ans << endl; }
### Prompt Please create a solution in CPP to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; inline char gc() { static char buf[100000], *p1 = buf, *p2 = buf; return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++; } inline int read() { int x = 0; char ch = getchar(); bool positive = 1; for (; !isdigit(ch); ch = getchar()) if (ch == '-') positive = 0; for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0'; return positive ? x : -x; } inline void write(int a) { if (a >= 10) write(a / 10); putchar('0' + a % 10); } inline void writeln(int a) { if (a < 0) { a = -a; putchar('-'); } write(a); puts(""); } const int N = 300005, K = 19; long long ans; int n, tp[N], q[N], dp[N][K]; vector<int> v[N]; inline bool cmp(int a, int b) { return a > b; } void dfs(int p, int fa) { for (unsigned i = 0; i < v[p].size(); i++) if (v[p][i] != fa) { dfs(v[p][i], p); tp[p] = max(tp[v[p][i]], tp[p]); } ans += ++tp[p]; dp[p][1] = n; for (int i = 2; i < K; i++) { int tot = 0; for (unsigned j = 0; j < v[p].size(); j++) q[++tot] = dp[v[p][j]][i - 1]; sort(&q[1], &q[tot + 1], cmp); for (int j = tot; j > 1; j--) { if (q[j] >= j) { dp[p][i] = j; break; } } } } void solve(int p, int fa) { for (unsigned i = 0; i < v[p].size(); i++) if (v[p][i] != fa) { solve(v[p][i], p); for (int j = 0; j < K; j++) dp[p][j] = max(dp[p][j], dp[v[p][i]][j]); } for (int i = 1; i < K; i++) { ans += ((long long)dp[p][i] - (i + 1 == K ? 0 : dp[p][i + 1])) * i; if (i + 1 == K || dp[p][i + 1] == 0) { ans -= i; break; } } } int main() { n = read(); for (int i = 1; i < n; i++) { int s = read(), t = read(); v[s].push_back(t); v[t].push_back(s); } dfs(1, 0); solve(1, 0); cout << ans << endl; } ```
#include <bits/stdc++.h> using namespace std; struct edge { int to, next; } e[300005 * 2]; int head[300005], tot; void add(int x, int y) { e[++tot] = (edge){y, head[x]}; head[x] = tot; } int mx[300005], dp[300005][25], pp[300005][25]; long long ans; int n, q[300005]; bool cmp(int x, int y) { return x > y; } void dfs(int x, int fa) { for (int i = head[x]; i; i = e[i].next) if (e[i].to != fa) { dfs(e[i].to, x); mx[x] = max(mx[x], mx[e[i].to]); } ++mx[x]; ans += mx[x]; dp[x][1] = pp[x][1] = n; for (int p = 2; p <= 20; p++) { int tp = 0; for (int i = head[x]; i; i = e[i].next) if (e[i].to != fa) q[++tp] = dp[e[i].to][p - 1]; sort(q + 1, q + tp + 1, cmp); for (int j = tp; j >= 2; j--) if (q[j] >= j) { pp[x][p] = dp[x][p] = j; break; } for (int i = head[x]; i; i = e[i].next) if (e[i].to != fa) pp[x][p] = max(pp[e[i].to][p], pp[x][p]); } for (int i = 1; i <= 20; i++) { ans += 1ll * (pp[x][i] - pp[x][i + 1]) * i; if (pp[x][i + 1] == 0) { ans -= i; break; } } } void file_put() { freopen("filename.in", "r", stdin); freopen("filename.out", "w", stdout); } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int x, y; scanf("%d%d", &x, &y); add(x, y); add(y, x); } dfs(1, 0); printf("%lld\n", ans); return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; struct edge { int to, next; } e[300005 * 2]; int head[300005], tot; void add(int x, int y) { e[++tot] = (edge){y, head[x]}; head[x] = tot; } int mx[300005], dp[300005][25], pp[300005][25]; long long ans; int n, q[300005]; bool cmp(int x, int y) { return x > y; } void dfs(int x, int fa) { for (int i = head[x]; i; i = e[i].next) if (e[i].to != fa) { dfs(e[i].to, x); mx[x] = max(mx[x], mx[e[i].to]); } ++mx[x]; ans += mx[x]; dp[x][1] = pp[x][1] = n; for (int p = 2; p <= 20; p++) { int tp = 0; for (int i = head[x]; i; i = e[i].next) if (e[i].to != fa) q[++tp] = dp[e[i].to][p - 1]; sort(q + 1, q + tp + 1, cmp); for (int j = tp; j >= 2; j--) if (q[j] >= j) { pp[x][p] = dp[x][p] = j; break; } for (int i = head[x]; i; i = e[i].next) if (e[i].to != fa) pp[x][p] = max(pp[e[i].to][p], pp[x][p]); } for (int i = 1; i <= 20; i++) { ans += 1ll * (pp[x][i] - pp[x][i + 1]) * i; if (pp[x][i + 1] == 0) { ans -= i; break; } } } void file_put() { freopen("filename.in", "r", stdin); freopen("filename.out", "w", stdout); } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int x, y; scanf("%d%d", &x, &y); add(x, y); add(y, x); } dfs(1, 0); printf("%lld\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int NMAX = 3e5 + 10, LGMAX = 19; int N; int MaxLevel; int level[NMAX], height[NMAX]; int64_t answer; int DP[LGMAX][NMAX], father[NMAX], val[NMAX]; vector<int> T[NMAX], LevelNodes[NMAX]; vector<pair<int, int>> GoUp[NMAX]; int DFS(int node, int from, int level) { father[node] = from; MaxLevel = max(MaxLevel, level); LevelNodes[level].push_back(node); if (from != -1 && T[node].size() == 1) { ++answer; return 1; } int height = 1; for (int next : T[node]) { if (next == from) continue; ++DP[2][node]; height = max(height, 1 + DFS(next, node, level + 1)); } GoUp[DP[2][node]].push_back({2, node}); answer += height; return height; } void iterativeDFS(int node) { stack<pair<int, int>> S; father[node] = -1; LevelNodes[0].push_back(node); S.push({node, 0}); while (!S.empty()) { int node, i; tie(node, i) = S.top(); if (i == 0) { height[node] = 1; if (father[node] != -1 && T[node].size() == 1) { ++answer; S.pop(); continue; } } if (i < (int)T[node].size()) { S.top().second = i + 1; if (T[node][i] == father[node]) continue; ++DP[2][node]; father[T[node][i]] = node; level[T[node][i]] = level[node] + 1; MaxLevel = max(MaxLevel, level[node] + 1); LevelNodes[level[node] + 1].push_back(T[node][i]); S.push({T[node][i], 0}); } else if (i == (int)T[node].size()) { S.pop(); GoUp[DP[2][node]].push_back({2, node}); for (int next : T[node]) { if (next != father[node]) { height[node] = max(height[node], 1 + height[next]); } } answer += height[node]; } } } int main() { scanf("%d", &N); for (int i = 0; i < N - 1; ++i) { int x, y; scanf("%d %d", &x, &y); T[x].push_back(y); T[y].push_back(x); } iterativeDFS(1); for (int i = 3; i < LGMAX; ++i) { for (int j = MaxLevel; j >= 0; --j) { for (int node : LevelNodes[j]) { vector<int> values; for (int next : T[node]) { if (next == father[node]) continue; values.push_back(DP[i - 1][next]); } sort(values.begin(), values.end(), greater<int>()); int k = 0; while (k < (int)values.size() && k + 1 <= values[k]) ++k; if (k > 0 && k <= values[k - 1]) { DP[i][node] = k; GoUp[DP[i][node]].push_back({i, node}); } } } } int64_t value = N; for (int i = 1; i <= N; ++i) val[i] = 1; for (int i = N; i >= 2; --i) { for (auto det : GoUp[i]) { int depth = det.first; int node = det.second; while (node != -1 && depth > val[node]) { value += depth - val[node]; val[node] = depth; node = father[node]; } } answer += value; } cout << answer << '\n'; return 0; }
### Prompt Your challenge is to write a cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int NMAX = 3e5 + 10, LGMAX = 19; int N; int MaxLevel; int level[NMAX], height[NMAX]; int64_t answer; int DP[LGMAX][NMAX], father[NMAX], val[NMAX]; vector<int> T[NMAX], LevelNodes[NMAX]; vector<pair<int, int>> GoUp[NMAX]; int DFS(int node, int from, int level) { father[node] = from; MaxLevel = max(MaxLevel, level); LevelNodes[level].push_back(node); if (from != -1 && T[node].size() == 1) { ++answer; return 1; } int height = 1; for (int next : T[node]) { if (next == from) continue; ++DP[2][node]; height = max(height, 1 + DFS(next, node, level + 1)); } GoUp[DP[2][node]].push_back({2, node}); answer += height; return height; } void iterativeDFS(int node) { stack<pair<int, int>> S; father[node] = -1; LevelNodes[0].push_back(node); S.push({node, 0}); while (!S.empty()) { int node, i; tie(node, i) = S.top(); if (i == 0) { height[node] = 1; if (father[node] != -1 && T[node].size() == 1) { ++answer; S.pop(); continue; } } if (i < (int)T[node].size()) { S.top().second = i + 1; if (T[node][i] == father[node]) continue; ++DP[2][node]; father[T[node][i]] = node; level[T[node][i]] = level[node] + 1; MaxLevel = max(MaxLevel, level[node] + 1); LevelNodes[level[node] + 1].push_back(T[node][i]); S.push({T[node][i], 0}); } else if (i == (int)T[node].size()) { S.pop(); GoUp[DP[2][node]].push_back({2, node}); for (int next : T[node]) { if (next != father[node]) { height[node] = max(height[node], 1 + height[next]); } } answer += height[node]; } } } int main() { scanf("%d", &N); for (int i = 0; i < N - 1; ++i) { int x, y; scanf("%d %d", &x, &y); T[x].push_back(y); T[y].push_back(x); } iterativeDFS(1); for (int i = 3; i < LGMAX; ++i) { for (int j = MaxLevel; j >= 0; --j) { for (int node : LevelNodes[j]) { vector<int> values; for (int next : T[node]) { if (next == father[node]) continue; values.push_back(DP[i - 1][next]); } sort(values.begin(), values.end(), greater<int>()); int k = 0; while (k < (int)values.size() && k + 1 <= values[k]) ++k; if (k > 0 && k <= values[k - 1]) { DP[i][node] = k; GoUp[DP[i][node]].push_back({i, node}); } } } } int64_t value = N; for (int i = 1; i <= N; ++i) val[i] = 1; for (int i = N; i >= 2; --i) { for (auto det : GoUp[i]) { int depth = det.first; int node = det.second; while (node != -1 && depth > val[node]) { value += depth - val[node]; val[node] = depth; node = father[node]; } } answer += value; } cout << answer << '\n'; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 300005; int n, cnt, last[N], dep[N], f[N][25], a[N], dp[N], fa[N]; struct edge { int to, next; } e[N * 2]; vector<pair<int, int> > vec[N]; long long ans; void addedge(int u, int v) { e[++cnt].to = v; e[cnt].next = last[u]; last[u] = cnt; e[++cnt].to = u; e[cnt].next = last[v]; last[v] = cnt; } bool cmp(int x, int y) { return x > y; } void dfs(int x) { dep[x] = 1; f[x][1] = n; for (int i = last[x]; i; i = e[i].next) if (e[i].to != fa[x]) fa[e[i].to] = x, dfs(e[i].to), dep[x] = max(dep[x], dep[e[i].to] + 1); ans += dep[x]; for (int i = 2; i < 20; i++) { int tot = 0, k = 0; for (int j = last[x]; j; j = e[j].next) if (e[j].to != fa[x]) a[++tot] = f[e[j].to][i - 1]; if (!tot) break; sort(a + 1, a + tot + 1, cmp); while (k < tot && a[k + 1] > k) k++; f[x][i] = k; vec[k].push_back(make_pair(x, i)); } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int x, y; scanf("%d%d", &x, &y); addedge(x, y); } dfs(1); int sum = n; for (int i = 1; i <= n; i++) dp[i] = 1; for (int k = n; k > 1; k--) { for (int j = 0; j < vec[k].size(); j++) { int x = vec[k][j].first, y = vec[k][j].second; while (x && dp[x] < y) sum += y - dp[x], dp[x] = y, x = fa[x]; } ans += sum; } printf("%I64d", ans); return 0; }
### Prompt Develop a solution in Cpp to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 300005; int n, cnt, last[N], dep[N], f[N][25], a[N], dp[N], fa[N]; struct edge { int to, next; } e[N * 2]; vector<pair<int, int> > vec[N]; long long ans; void addedge(int u, int v) { e[++cnt].to = v; e[cnt].next = last[u]; last[u] = cnt; e[++cnt].to = u; e[cnt].next = last[v]; last[v] = cnt; } bool cmp(int x, int y) { return x > y; } void dfs(int x) { dep[x] = 1; f[x][1] = n; for (int i = last[x]; i; i = e[i].next) if (e[i].to != fa[x]) fa[e[i].to] = x, dfs(e[i].to), dep[x] = max(dep[x], dep[e[i].to] + 1); ans += dep[x]; for (int i = 2; i < 20; i++) { int tot = 0, k = 0; for (int j = last[x]; j; j = e[j].next) if (e[j].to != fa[x]) a[++tot] = f[e[j].to][i - 1]; if (!tot) break; sort(a + 1, a + tot + 1, cmp); while (k < tot && a[k + 1] > k) k++; f[x][i] = k; vec[k].push_back(make_pair(x, i)); } } int main() { scanf("%d", &n); for (int i = 1; i < n; i++) { int x, y; scanf("%d%d", &x, &y); addedge(x, y); } dfs(1); int sum = n; for (int i = 1; i <= n; i++) dp[i] = 1; for (int k = n; k > 1; k--) { for (int j = 0; j < vec[k].size(); j++) { int x = vec[k][j].first, y = vec[k][j].second; while (x && dp[x] < y) sum += y - dp[x], dp[x] = y, x = fa[x]; } ans += sum; } printf("%I64d", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int MAXN = 3e5 + 5, MAXLOG = 20; template <typename _T> void read(_T &x) { x = 0; char s = getchar(); int f = 1; while (s > '9' || s < '0') { if (s == '-') f = -1; s = getchar(); } while (s >= '0' && s <= '9') { x = (x << 3) + (x << 1) + (s - '0'), s = getchar(); } x *= f; } template <typename _T> void write(_T x) { if (x < 0) { putchar('-'); x = (~x) + 1; } if (9 < x) { write(x / 10); } putchar(x % 10 + '0'); } template <typename _T> _T MAX(const _T a, const _T b) { return a > b ? a : b; } struct Edge { int to, nxt; } Graph[MAXN << 1]; vector<pair<int, int> > upt[MAXN]; int mx[MAXN]; int f[MAXN][MAXLOG]; int f1[MAXN], seq[MAXN]; int head[MAXN], fath[MAXN]; int N, cnt, lg2; long long ans = 0, res = 0; bool Cmp(const int &x, const int &y) { return x > y; } void AddEdge(const int from, const int to) { Graph[++cnt].to = to, Graph[cnt].nxt = head[from]; head[from] = cnt; } void DFS(const int u, const int fa) { int siz = 0; f[u][1] = N; fath[u] = fa; for (int i = head[u], v; i; i = Graph[i].nxt) if ((v = Graph[i].to) ^ fa) DFS(v, u), f1[u] = MAX(f1[u], f1[v]); for (int j = 2; j <= lg2; j++) { siz = 0; for (int i = head[u], v; i; i = Graph[i].nxt) if ((v = Graph[i].to) ^ fa && f[v][j - 1]) seq[++siz] = f[v][j - 1]; std ::sort(seq + 1, seq + 1 + siz, Cmp); for (int k = siz; k; k--) if (seq[k] >= k) { f[u][j] = k; break; } if (f[u][j]) upt[f[u][j]].push_back(pair<int, int>(u, j)); } ans += ++f1[u]; } void Update(int x, int val) { for (; x && mx[x] < val; x = fath[x]) res += val - mx[x], mx[x] = val; } int main() { read(N); for (int i = 1, a, b; i < N; i++) read(a), read(b), AddEdge(a, b), AddEdge(b, a); lg2 = log2(N); DFS(1, 0); for (int i = 1; i <= N; i++) mx[i] = 1; res = N; for (int k = N; k > 1; k--) { for (int i = 0; i < (int)upt[k].size(); i++) Update(upt[k][i].first, upt[k][i].second); ans += res; } write(ans), putchar('\n'); return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 3e5 + 5, MAXLOG = 20; template <typename _T> void read(_T &x) { x = 0; char s = getchar(); int f = 1; while (s > '9' || s < '0') { if (s == '-') f = -1; s = getchar(); } while (s >= '0' && s <= '9') { x = (x << 3) + (x << 1) + (s - '0'), s = getchar(); } x *= f; } template <typename _T> void write(_T x) { if (x < 0) { putchar('-'); x = (~x) + 1; } if (9 < x) { write(x / 10); } putchar(x % 10 + '0'); } template <typename _T> _T MAX(const _T a, const _T b) { return a > b ? a : b; } struct Edge { int to, nxt; } Graph[MAXN << 1]; vector<pair<int, int> > upt[MAXN]; int mx[MAXN]; int f[MAXN][MAXLOG]; int f1[MAXN], seq[MAXN]; int head[MAXN], fath[MAXN]; int N, cnt, lg2; long long ans = 0, res = 0; bool Cmp(const int &x, const int &y) { return x > y; } void AddEdge(const int from, const int to) { Graph[++cnt].to = to, Graph[cnt].nxt = head[from]; head[from] = cnt; } void DFS(const int u, const int fa) { int siz = 0; f[u][1] = N; fath[u] = fa; for (int i = head[u], v; i; i = Graph[i].nxt) if ((v = Graph[i].to) ^ fa) DFS(v, u), f1[u] = MAX(f1[u], f1[v]); for (int j = 2; j <= lg2; j++) { siz = 0; for (int i = head[u], v; i; i = Graph[i].nxt) if ((v = Graph[i].to) ^ fa && f[v][j - 1]) seq[++siz] = f[v][j - 1]; std ::sort(seq + 1, seq + 1 + siz, Cmp); for (int k = siz; k; k--) if (seq[k] >= k) { f[u][j] = k; break; } if (f[u][j]) upt[f[u][j]].push_back(pair<int, int>(u, j)); } ans += ++f1[u]; } void Update(int x, int val) { for (; x && mx[x] < val; x = fath[x]) res += val - mx[x], mx[x] = val; } int main() { read(N); for (int i = 1, a, b; i < N; i++) read(a), read(b), AddEdge(a, b), AddEdge(b, a); lg2 = log2(N); DFS(1, 0); for (int i = 1; i <= N; i++) mx[i] = 1; res = N; for (int k = N; k > 1; k--) { for (int i = 0; i < (int)upt[k].size(); i++) Update(upt[k][i].first, upt[k][i].second); ans += res; } write(ans), putchar('\n'); return 0; } ```
#include <bits/stdc++.h> using namespace std; template <typename T1, typename T2> bool mini(T1 &a, T2 b) { if (a > b) { a = b; return true; } return false; } template <typename T1, typename T2> bool maxi(T1 &a, T2 b) { if (a < b) { a = b; return true; } return false; } const int N = 3e5 + 5; const int T = 500; const int oo = 1e9; vector<int> adj[N]; int mx[N][22]; int dp[N][22]; int deg[N]; int h[N]; int n; void dfs(int u, int p = -1) { h[u] = 1; for (int v : adj[u]) if (v != p) { dfs(v, u); maxi(h[u], h[v] + 1); } dp[u][1] = n; for (int i = 2; i <= 20; i++) { vector<int> best; for (int v : adj[u]) if (v != p) best.push_back(dp[v][i - 1]); sort(best.begin(), best.end(), greater<int>()); for (int j = 0; j < deg[u]; j++) if (best[j] >= j + 1) dp[u][i] = j + 1; } for (int i = 1; i <= 20; i++) { mx[u][i] = dp[u][i]; for (int v : adj[u]) if (v != p) maxi(mx[u][i], mx[v][i]); } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i < n; i++) { int u, v; cin >> u >> v; deg[u]++; deg[v]++; adj[u].push_back(v); adj[v].push_back(u); } for (int i = 2; i <= n; i++) deg[i]--; h[1] = 1; dfs(1); long long ans = accumulate(h + 1, h + n + 1, 0LL); for (int i = 1; i <= n; i++) { for (int j = 1; j <= 21; j++) maxi(mx[i][j], 1); for (int j = 1; j <= 20; j++) { if (mx[i][j] == 1) break; ans += (mx[i][j] - mx[i][j + 1]) * j; } } cout << ans; return 0; }
### Prompt Generate a cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename T1, typename T2> bool mini(T1 &a, T2 b) { if (a > b) { a = b; return true; } return false; } template <typename T1, typename T2> bool maxi(T1 &a, T2 b) { if (a < b) { a = b; return true; } return false; } const int N = 3e5 + 5; const int T = 500; const int oo = 1e9; vector<int> adj[N]; int mx[N][22]; int dp[N][22]; int deg[N]; int h[N]; int n; void dfs(int u, int p = -1) { h[u] = 1; for (int v : adj[u]) if (v != p) { dfs(v, u); maxi(h[u], h[v] + 1); } dp[u][1] = n; for (int i = 2; i <= 20; i++) { vector<int> best; for (int v : adj[u]) if (v != p) best.push_back(dp[v][i - 1]); sort(best.begin(), best.end(), greater<int>()); for (int j = 0; j < deg[u]; j++) if (best[j] >= j + 1) dp[u][i] = j + 1; } for (int i = 1; i <= 20; i++) { mx[u][i] = dp[u][i]; for (int v : adj[u]) if (v != p) maxi(mx[u][i], mx[v][i]); } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i < n; i++) { int u, v; cin >> u >> v; deg[u]++; deg[v]++; adj[u].push_back(v); adj[v].push_back(u); } for (int i = 2; i <= n; i++) deg[i]--; h[1] = 1; dfs(1); long long ans = accumulate(h + 1, h + n + 1, 0LL); for (int i = 1; i <= n; i++) { for (int j = 1; j <= 21; j++) maxi(mx[i][j], 1); for (int j = 1; j <= 20; j++) { if (mx[i][j] == 1) break; ans += (mx[i][j] - mx[i][j + 1]) * j; } } cout << ans; return 0; } ```
#include <bits/stdc++.h> using namespace std; mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count()); mt19937 rnf(2106); const int N = 300005, S = 550; int n; vector<int> g[N]; int p0[N]; int e[N]; vector<int> v0; void dfs0(int x, int p) { e[x] = 1; p0[x] = p; for (int i = 0; i < g[x].size(); ++i) { int h = g[x][i]; if (h == p) continue; dfs0(h, x); e[x] += e[h]; } for (int i = 0; i < g[x].size(); ++i) { int h = g[x][i]; if (h == p) { swap(g[x][i], g[x].back()); g[x].pop_back(); break; } } v0.push_back(x); } vector<int> v[N]; int q2; bool c[N]; int u; int q[22]; int t[88]; void ubd(int tl, int tr, int x, int y, int pos) { while (1) { t[pos] += y; if (tl == tr) return; int m = (tl + tr) / 2; if (x <= m) { tr = m; pos *= 2; } else { tl = m + 1; pos *= 2; ++pos; } } } int qry(int tl, int tr, int k, int pos) { while (1) { if (tl == tr) return tl; int m = (tl + tr) / 2; if (t[pos * 2 + 1] >= k) { tl = m + 1; pos *= 2; ++pos; } else { tr = m; k -= t[pos * 2 + 1]; pos *= 2; } } } int dp[N]; int maxu[N]; void dfs(int k) { if (k == 1) { for (int i = 0; i < n; ++i) { int x = v0[i]; dp[x] = 1; for (int i = 0; i < g[x].size(); ++i) { int h = g[x][i]; dp[x] = max(dp[x], dp[h] + 1); } maxu[x] = dp[x]; } return; } for (int i = 0; i < n; ++i) { int x = v0[i]; dp[x] = 1; maxu[x] = 1; if (e[x] <= k) continue; for (int i = 0; i < g[x].size(); ++i) { int h = g[x][i]; ++q[dp[h]]; maxu[x] = max(maxu[x], maxu[h]); } int s = 0; for (int i = u; i >= 1; --i) { s += q[i]; if (s >= k) { dp[x] = i + 1; break; } } maxu[x] = max(maxu[x], dp[x]); for (int i = 0; i < g[x].size(); ++i) { int h = g[x][i]; --q[dp[h]]; } } } void solv() { cin >> n; for (int i = 0; i < n - 1; ++i) { int x = i + 1, y = i + 2; cin >> x >> y; g[x].push_back(y); g[y].push_back(x); } dfs0(1, 1); for (int x = 1; x <= n; ++x) { v[((int)(g[x]).size())].push_back(x); } long long ans = 0; for (int i = n; i > S; --i) { for (int j = 0; j < v[i].size(); ++j) { int x = v[i][j]; while (!c[x]) { c[x] = true; ++q2; x = p0[x]; } } ans += (n + q2); } for (int i = 1; i <= min(n, S); ++i) { u = 1; if (i > 1) { int t = 1; while (t < n) { t *= i; ++u; } } dfs(i); for (int x = 1; x <= n; ++x) ans += maxu[x]; } cout << ans << "\n"; } int main() { ios_base::sync_with_stdio(false), cin.tie(0); solv(); return 0; }
### Prompt Develop a solution in Cpp to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count()); mt19937 rnf(2106); const int N = 300005, S = 550; int n; vector<int> g[N]; int p0[N]; int e[N]; vector<int> v0; void dfs0(int x, int p) { e[x] = 1; p0[x] = p; for (int i = 0; i < g[x].size(); ++i) { int h = g[x][i]; if (h == p) continue; dfs0(h, x); e[x] += e[h]; } for (int i = 0; i < g[x].size(); ++i) { int h = g[x][i]; if (h == p) { swap(g[x][i], g[x].back()); g[x].pop_back(); break; } } v0.push_back(x); } vector<int> v[N]; int q2; bool c[N]; int u; int q[22]; int t[88]; void ubd(int tl, int tr, int x, int y, int pos) { while (1) { t[pos] += y; if (tl == tr) return; int m = (tl + tr) / 2; if (x <= m) { tr = m; pos *= 2; } else { tl = m + 1; pos *= 2; ++pos; } } } int qry(int tl, int tr, int k, int pos) { while (1) { if (tl == tr) return tl; int m = (tl + tr) / 2; if (t[pos * 2 + 1] >= k) { tl = m + 1; pos *= 2; ++pos; } else { tr = m; k -= t[pos * 2 + 1]; pos *= 2; } } } int dp[N]; int maxu[N]; void dfs(int k) { if (k == 1) { for (int i = 0; i < n; ++i) { int x = v0[i]; dp[x] = 1; for (int i = 0; i < g[x].size(); ++i) { int h = g[x][i]; dp[x] = max(dp[x], dp[h] + 1); } maxu[x] = dp[x]; } return; } for (int i = 0; i < n; ++i) { int x = v0[i]; dp[x] = 1; maxu[x] = 1; if (e[x] <= k) continue; for (int i = 0; i < g[x].size(); ++i) { int h = g[x][i]; ++q[dp[h]]; maxu[x] = max(maxu[x], maxu[h]); } int s = 0; for (int i = u; i >= 1; --i) { s += q[i]; if (s >= k) { dp[x] = i + 1; break; } } maxu[x] = max(maxu[x], dp[x]); for (int i = 0; i < g[x].size(); ++i) { int h = g[x][i]; --q[dp[h]]; } } } void solv() { cin >> n; for (int i = 0; i < n - 1; ++i) { int x = i + 1, y = i + 2; cin >> x >> y; g[x].push_back(y); g[y].push_back(x); } dfs0(1, 1); for (int x = 1; x <= n; ++x) { v[((int)(g[x]).size())].push_back(x); } long long ans = 0; for (int i = n; i > S; --i) { for (int j = 0; j < v[i].size(); ++j) { int x = v[i][j]; while (!c[x]) { c[x] = true; ++q2; x = p0[x]; } } ans += (n + q2); } for (int i = 1; i <= min(n, S); ++i) { u = 1; if (i > 1) { int t = 1; while (t < n) { t *= i; ++u; } } dfs(i); for (int x = 1; x <= n; ++x) ans += maxu[x]; } cout << ans << "\n"; } int main() { ios_base::sync_with_stdio(false), cin.tie(0); solv(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int logn = 20; int n; vector<vector<int> > g, dp; vector<int> f, maxd; void dfs1(int v = 0, int p = -1) { for (int i : g[v]) { if (i != p) { dfs1(i, v); maxd[v] = max(maxd[i] + 1, maxd[v]); } } dp[v][0] = n; for (int l = 1; l < logn; l++) { for (int i : g[v]) f[min((int)g[v].size(), dp[i][l - 1])]++; int j = g[v].size(), cnt = 0; for (int i = 1; i <= g[v].size(); i++) { while (cnt < i) cnt += f[j--]; if (j + 1 >= i) dp[v][l] = i; } for (int i : g[v]) f[min((int)g[v].size(), dp[i][l - 1])]--; } for (int l = logn - 1; l > 1; l--) dp[v][l - 1] = max(dp[v][l - 1], dp[v][l]); } void dfs2(int v = 0, int p = -1) { for (int i : g[v]) { if (i != p) { dfs2(i, v); for (int l = 1; l < logn; l++) dp[v][l] = max(dp[v][l], dp[i][l]); } } } int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n; g.resize(n); maxd.resize(n, 1); f.resize(n + 1, 0); dp.resize(n, vector<int>(logn, 0)); for (int i = 0; i < n - 1; i++) { int u, v; cin >> u >> v; g[--u].push_back(--v); g[v].push_back(u); } dfs1(); dfs2(); long long ans = 0; for (int i = 0; i < n; i++) { ans += maxd[i]; for (long long l = 0; l < logn; l++) ans += max(0ll, dp[i][l] - 1ll); } cout << ans << "\n"; return 0; }
### Prompt Please provide a cpp coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int logn = 20; int n; vector<vector<int> > g, dp; vector<int> f, maxd; void dfs1(int v = 0, int p = -1) { for (int i : g[v]) { if (i != p) { dfs1(i, v); maxd[v] = max(maxd[i] + 1, maxd[v]); } } dp[v][0] = n; for (int l = 1; l < logn; l++) { for (int i : g[v]) f[min((int)g[v].size(), dp[i][l - 1])]++; int j = g[v].size(), cnt = 0; for (int i = 1; i <= g[v].size(); i++) { while (cnt < i) cnt += f[j--]; if (j + 1 >= i) dp[v][l] = i; } for (int i : g[v]) f[min((int)g[v].size(), dp[i][l - 1])]--; } for (int l = logn - 1; l > 1; l--) dp[v][l - 1] = max(dp[v][l - 1], dp[v][l]); } void dfs2(int v = 0, int p = -1) { for (int i : g[v]) { if (i != p) { dfs2(i, v); for (int l = 1; l < logn; l++) dp[v][l] = max(dp[v][l], dp[i][l]); } } } int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n; g.resize(n); maxd.resize(n, 1); f.resize(n + 1, 0); dp.resize(n, vector<int>(logn, 0)); for (int i = 0; i < n - 1; i++) { int u, v; cin >> u >> v; g[--u].push_back(--v); g[v].push_back(u); } dfs1(); dfs2(); long long ans = 0; for (int i = 0; i < n; i++) { ans += maxd[i]; for (long long l = 0; l < logn; l++) ans += max(0ll, dp[i][l] - 1ll); } cout << ans << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; int N; vector<int> graph[300005]; int mdp[20][300005]; int cdp[20][300005]; int mdep[300005]; int fre[300005]; long long ans = 0; void dfs(int n) { cdp[1][n] = N; mdep[n] = 1; for (int e : graph[n]) { graph[e].erase(find(graph[e].begin(), graph[e].end(), n)); dfs(e); mdep[n] = max(mdep[n], mdep[e] + 1); for (int k = 1; k < 20; k++) { mdp[k][n] = max(mdp[k][n], mdp[k][e]); } } int dgr = graph[n].size(); for (int k = 2; k < 20; k++) { fill(fre, fre + dgr + 2, 0); for (int e : graph[n]) { fre[min(dgr, cdp[k - 1][e])]++; } for (int d = dgr; d; d--) { fre[d] += fre[d + 1]; if (fre[d] >= d) { cdp[k][n] = d; break; } } } ans += mdep[n]; for (int k = 1; k < 20; k++) { mdp[k][n] = max(mdp[k][n], cdp[k][n]); if (mdp[k][n] >= 2) { ans += mdp[k][n] - 1; } } } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> N; for (int i = 1; i < N; i++) { int a, b; cin >> a >> b; graph[a].push_back(b); graph[b].push_back(a); } dfs(1); cout << ans; }
### Prompt Your challenge is to write a cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; int N; vector<int> graph[300005]; int mdp[20][300005]; int cdp[20][300005]; int mdep[300005]; int fre[300005]; long long ans = 0; void dfs(int n) { cdp[1][n] = N; mdep[n] = 1; for (int e : graph[n]) { graph[e].erase(find(graph[e].begin(), graph[e].end(), n)); dfs(e); mdep[n] = max(mdep[n], mdep[e] + 1); for (int k = 1; k < 20; k++) { mdp[k][n] = max(mdp[k][n], mdp[k][e]); } } int dgr = graph[n].size(); for (int k = 2; k < 20; k++) { fill(fre, fre + dgr + 2, 0); for (int e : graph[n]) { fre[min(dgr, cdp[k - 1][e])]++; } for (int d = dgr; d; d--) { fre[d] += fre[d + 1]; if (fre[d] >= d) { cdp[k][n] = d; break; } } } ans += mdep[n]; for (int k = 1; k < 20; k++) { mdp[k][n] = max(mdp[k][n], cdp[k][n]); if (mdp[k][n] >= 2) { ans += mdp[k][n] - 1; } } } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> N; for (int i = 1; i < N; i++) { int a, b; cin >> a >> b; graph[a].push_back(b); graph[b].push_back(a); } dfs(1); cout << ans; } ```
#include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5; template <typename T> bool cmax(T &a, T b) { return (a < b) ? a = b, 1 : 0; } template <typename T> bool cmin(T &a, T b) { return (a > b) ? a = b, 1 : 0; } template <typename T> T read() { T ans = 0, f = 1; char ch = getchar(); while (!isdigit(ch) && ch != '-') ch = getchar(); if (ch == '-') f = -1, ch = getchar(); while (isdigit(ch)) ans = (ans << 3) + (ans << 1) + (ch - '0'), ch = getchar(); return ans * f; } template <typename T> void write(T x, char y) { if (x == 0) { putchar('0'), putchar(y); return; } if (x < 0) { putchar('-'); x = -x; } static char wr[20]; int top = 0; for (; x; x /= 10) wr[++top] = x % 10 + '0'; while (top) putchar(wr[top--]); putchar(y); } void file() {} int n; vector<int> E[N]; void input() { int x, y; n = read<int>(); for (register int i = (int)(2); i <= (int)(n); ++i) { x = read<int>(), y = read<int>(); E[x].push_back(y), E[y].push_back(x); } } const int inf = 0x3f3f3f3f; const int M = 20; int dp[N][21]; long long ans; int q[N], top; void DP(int u, int pre) { dp[u][1] = n; for (int v : E[u]) if (v ^ pre) DP(v, u); dp[u][1] = n; for (register int i = (int)(2); i <= (int)(M - 1); ++i) { top = 0; for (int v : E[u]) if (v ^ pre) q[++top] = dp[v][i - 1]; sort(q + 1, q + top + 1); dp[u][i] = 0; for (register int k = (int)(top); k >= (int)(1); --k) if (q[top - k + 1] >= k) { dp[u][i] = k; break; } } } int num[N]; void dfs(int u, int pre) { num[u] = 1; for (int v : E[u]) if (v ^ pre) { dfs(v, u); cmax(num[u], num[v] + 1); for (register int i = (int)(1); i <= (int)(M - 1); ++i) cmax(dp[u][i], dp[v][i]); } } void work() { DP(1, 0); dfs(1, 0); for (register int i = (int)(1); i <= (int)(n); ++i) ans += num[i]; for (register int i = (int)(1); i <= (int)(n); ++i) for (register int j = (int)(1); j <= (int)(M - 1); ++j) { if (dp[i][j]) ans += dp[i][j] - 1; } write(ans, '\n'); } int main() { file(); input(); work(); return 0; }
### Prompt Construct a cpp code solution to the problem outlined: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5; template <typename T> bool cmax(T &a, T b) { return (a < b) ? a = b, 1 : 0; } template <typename T> bool cmin(T &a, T b) { return (a > b) ? a = b, 1 : 0; } template <typename T> T read() { T ans = 0, f = 1; char ch = getchar(); while (!isdigit(ch) && ch != '-') ch = getchar(); if (ch == '-') f = -1, ch = getchar(); while (isdigit(ch)) ans = (ans << 3) + (ans << 1) + (ch - '0'), ch = getchar(); return ans * f; } template <typename T> void write(T x, char y) { if (x == 0) { putchar('0'), putchar(y); return; } if (x < 0) { putchar('-'); x = -x; } static char wr[20]; int top = 0; for (; x; x /= 10) wr[++top] = x % 10 + '0'; while (top) putchar(wr[top--]); putchar(y); } void file() {} int n; vector<int> E[N]; void input() { int x, y; n = read<int>(); for (register int i = (int)(2); i <= (int)(n); ++i) { x = read<int>(), y = read<int>(); E[x].push_back(y), E[y].push_back(x); } } const int inf = 0x3f3f3f3f; const int M = 20; int dp[N][21]; long long ans; int q[N], top; void DP(int u, int pre) { dp[u][1] = n; for (int v : E[u]) if (v ^ pre) DP(v, u); dp[u][1] = n; for (register int i = (int)(2); i <= (int)(M - 1); ++i) { top = 0; for (int v : E[u]) if (v ^ pre) q[++top] = dp[v][i - 1]; sort(q + 1, q + top + 1); dp[u][i] = 0; for (register int k = (int)(top); k >= (int)(1); --k) if (q[top - k + 1] >= k) { dp[u][i] = k; break; } } } int num[N]; void dfs(int u, int pre) { num[u] = 1; for (int v : E[u]) if (v ^ pre) { dfs(v, u); cmax(num[u], num[v] + 1); for (register int i = (int)(1); i <= (int)(M - 1); ++i) cmax(dp[u][i], dp[v][i]); } } void work() { DP(1, 0); dfs(1, 0); for (register int i = (int)(1); i <= (int)(n); ++i) ans += num[i]; for (register int i = (int)(1); i <= (int)(n); ++i) for (register int j = (int)(1); j <= (int)(M - 1); ++j) { if (dp[i][j]) ans += dp[i][j] - 1; } write(ans, '\n'); } int main() { file(); input(); work(); return 0; } ```
#include <bits/stdc++.h> namespace fuck { const int N = 300100, M = 20; int begin[N], next[N * 2], to[N * 2]; int n, e, lim; void add(int x, int y, bool k = 1) { to[++e] = y; next[e] = begin[x]; begin[x] = e; if (k) add(y, x, 0); } void initialize() { scanf("%d", &n); for (int i = 1, u, v; i < n; i++) scanf("%d%d", &u, &v), add(u, v); lim = (int)std::sqrt(n); while (lim * lim + lim + 1 <= n) lim++; } std::vector<int> seq; int f[N][M]; void dfs(int p = 1, int h = 0) { for (int i = begin[p], q; i; i = next[i]) if ((q = to[i]) != h) dfs(q, p); f[p][1] = n; for (int dep = 2; dep < M; dep++) { seq.resize(0); for (int i = begin[p], q; i; i = next[i]) if ((q = to[i]) != h) seq.push_back(f[q][dep - 1]); f[p][dep] = 0; std::sort(seq.begin(), seq.end()); for (int k = seq.size(); k; k--) if (seq.end()[-k] >= k) { f[p][dep] = k; break; } } } void redfs(int p = 1, int h = 0) { for (int i = begin[p], q; i; i = next[i]) if ((q = to[i]) != h) { redfs(q, p); for (int dep = 1; dep < M; dep++) f[p][dep] = std::max(f[p][dep], f[q][dep]); } } long long part1() { dfs(), redfs(); long long ret = 0; for (int i = 1; i <= n; i++) for (int dep = 1; dep < M; dep++) if (f[i][dep] > 0) ret += f[i][dep] - 1; return ret; } int dep[N]; void depdfs(int p = 1, int h = 0) { dep[p] = 1; for (int i = begin[p], q; i; i = next[i]) if ((q = to[i]) != h) depdfs(q, p), dep[p] = std::max(dep[p], dep[q] + 1); } long long part2() { depdfs(); long long ret = 0; for (int i = 1; i <= n; i++) ret += dep[i]; return ret; } void solve() { initialize(); long long ans = part1() + part2(); printf("%I64d\n", ans); } } // namespace fuck int main() { fuck::solve(); return 0; }
### Prompt Your task is to create a cpp solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> namespace fuck { const int N = 300100, M = 20; int begin[N], next[N * 2], to[N * 2]; int n, e, lim; void add(int x, int y, bool k = 1) { to[++e] = y; next[e] = begin[x]; begin[x] = e; if (k) add(y, x, 0); } void initialize() { scanf("%d", &n); for (int i = 1, u, v; i < n; i++) scanf("%d%d", &u, &v), add(u, v); lim = (int)std::sqrt(n); while (lim * lim + lim + 1 <= n) lim++; } std::vector<int> seq; int f[N][M]; void dfs(int p = 1, int h = 0) { for (int i = begin[p], q; i; i = next[i]) if ((q = to[i]) != h) dfs(q, p); f[p][1] = n; for (int dep = 2; dep < M; dep++) { seq.resize(0); for (int i = begin[p], q; i; i = next[i]) if ((q = to[i]) != h) seq.push_back(f[q][dep - 1]); f[p][dep] = 0; std::sort(seq.begin(), seq.end()); for (int k = seq.size(); k; k--) if (seq.end()[-k] >= k) { f[p][dep] = k; break; } } } void redfs(int p = 1, int h = 0) { for (int i = begin[p], q; i; i = next[i]) if ((q = to[i]) != h) { redfs(q, p); for (int dep = 1; dep < M; dep++) f[p][dep] = std::max(f[p][dep], f[q][dep]); } } long long part1() { dfs(), redfs(); long long ret = 0; for (int i = 1; i <= n; i++) for (int dep = 1; dep < M; dep++) if (f[i][dep] > 0) ret += f[i][dep] - 1; return ret; } int dep[N]; void depdfs(int p = 1, int h = 0) { dep[p] = 1; for (int i = begin[p], q; i; i = next[i]) if ((q = to[i]) != h) depdfs(q, p), dep[p] = std::max(dep[p], dep[q] + 1); } long long part2() { depdfs(); long long ret = 0; for (int i = 1; i <= n; i++) ret += dep[i]; return ret; } void solve() { initialize(); long long ans = part1() + part2(); printf("%I64d\n", ans); } } // namespace fuck int main() { fuck::solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int LG = 20; int dp[300100][LG], mx[300100][LG], dep[300100]; int buf[300100]; vector<int> g[300100]; long long solve(int u, int p) { long long ans = 0; dep[u] = 1; for (auto v : g[u]) { if (v == p) continue; ans += solve(v, u); dep[u] = max(dep[u], dep[v] + 1); for (int j = 0; j < LG; j++) { mx[u][j] = max(mx[u][j], mx[v][j]); } } for (int j = 0; j < LG; j++) { if (j) { int m = 0; for (auto v : g[u]) { if (v != p) { buf[m++] = dp[v][j - 1]; } } sort(buf, buf + m, greater<int>()); while (m && buf[m - 1] < m) m--; dp[u][j] = m; } mx[u][j] = max(mx[u][j], dp[u][j]); ans += mx[u][j]; } if (dep[u] > LG) ans += dep[u] - LG; return ans; } int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { int u, v; scanf("%d%d", &u, &v); g[u].push_back(v); g[v].push_back(u); } for (int i = 1; i <= n; i++) dp[i][0] = n; printf("%lld\n", solve(1, 0)); return 0; }
### Prompt Generate a CPP solution to the following problem: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int LG = 20; int dp[300100][LG], mx[300100][LG], dep[300100]; int buf[300100]; vector<int> g[300100]; long long solve(int u, int p) { long long ans = 0; dep[u] = 1; for (auto v : g[u]) { if (v == p) continue; ans += solve(v, u); dep[u] = max(dep[u], dep[v] + 1); for (int j = 0; j < LG; j++) { mx[u][j] = max(mx[u][j], mx[v][j]); } } for (int j = 0; j < LG; j++) { if (j) { int m = 0; for (auto v : g[u]) { if (v != p) { buf[m++] = dp[v][j - 1]; } } sort(buf, buf + m, greater<int>()); while (m && buf[m - 1] < m) m--; dp[u][j] = m; } mx[u][j] = max(mx[u][j], dp[u][j]); ans += mx[u][j]; } if (dep[u] > LG) ans += dep[u] - LG; return ans; } int main() { int n; scanf("%d", &n); for (int i = 1; i < n; i++) { int u, v; scanf("%d%d", &u, &v); g[u].push_back(v); g[v].push_back(u); } for (int i = 1; i <= n; i++) dp[i][0] = n; printf("%lld\n", solve(1, 0)); return 0; } ```
#include <bits/stdc++.h> using namespace std; template <class _Tp> _Tp gcd(_Tp a, _Tp b) { return (b == 0) ? (a) : (gcd(b, a % b)); } const long long Inf = 1000000000000000000ll; const int inf = 1000000000; char buf[1 << 25], *p1 = buf, *p2 = buf; inline int getc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 25, stdin), p1 == p2) ? EOF : *p1++; } inline int read() { int x = 0, f = 0; char c = getc(); while (!isdigit(c)) (c == '-') && (f = 1), c = getc(); while (isdigit(c)) x = x * 10 + (c & 15), c = getc(); return f ? -x : x; } const int Lg = 19; const int N = 300005; vector<int> e[N]; vector<pair<int, int> > upt[N]; int fa[N], a[N], dp[N][Lg], n; long long ans, delta; int getone(int u, int f) { int res = 0; fa[u] = f; for (int i = 0; i < e[u].size(); ++i) { if (e[u][i] == f) continue; res = max(res, getone(e[u][i], u)); } ans += res + 1; return res + 1; } void dfs(int u) { for (int i = 0; i < e[u].size(); ++i) { if (e[u][i] == fa[u]) continue; dfs(e[u][i]); } dp[u][1] = n; for (int t = 2; t < Lg; ++t) { int tot = 0; for (int i = 0; i < e[u].size(); ++i) { int to = e[u][i]; if (to == fa[u]) continue; if (dp[to][t - 1]) a[++tot] = dp[to][t - 1]; } sort(a + 1, a + tot + 1, greater<int>()); for (int i = tot; i >= 1 && !dp[u][t]; --i) if (a[i] >= i) dp[u][t] = i; if (dp[u][t] > 1) upt[dp[u][t]].push_back(make_pair(u, t)); } } void update(int u, int w) { while (u) { if (w <= a[u]) break; delta += w - a[u]; a[u] = w; u = fa[u]; } } int main() { n = read(); for (int i = 1; i < n; ++i) { int x = read(), y = read(); e[x].push_back(y); e[y].push_back(x); } getone(1, 0); dfs(1); delta = n; for (int i = 1; i <= n; ++i) a[i] = 1; for (int k = n; k > 1; --k) { for (int i = 0; i < upt[k].size(); ++i) update(upt[k][i].first, upt[k][i].second); ans += delta; } printf("%lld\n", ans); return 0; }
### Prompt Develop a solution in Cpp to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <class _Tp> _Tp gcd(_Tp a, _Tp b) { return (b == 0) ? (a) : (gcd(b, a % b)); } const long long Inf = 1000000000000000000ll; const int inf = 1000000000; char buf[1 << 25], *p1 = buf, *p2 = buf; inline int getc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 25, stdin), p1 == p2) ? EOF : *p1++; } inline int read() { int x = 0, f = 0; char c = getc(); while (!isdigit(c)) (c == '-') && (f = 1), c = getc(); while (isdigit(c)) x = x * 10 + (c & 15), c = getc(); return f ? -x : x; } const int Lg = 19; const int N = 300005; vector<int> e[N]; vector<pair<int, int> > upt[N]; int fa[N], a[N], dp[N][Lg], n; long long ans, delta; int getone(int u, int f) { int res = 0; fa[u] = f; for (int i = 0; i < e[u].size(); ++i) { if (e[u][i] == f) continue; res = max(res, getone(e[u][i], u)); } ans += res + 1; return res + 1; } void dfs(int u) { for (int i = 0; i < e[u].size(); ++i) { if (e[u][i] == fa[u]) continue; dfs(e[u][i]); } dp[u][1] = n; for (int t = 2; t < Lg; ++t) { int tot = 0; for (int i = 0; i < e[u].size(); ++i) { int to = e[u][i]; if (to == fa[u]) continue; if (dp[to][t - 1]) a[++tot] = dp[to][t - 1]; } sort(a + 1, a + tot + 1, greater<int>()); for (int i = tot; i >= 1 && !dp[u][t]; --i) if (a[i] >= i) dp[u][t] = i; if (dp[u][t] > 1) upt[dp[u][t]].push_back(make_pair(u, t)); } } void update(int u, int w) { while (u) { if (w <= a[u]) break; delta += w - a[u]; a[u] = w; u = fa[u]; } } int main() { n = read(); for (int i = 1; i < n; ++i) { int x = read(), y = read(); e[x].push_back(y); e[y].push_back(x); } getone(1, 0); dfs(1); delta = n; for (int i = 1; i <= n; ++i) a[i] = 1; for (int k = n; k > 1; --k) { for (int i = 0; i < upt[k].size(); ++i) update(upt[k][i].first, upt[k][i].second); ans += delta; } printf("%lld\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; long long read() { char ch = getchar(); long long x = 0; int op = 1; for (; !isdigit(ch); ch = getchar()) if (ch == '-') op = -1; for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0'; return x * op; } int n, cnt, head[300005], mx[300005], dp[300005][25], q[300005]; long long ans; struct edge { int to, nxt; } e[300005 << 1]; void adde(int x, int y) { e[++cnt].to = y; e[cnt].nxt = head[x]; head[x] = cnt; } void ins(int x, int y) { adde(x, y); adde(y, x); } const bool cmp(const int x, const int y) { return x > y; } void dfs(int u, int pr) { for (int i = head[u], v; i; i = e[i].nxt) if ((v = e[i].to) != pr) { dfs(v, u); mx[u] = max(mx[u], mx[v]); } ans += ++mx[u]; dp[u][1] = n; for (int i = (2); i <= (20); i++) { int tp = 0; for (int j = head[u], v; j; j = e[j].nxt) if ((v = e[j].to) != pr) q[++tp] = dp[v][i - 1]; sort(q + 1, q + 1 + tp, cmp); for (int j = (tp); j >= (2); j--) if (q[j] >= j) { dp[u][i] = j; break; } } } void solve(int u, int pr) { for (int i = head[u], v; i; i = e[i].nxt) if ((v = e[i].to) != pr) { solve(v, u); for (int j = (1); j <= (20); j++) dp[u][j] = max(dp[u][j], dp[v][j]); } for (int i = (1); i <= (20); i++) { ans += (long long)(dp[u][i] - dp[u][i + 1]) * i; if (dp[u][i + 1] == 0) { ans -= i; break; } } } int main() { n = read(); for (int i = (1); i <= (n - 1); i++) { int x = read(), y = read(); ins(x, y); } dfs(1, 0); solve(1, 0); cout << ans << endl; return 0; }
### Prompt Develop a solution in CPP to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; long long read() { char ch = getchar(); long long x = 0; int op = 1; for (; !isdigit(ch); ch = getchar()) if (ch == '-') op = -1; for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0'; return x * op; } int n, cnt, head[300005], mx[300005], dp[300005][25], q[300005]; long long ans; struct edge { int to, nxt; } e[300005 << 1]; void adde(int x, int y) { e[++cnt].to = y; e[cnt].nxt = head[x]; head[x] = cnt; } void ins(int x, int y) { adde(x, y); adde(y, x); } const bool cmp(const int x, const int y) { return x > y; } void dfs(int u, int pr) { for (int i = head[u], v; i; i = e[i].nxt) if ((v = e[i].to) != pr) { dfs(v, u); mx[u] = max(mx[u], mx[v]); } ans += ++mx[u]; dp[u][1] = n; for (int i = (2); i <= (20); i++) { int tp = 0; for (int j = head[u], v; j; j = e[j].nxt) if ((v = e[j].to) != pr) q[++tp] = dp[v][i - 1]; sort(q + 1, q + 1 + tp, cmp); for (int j = (tp); j >= (2); j--) if (q[j] >= j) { dp[u][i] = j; break; } } } void solve(int u, int pr) { for (int i = head[u], v; i; i = e[i].nxt) if ((v = e[i].to) != pr) { solve(v, u); for (int j = (1); j <= (20); j++) dp[u][j] = max(dp[u][j], dp[v][j]); } for (int i = (1); i <= (20); i++) { ans += (long long)(dp[u][i] - dp[u][i + 1]) * i; if (dp[u][i + 1] == 0) { ans -= i; break; } } } int main() { n = read(); for (int i = (1); i <= (n - 1); i++) { int x = read(), y = read(); ins(x, y); } dfs(1, 0); solve(1, 0); cout << ans << endl; return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5; int n; vector<int> adj[N]; vector<int> karr[N]; multiset<int> ss[N]; vector<int> *val[N]; long long sum[N]; long long ans = 0; void dfs(int v, int p) { int c = adj[v].size() - (p > 0); for (auto it : adj[v]) { if (it == p) continue; dfs(it, v); } val[v] = new vector<int>(c, 0); sum[v] = 0; for (auto it : adj[v]) { if (it == p) continue; for (int i = 0; i < (int)karr[it].size() && i < c; i++) { ss[i].insert(karr[it][i]); if ((int)ss[i].size() > i + 1) { ss[i].erase(ss[i].begin()); } } if (val[v]->size() < val[it]->size()) { swap(val[v], val[it]); swap(sum[v], sum[it]); } for (int i = 0; i < (int)val[it]->size(); i++) { if ((*val[it])[i] > (*val[v])[i]) { sum[v] += (*val[it])[i] - (*val[v])[i]; (*val[v])[i] = (*val[it])[i]; } } } for (int i = 1; i <= c; i++) { int cnt = 0; if ((int)ss[i - 1].size() == i) { cnt = 1 + (*ss[i - 1].begin()); } else cnt = 2; karr[v].push_back(cnt); ss[i - 1].clear(); if (cnt > (*val[v])[i - 1]) { sum[v] += cnt - (*val[v])[i - 1]; (*val[v])[i - 1] = cnt; } } ans += sum[v]; ans += n - val[v]->size(); } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i < n; i++) { int a, b; cin >> a >> b; adj[a].push_back(b); adj[b].push_back(a); } dfs(1, 0); cout << ans << "\n"; return 0; }
### Prompt Please provide a Cpp coded solution to the problem described below: You're given a tree with n vertices rooted at 1. We say that there's a k-ary heap of depth m located at u if the following holds: * For m = 1 u itself is a k-ary heap of depth 1. * For m > 1 vertex u is a k-ary heap of depth m if at least k of its children are k-ary heaps of depth at least m - 1. Denote dpk(u) as maximum depth of k-ary heap in the subtree of u (including u). Your goal is to compute <image>. Input The first line contains an integer n denoting the size of the tree (2 ≤ n ≤ 3·105). The next n - 1 lines contain two integers u, v each, describing vertices connected by i-th edge. It's guaranteed that the given configuration forms a tree. Output Output the answer to the task. Examples Input 4 1 3 2 3 4 3 Output 21 Input 4 1 2 2 3 3 4 Output 22 Note Consider sample case one. For k ≥ 3 all dpk will be equal to 1. For k = 2 dpk is 2 if <image> and 1 otherwise. For k = 1 dpk values are (3, 1, 2, 1) respectively. To sum up, 4·1 + 4·1 + 2·2 + 2·1 + 3 + 1 + 2 + 1 = 21. ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5; int n; vector<int> adj[N]; vector<int> karr[N]; multiset<int> ss[N]; vector<int> *val[N]; long long sum[N]; long long ans = 0; void dfs(int v, int p) { int c = adj[v].size() - (p > 0); for (auto it : adj[v]) { if (it == p) continue; dfs(it, v); } val[v] = new vector<int>(c, 0); sum[v] = 0; for (auto it : adj[v]) { if (it == p) continue; for (int i = 0; i < (int)karr[it].size() && i < c; i++) { ss[i].insert(karr[it][i]); if ((int)ss[i].size() > i + 1) { ss[i].erase(ss[i].begin()); } } if (val[v]->size() < val[it]->size()) { swap(val[v], val[it]); swap(sum[v], sum[it]); } for (int i = 0; i < (int)val[it]->size(); i++) { if ((*val[it])[i] > (*val[v])[i]) { sum[v] += (*val[it])[i] - (*val[v])[i]; (*val[v])[i] = (*val[it])[i]; } } } for (int i = 1; i <= c; i++) { int cnt = 0; if ((int)ss[i - 1].size() == i) { cnt = 1 + (*ss[i - 1].begin()); } else cnt = 2; karr[v].push_back(cnt); ss[i - 1].clear(); if (cnt > (*val[v])[i - 1]) { sum[v] += cnt - (*val[v])[i - 1]; (*val[v])[i - 1] = cnt; } } ans += sum[v]; ans += n - val[v]->size(); } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i < n; i++) { int a, b; cin >> a >> b; adj[a].push_back(b); adj[b].push_back(a); } dfs(1, 0); cout << ans << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; using cat = long long; unsigned long long MOD = 998244353LL; unsigned long long pw(unsigned long long a, unsigned long long e) { if (e <= 0) return 1; unsigned long long x = pw(a, e / 2); x = (x * x) % MOD; if (e % 2 != 0) x = (x * a) % MOD; return x; } unsigned long long proot = 3; vector<vector<unsigned long long> > OM; vector<unsigned long long> DEP; vector<unsigned long long> DFT(vector<unsigned long long> &A, int N, int d, int x, int dir) { vector<unsigned long long> ret(N, 0); if (N == 1) { ret[0] = A[x]; return ret; } if (N == 2) { ret[0] = (A[x] + A[x + d]) % MOD; ret[1] = (A[x] + MOD - A[x + d]) % MOD; return ret; } int dep = DEP[N]; vector<unsigned long long> DFT0[2]; DFT0[0] = DFT(A, N / 2, d * 2, x, dir); DFT0[1] = DFT(A, N / 2, d * 2, x + d, dir); for (int i = 0; i < N / 2; i++) { unsigned long long com = OM[dep][(N + dir * i) % N]; ret[i] = (DFT0[0][i] + com * DFT0[1][i]) % MOD; ret[i + N / 2] = (DFT0[0][i] + (MOD - com) * DFT0[1][i]) % MOD; } return ret; } int SN = 1 << 20; vector<unsigned long long> convolution(vector<unsigned long long> A, vector<unsigned long long> B) { if ((int)A.size() < 50) { vector<unsigned long long> ret(A.size() * 2 - 1); unsigned long long mod2 = MOD * MOD * 4; for (int i = 0; i < (int)A.size(); i++) for (int j = 0; j < (int)B.size(); j++) { ret[i + j] += A[i] * B[j]; if (ret[i + j] >= mod2) ret[i + j] -= mod2; } for (int i = 0; i < (int)ret.size(); i++) ret[i] %= MOD; return ret; } int Smin = 1; while (Smin < (int)A.size() * 2) Smin *= 2; if (OM.empty()) { OM.resize(21); for (int i = 0; i < 21; i++) { unsigned long long root = pw(proot, (MOD - 1) / (1 << i)); OM[i].resize(1 << i, 1); for (int j = 1; j < (1 << i); j++) OM[i][j] = (OM[i][j - 1] * root) % MOD; reverse(begin(OM[i]) + 1, end(OM[i])); } DEP.resize(SN + 1); for (int i = 1; i <= SN; i++) { int dep = 0, n = i; while (n > 1) n /= 2, dep++; DEP[i] = dep; } } A.resize(Smin, 0); B.resize(Smin, 0); vector<unsigned long long> FA = DFT(A, A.size(), 1, 0, 1); vector<unsigned long long> FB = DFT(B, B.size(), 1, 0, 1); vector<unsigned long long> Fret(FA.size(), 0); for (unsigned int i = 0; i < FA.size(); i++) Fret[i] = (FA[i] * FB[i]) % MOD; vector<unsigned long long> ret = DFT(Fret, Fret.size(), 1, 0, -1); unsigned long long inv = pw(ret.size(), MOD - 2); for (unsigned int i = 0; i < ret.size(); i++) ret[i] = (ret[i] * inv) % MOD; ret.resize(A.size() * 2 - 1); return ret; } vector<cat> poly_prod(vector<cat> V, int K, cat mod) { int N = V.size(); if (N <= 10) { vector<cat> ret(min(K + 1, N + 1), 0); ret[0] = 1; for (int i = 0; i < N; i++) for (int j = min(K, i + 1); j > 0; j--) ret[j] = (ret[j] + ret[j - 1] * V[i]) % mod; return ret; } vector<cat> Vl, Vr; for (int i = 0; i < N / 2; i++) Vl.push_back(V[i]); for (int i = N / 2; i < N; i++) Vr.push_back(V[i]); vector<cat> Pl = poly_prod(Vl, K, mod), Pr = poly_prod(Vr, K, mod); vector<unsigned long long> Rl(min(K + 1, (int)max(Pl.size(), Pr.size())), 0); vector<unsigned long long> Rr(min(K + 1, (int)max(Pl.size(), Pr.size())), 0); for (int i = 0; i < min(K + 1, (int)Pl.size()); i++) Rl[i] = Pl[i]; for (int i = 0; i < min(K + 1, (int)Pr.size()); i++) Rr[i] = Pr[i]; vector<unsigned long long> R = convolution(Rl, Rr); vector<cat> ret(min(K + 1, N + 1), 0); for (int i = 0; i < min(K + 1, N + 1); i++) ret[i] = R[i]; return ret; } vector<cat> poly_inv(vector<cat> &P, int deg, cat mod) { int deg_p2 = deg; while (deg_p2 & (deg_p2 - 1)) deg_p2++; vector<unsigned long long> A(1, 1); for (int l = 1; l < deg_p2; l *= 2) { vector<unsigned long long> L(l), U(l); for (int i = 0; i < min((int)P.size(), l); i++) L[i] = P[i]; vector<unsigned long long> C = convolution(L, A); C.push_back(0); for (int i = 0; i < l; i++) C[i] = C[i + l]; C.resize(l); for (int i = l; i < min((int)P.size(), 2 * l); i++) U[i - l] = P[i]; vector<unsigned long long> R = convolution(A, U); R.resize(l, 0); for (int i = 0; i < l; i++) R[i] = (R[i] + C[i]) % mod; vector<unsigned long long> B = convolution(R, A); A.resize(2 * l, 0); for (int i = 0; i < l; i++) A[i + l] = (mod - B[i]) % mod; } vector<cat> ret(deg); for (int i = 0; i < deg; i++) ret[i] = A[i]; return ret; } vector<cat> poly_rem(vector<cat> &P, vector<cat> Q, cat mod) { if (P.size() < Q.size()) return P; int deg = P.size() - Q.size() + 1; vector<cat> Pi = P; reverse(begin(Pi), end(Pi)); Pi.resize(min((int)Pi.size(), deg)); vector<cat> Qi = Q; reverse(begin(Qi), end(Qi)); vector<cat> Qii = poly_inv(Qi, deg, mod); vector<unsigned long long> pi(max(Pi.size(), Qii.size()), 0); for (int i = 0; i < (int)Pi.size(); i++) pi[i] = Pi[i]; vector<unsigned long long> qii(max(Pi.size(), Qii.size()), 0); for (int i = 0; i < (int)Qii.size(); i++) qii[i] = Qii[i]; vector<unsigned long long> D = convolution(pi, qii); D.resize(deg, 0); reverse(begin(D), end(D)); D.resize(max(Q.size(), D.size()), 0); vector<unsigned long long> q(max(Q.size(), D.size()), 0); for (int i = 0; i < (int)Q.size(); i++) q[i] = Q[i]; vector<unsigned long long> sub = convolution(q, D); while (sub.size() > P.size() && sub.back() == 0) sub.pop_back(); vector<cat> ret = P; for (int i = 0; i < (int)sub.size(); i++) { ret[i] = (ret[i] - (cat)sub[i]) % mod; if (ret[i] < 0) ret[i] += mod; } while ((int)ret.size() > 1 && ret.back() == 0) ret.pop_back(); assert(ret.size() < Q.size()); return ret; } class poly_eval_tree { vector<cat> X; vector<vector<cat> > Q; vector<vector<int> > son; cat mod; void build_tree(int l, int r, int cur) { if (r - l <= 2) { Q[cur].resize(r - l + 1, 0); Q[cur][0] = 1; for (int i = l; i < r; i++) for (int j = i - l + 1; j >= 0; j--) Q[cur][j] = (((j == 0) ? 0 : Q[cur][j - 1]) - X[i] * Q[cur][j]) % mod; for (int i = 0; i <= r - l; i++) if (Q[cur][i] < 0) Q[cur][i] += mod; return; } son[cur][0] = son.size(); son.push_back(vector<int>(2, -1)); Q.push_back(vector<cat>()); build_tree(l, (l + r) / 2, son[cur][0]); son[cur][1] = son.size(); son.push_back(vector<int>(2, -1)); Q.push_back(vector<cat>()); build_tree((l + r) / 2, r, son[cur][1]); vector<unsigned long long> Ql( max(Q[son[cur][0]].size(), Q[son[cur][1]].size()), 0); for (int i = 0; i < (int)Q[son[cur][0]].size(); i++) Ql[i] = Q[son[cur][0]][i]; vector<unsigned long long> Qr( max(Q[son[cur][0]].size(), Q[son[cur][1]].size()), 0); for (int i = 0; i < (int)Q[son[cur][1]].size(); i++) Qr[i] = Q[son[cur][1]][i]; vector<unsigned long long> C = convolution(Ql, Qr); int sz = Q[son[cur][0]].size() + Q[son[cur][1]].size() - 1; Q[cur].resize(sz); for (int i = 0; i < sz; i++) Q[cur][i] = C[i]; } public: poly_eval_tree(vector<cat> X, cat mod) : X(X), mod(mod) { son.reserve(2 * X.size() + 10); son.push_back(vector<int>(2, -1)); Q.reserve(2 * X.size() + 10); Q.push_back(vector<cat>()); build_tree(0, X.size(), 0); } vector<cat> eval(vector<cat> &P, int l, int r, int cur = 0) { int N = P.size(); if (N <= 1 || son[cur][0] == -1) { vector<cat> ret(r - l, 0); for (int j = l; j < r; j++) for (int i = N - 1; i >= 0; i--) ret[j - l] = (ret[j - l] * X[j] + P[i]) % mod; return ret; } vector<cat> Pl = poly_rem(P, Q[son[cur][0]], mod); vector<cat> Pr = poly_rem(P, Q[son[cur][1]], mod); vector<cat> retl = eval(Pl, l, (l + r) / 2, son[cur][0]); vector<cat> retr = eval(Pr, (l + r) / 2, r, son[cur][1]); for (auto it = retr.begin(); it != retr.end(); it++) retl.push_back(*it); return retl; } }; vector<cat> poly_eval_dedup(vector<cat> P, vector<cat> X, cat mod) { int x = X.size(); vector<pair<cat, int> > Xs(x); for (int i = 0; i < x; i++) Xs[i] = {X[i], i}; sort(begin(Xs), end(Xs)); vector<cat> Xu; for (int i = 0; i < x; i++) if (i == 0 || Xs[i].first != Xs[i - 1].first) Xu.push_back(Xs[i].first); poly_eval_tree T(Xu, mod); vector<cat> ret_dedup = T.eval(P, 0, Xu.size()); int a = 0; vector<cat> ret(x); for (int i = 0; i < x; i++) if (i == 0 || Xs[i].first != Xs[i - 1].first) { for (int j = i; j < x; j++) { if (Xs[j].first != Xs[i].first) break; ret[Xs[j].second] = ret_dedup[a]; } a++; } return ret; } void DFS(int R, vector<vector<int> > &G, vector<int> &par, vector<cat> &S) { S[R] = 1; for (auto it = G[R].begin(); it != G[R].end(); it++) if (par[*it] == -1) { par[*it] = R; DFS(*it, G, par, S); S[R] += S[*it]; } } void DFS2(int R, vector<vector<int> > &G, vector<int> &par, vector<cat> &val, vector<cat> &sum_val, cat mod) { sum_val[R] = val[R]; for (auto it = G[R].begin(); it != G[R].end(); it++) if (par[*it] == R) { DFS2(*it, G, par, val, sum_val, mod); sum_val[R] += sum_val[*it]; } sum_val[R] %= mod; } cat pw(cat a, cat e, cat mod) { if (e <= 0) return 1; cat x = pw(a, e / 2); x = x * x % mod; if (e & 1) x = x * a % mod; return x; } int main() { cin.sync_with_stdio(0); cin.tie(0); cout << fixed << setprecision(10); int N, K; cin >> N >> K; cat mod = 998244353; if (K == 1) { cout << 1LL * N * (N - 1) / 2 % mod << "\n"; return 0; } vector<vector<int> > G(N); for (int i = 0; i < N - 1; i++) { int u, v; cin >> u >> v; G[--u].push_back(--v); G[v].push_back(u); } vector<int> par(N, -1); vector<cat> S(N); par[0] = 0; DFS(0, G, par, S); vector<cat> inv(K + 1, 1); for (int i = 1; i <= K; i++) inv[i] = inv[i - 1] * pw(i, mod - 2, mod) % mod; cat fac = 1; for (int i = 1; i <= K; i++) fac = fac * i % mod; vector<cat> cntK_down(N, 0), cntK_up(N, 0); for (int i = 0; i < N; i++) { vector<cat> V(G[i].size()); for (int j = 0; j < (int)G[i].size(); j++) { if (par[G[i][j]] == i) V[j] = S[G[i][j]]; else V[j] = N - S[i]; } vector<cat> P = poly_prod(V, K, mod); int sz = P.size(); vector<unsigned long long> Pu(sz, 0), Iu(sz, 0); for (int j = 0; j < sz; j++) Pu[j] = P[j]; for (int j = 0; j < sz; j++) Iu[j] = inv[K + 1 - sz + j]; vector<unsigned long long> C = convolution(Pu, Iu); for (int j = 0; j < sz; j++) P[j] = C[sz - 1 - j]; vector<cat> X(V.size()); for (int j = 0; j < (int)V.size(); j++) X[j] = (mod - V[j]) % mod; vector<cat> val = poly_eval_dedup(P, X, mod); for (int j = 0; j < (int)V.size(); j++) { cat val_cur = val[j]; if (par[G[i][j]] == i) cntK_up[G[i][j]] = val_cur * fac % mod; else cntK_down[i] = val_cur * fac % mod; } } vector<cat> sum_val(N); DFS2(0, G, par, cntK_down, sum_val, mod); cat ans = 0; for (int i = 0; i < N; i++) { cat sum = 0; for (auto it = G[i].begin(); it != G[i].end(); it++) if (par[*it] == i) { ans += sum_val[*it] * (sum + cntK_up[*it]) % mod; sum = (sum + sum_val[*it]) % mod; } } ans %= mod; if (ans < 0) ans += mod; cout << ans << "\n"; return 0; }
### Prompt In CPP, your task is to solve the following problem: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using namespace std; using cat = long long; unsigned long long MOD = 998244353LL; unsigned long long pw(unsigned long long a, unsigned long long e) { if (e <= 0) return 1; unsigned long long x = pw(a, e / 2); x = (x * x) % MOD; if (e % 2 != 0) x = (x * a) % MOD; return x; } unsigned long long proot = 3; vector<vector<unsigned long long> > OM; vector<unsigned long long> DEP; vector<unsigned long long> DFT(vector<unsigned long long> &A, int N, int d, int x, int dir) { vector<unsigned long long> ret(N, 0); if (N == 1) { ret[0] = A[x]; return ret; } if (N == 2) { ret[0] = (A[x] + A[x + d]) % MOD; ret[1] = (A[x] + MOD - A[x + d]) % MOD; return ret; } int dep = DEP[N]; vector<unsigned long long> DFT0[2]; DFT0[0] = DFT(A, N / 2, d * 2, x, dir); DFT0[1] = DFT(A, N / 2, d * 2, x + d, dir); for (int i = 0; i < N / 2; i++) { unsigned long long com = OM[dep][(N + dir * i) % N]; ret[i] = (DFT0[0][i] + com * DFT0[1][i]) % MOD; ret[i + N / 2] = (DFT0[0][i] + (MOD - com) * DFT0[1][i]) % MOD; } return ret; } int SN = 1 << 20; vector<unsigned long long> convolution(vector<unsigned long long> A, vector<unsigned long long> B) { if ((int)A.size() < 50) { vector<unsigned long long> ret(A.size() * 2 - 1); unsigned long long mod2 = MOD * MOD * 4; for (int i = 0; i < (int)A.size(); i++) for (int j = 0; j < (int)B.size(); j++) { ret[i + j] += A[i] * B[j]; if (ret[i + j] >= mod2) ret[i + j] -= mod2; } for (int i = 0; i < (int)ret.size(); i++) ret[i] %= MOD; return ret; } int Smin = 1; while (Smin < (int)A.size() * 2) Smin *= 2; if (OM.empty()) { OM.resize(21); for (int i = 0; i < 21; i++) { unsigned long long root = pw(proot, (MOD - 1) / (1 << i)); OM[i].resize(1 << i, 1); for (int j = 1; j < (1 << i); j++) OM[i][j] = (OM[i][j - 1] * root) % MOD; reverse(begin(OM[i]) + 1, end(OM[i])); } DEP.resize(SN + 1); for (int i = 1; i <= SN; i++) { int dep = 0, n = i; while (n > 1) n /= 2, dep++; DEP[i] = dep; } } A.resize(Smin, 0); B.resize(Smin, 0); vector<unsigned long long> FA = DFT(A, A.size(), 1, 0, 1); vector<unsigned long long> FB = DFT(B, B.size(), 1, 0, 1); vector<unsigned long long> Fret(FA.size(), 0); for (unsigned int i = 0; i < FA.size(); i++) Fret[i] = (FA[i] * FB[i]) % MOD; vector<unsigned long long> ret = DFT(Fret, Fret.size(), 1, 0, -1); unsigned long long inv = pw(ret.size(), MOD - 2); for (unsigned int i = 0; i < ret.size(); i++) ret[i] = (ret[i] * inv) % MOD; ret.resize(A.size() * 2 - 1); return ret; } vector<cat> poly_prod(vector<cat> V, int K, cat mod) { int N = V.size(); if (N <= 10) { vector<cat> ret(min(K + 1, N + 1), 0); ret[0] = 1; for (int i = 0; i < N; i++) for (int j = min(K, i + 1); j > 0; j--) ret[j] = (ret[j] + ret[j - 1] * V[i]) % mod; return ret; } vector<cat> Vl, Vr; for (int i = 0; i < N / 2; i++) Vl.push_back(V[i]); for (int i = N / 2; i < N; i++) Vr.push_back(V[i]); vector<cat> Pl = poly_prod(Vl, K, mod), Pr = poly_prod(Vr, K, mod); vector<unsigned long long> Rl(min(K + 1, (int)max(Pl.size(), Pr.size())), 0); vector<unsigned long long> Rr(min(K + 1, (int)max(Pl.size(), Pr.size())), 0); for (int i = 0; i < min(K + 1, (int)Pl.size()); i++) Rl[i] = Pl[i]; for (int i = 0; i < min(K + 1, (int)Pr.size()); i++) Rr[i] = Pr[i]; vector<unsigned long long> R = convolution(Rl, Rr); vector<cat> ret(min(K + 1, N + 1), 0); for (int i = 0; i < min(K + 1, N + 1); i++) ret[i] = R[i]; return ret; } vector<cat> poly_inv(vector<cat> &P, int deg, cat mod) { int deg_p2 = deg; while (deg_p2 & (deg_p2 - 1)) deg_p2++; vector<unsigned long long> A(1, 1); for (int l = 1; l < deg_p2; l *= 2) { vector<unsigned long long> L(l), U(l); for (int i = 0; i < min((int)P.size(), l); i++) L[i] = P[i]; vector<unsigned long long> C = convolution(L, A); C.push_back(0); for (int i = 0; i < l; i++) C[i] = C[i + l]; C.resize(l); for (int i = l; i < min((int)P.size(), 2 * l); i++) U[i - l] = P[i]; vector<unsigned long long> R = convolution(A, U); R.resize(l, 0); for (int i = 0; i < l; i++) R[i] = (R[i] + C[i]) % mod; vector<unsigned long long> B = convolution(R, A); A.resize(2 * l, 0); for (int i = 0; i < l; i++) A[i + l] = (mod - B[i]) % mod; } vector<cat> ret(deg); for (int i = 0; i < deg; i++) ret[i] = A[i]; return ret; } vector<cat> poly_rem(vector<cat> &P, vector<cat> Q, cat mod) { if (P.size() < Q.size()) return P; int deg = P.size() - Q.size() + 1; vector<cat> Pi = P; reverse(begin(Pi), end(Pi)); Pi.resize(min((int)Pi.size(), deg)); vector<cat> Qi = Q; reverse(begin(Qi), end(Qi)); vector<cat> Qii = poly_inv(Qi, deg, mod); vector<unsigned long long> pi(max(Pi.size(), Qii.size()), 0); for (int i = 0; i < (int)Pi.size(); i++) pi[i] = Pi[i]; vector<unsigned long long> qii(max(Pi.size(), Qii.size()), 0); for (int i = 0; i < (int)Qii.size(); i++) qii[i] = Qii[i]; vector<unsigned long long> D = convolution(pi, qii); D.resize(deg, 0); reverse(begin(D), end(D)); D.resize(max(Q.size(), D.size()), 0); vector<unsigned long long> q(max(Q.size(), D.size()), 0); for (int i = 0; i < (int)Q.size(); i++) q[i] = Q[i]; vector<unsigned long long> sub = convolution(q, D); while (sub.size() > P.size() && sub.back() == 0) sub.pop_back(); vector<cat> ret = P; for (int i = 0; i < (int)sub.size(); i++) { ret[i] = (ret[i] - (cat)sub[i]) % mod; if (ret[i] < 0) ret[i] += mod; } while ((int)ret.size() > 1 && ret.back() == 0) ret.pop_back(); assert(ret.size() < Q.size()); return ret; } class poly_eval_tree { vector<cat> X; vector<vector<cat> > Q; vector<vector<int> > son; cat mod; void build_tree(int l, int r, int cur) { if (r - l <= 2) { Q[cur].resize(r - l + 1, 0); Q[cur][0] = 1; for (int i = l; i < r; i++) for (int j = i - l + 1; j >= 0; j--) Q[cur][j] = (((j == 0) ? 0 : Q[cur][j - 1]) - X[i] * Q[cur][j]) % mod; for (int i = 0; i <= r - l; i++) if (Q[cur][i] < 0) Q[cur][i] += mod; return; } son[cur][0] = son.size(); son.push_back(vector<int>(2, -1)); Q.push_back(vector<cat>()); build_tree(l, (l + r) / 2, son[cur][0]); son[cur][1] = son.size(); son.push_back(vector<int>(2, -1)); Q.push_back(vector<cat>()); build_tree((l + r) / 2, r, son[cur][1]); vector<unsigned long long> Ql( max(Q[son[cur][0]].size(), Q[son[cur][1]].size()), 0); for (int i = 0; i < (int)Q[son[cur][0]].size(); i++) Ql[i] = Q[son[cur][0]][i]; vector<unsigned long long> Qr( max(Q[son[cur][0]].size(), Q[son[cur][1]].size()), 0); for (int i = 0; i < (int)Q[son[cur][1]].size(); i++) Qr[i] = Q[son[cur][1]][i]; vector<unsigned long long> C = convolution(Ql, Qr); int sz = Q[son[cur][0]].size() + Q[son[cur][1]].size() - 1; Q[cur].resize(sz); for (int i = 0; i < sz; i++) Q[cur][i] = C[i]; } public: poly_eval_tree(vector<cat> X, cat mod) : X(X), mod(mod) { son.reserve(2 * X.size() + 10); son.push_back(vector<int>(2, -1)); Q.reserve(2 * X.size() + 10); Q.push_back(vector<cat>()); build_tree(0, X.size(), 0); } vector<cat> eval(vector<cat> &P, int l, int r, int cur = 0) { int N = P.size(); if (N <= 1 || son[cur][0] == -1) { vector<cat> ret(r - l, 0); for (int j = l; j < r; j++) for (int i = N - 1; i >= 0; i--) ret[j - l] = (ret[j - l] * X[j] + P[i]) % mod; return ret; } vector<cat> Pl = poly_rem(P, Q[son[cur][0]], mod); vector<cat> Pr = poly_rem(P, Q[son[cur][1]], mod); vector<cat> retl = eval(Pl, l, (l + r) / 2, son[cur][0]); vector<cat> retr = eval(Pr, (l + r) / 2, r, son[cur][1]); for (auto it = retr.begin(); it != retr.end(); it++) retl.push_back(*it); return retl; } }; vector<cat> poly_eval_dedup(vector<cat> P, vector<cat> X, cat mod) { int x = X.size(); vector<pair<cat, int> > Xs(x); for (int i = 0; i < x; i++) Xs[i] = {X[i], i}; sort(begin(Xs), end(Xs)); vector<cat> Xu; for (int i = 0; i < x; i++) if (i == 0 || Xs[i].first != Xs[i - 1].first) Xu.push_back(Xs[i].first); poly_eval_tree T(Xu, mod); vector<cat> ret_dedup = T.eval(P, 0, Xu.size()); int a = 0; vector<cat> ret(x); for (int i = 0; i < x; i++) if (i == 0 || Xs[i].first != Xs[i - 1].first) { for (int j = i; j < x; j++) { if (Xs[j].first != Xs[i].first) break; ret[Xs[j].second] = ret_dedup[a]; } a++; } return ret; } void DFS(int R, vector<vector<int> > &G, vector<int> &par, vector<cat> &S) { S[R] = 1; for (auto it = G[R].begin(); it != G[R].end(); it++) if (par[*it] == -1) { par[*it] = R; DFS(*it, G, par, S); S[R] += S[*it]; } } void DFS2(int R, vector<vector<int> > &G, vector<int> &par, vector<cat> &val, vector<cat> &sum_val, cat mod) { sum_val[R] = val[R]; for (auto it = G[R].begin(); it != G[R].end(); it++) if (par[*it] == R) { DFS2(*it, G, par, val, sum_val, mod); sum_val[R] += sum_val[*it]; } sum_val[R] %= mod; } cat pw(cat a, cat e, cat mod) { if (e <= 0) return 1; cat x = pw(a, e / 2); x = x * x % mod; if (e & 1) x = x * a % mod; return x; } int main() { cin.sync_with_stdio(0); cin.tie(0); cout << fixed << setprecision(10); int N, K; cin >> N >> K; cat mod = 998244353; if (K == 1) { cout << 1LL * N * (N - 1) / 2 % mod << "\n"; return 0; } vector<vector<int> > G(N); for (int i = 0; i < N - 1; i++) { int u, v; cin >> u >> v; G[--u].push_back(--v); G[v].push_back(u); } vector<int> par(N, -1); vector<cat> S(N); par[0] = 0; DFS(0, G, par, S); vector<cat> inv(K + 1, 1); for (int i = 1; i <= K; i++) inv[i] = inv[i - 1] * pw(i, mod - 2, mod) % mod; cat fac = 1; for (int i = 1; i <= K; i++) fac = fac * i % mod; vector<cat> cntK_down(N, 0), cntK_up(N, 0); for (int i = 0; i < N; i++) { vector<cat> V(G[i].size()); for (int j = 0; j < (int)G[i].size(); j++) { if (par[G[i][j]] == i) V[j] = S[G[i][j]]; else V[j] = N - S[i]; } vector<cat> P = poly_prod(V, K, mod); int sz = P.size(); vector<unsigned long long> Pu(sz, 0), Iu(sz, 0); for (int j = 0; j < sz; j++) Pu[j] = P[j]; for (int j = 0; j < sz; j++) Iu[j] = inv[K + 1 - sz + j]; vector<unsigned long long> C = convolution(Pu, Iu); for (int j = 0; j < sz; j++) P[j] = C[sz - 1 - j]; vector<cat> X(V.size()); for (int j = 0; j < (int)V.size(); j++) X[j] = (mod - V[j]) % mod; vector<cat> val = poly_eval_dedup(P, X, mod); for (int j = 0; j < (int)V.size(); j++) { cat val_cur = val[j]; if (par[G[i][j]] == i) cntK_up[G[i][j]] = val_cur * fac % mod; else cntK_down[i] = val_cur * fac % mod; } } vector<cat> sum_val(N); DFS2(0, G, par, cntK_down, sum_val, mod); cat ans = 0; for (int i = 0; i < N; i++) { cat sum = 0; for (auto it = G[i].begin(); it != G[i].end(); it++) if (par[*it] == i) { ans += sum_val[*it] * (sum + cntK_up[*it]) % mod; sum = (sum + sum_val[*it]) % mod; } } ans %= mod; if (ans < 0) ans += mod; cout << ans << "\n"; return 0; } ```
#include <bits/stdc++.h> using namespace std; struct node { int t, next; } a[200010]; long long DCXISSOHANDSOME[20][262144], inv[262145], fac[100010], ifac[100010], f[100010], g[100010], ans; int head[100010], size[100010], h[100010], n, k, tt, tot; inline int rd() { int x = 0; char ch = getchar(); for (; ch < '0' || ch > '9'; ch = getchar()) ; for (; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0'; return x; } inline void add(int x, int y) { a[++tot].t = y; a[tot].next = head[x]; head[x] = tot; } inline long long pls(const long long x, const long long y) { return (x + y < 998244353LL) ? x + y : x + y - 998244353LL; } inline long long mns(const long long x, const long long y) { return (x - y < 0) ? x - y + 998244353LL : x - y; } inline long long ksm(long long x, long long y) { long long res = 1; for (; y; y >>= 1, x = x * x % 998244353LL) if (y & 1) res = res * x % 998244353LL; return res; } inline void pre_gao() { fac[0] = 1; for (int i = 1; i <= 100000; i++) fac[i] = fac[i - 1] * i % 998244353LL; ifac[100000] = ksm(fac[100000], 998244353LL - 2); for (int i = 99999; ~i; i--) ifac[i] = ifac[i + 1] * (i + 1) % 998244353LL; inv[1] = 1; for (int i = 2; i <= 262144; i++) inv[i] = (998244353LL - 998244353LL / i) * inv[998244353LL % i] % 998244353LL; for (int w = 2, hh = 1; w <= 262144; w <<= 1, hh++) { long long now = ksm(3, (998244353LL - 1) / w); DCXISSOHANDSOME[hh][0] = 1; for (int j = 1; j < (w >> 1); j++) DCXISSOHANDSOME[hh][j] = DCXISSOHANDSOME[hh][j - 1] * now % 998244353LL; } } inline void ntt(long long *a, int n, int on) { static int rev[262144]; for (int i = 1; i < n; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) ? (n >> 1) : 0); for (int i = 1; i < n; i++) if (i < rev[i]) swap(a[i], a[rev[i]]); for (int w = 2, hh = 1; w <= n; w <<= 1, hh++) for (int k = 0; k < n; k += w) for (int j = k; j < k + (w >> 1); j++) { long long u = a[j], t = a[j + (w >> 1)] * DCXISSOHANDSOME[hh][j - k] % 998244353LL; a[j] = pls(u, t); a[j + (w >> 1)] = mns(u, t); } if (on == -1) { reverse(a + 1, a + n); for (int i = 0; i < n; i++) a[i] = a[i] * inv[n] % 998244353LL; } } inline long long *gao(int l, int r) { static long long c[262144], d[262144]; long long *res = new long long[r - l + 2]; if (l == r) { res[0] = 1; res[1] = h[l]; return res; } int mid = (l + r) >> 1; long long *h1 = gao(l, mid), *h2 = gao(mid + 1, r); int len1 = mid - l + 1, len2 = r - mid; int len = 1; for (; len <= len1 + len2; len <<= 1) ; memcpy(c, h1, sizeof(long long) * (len1 + 1)); memcpy(d, h2, sizeof(long long) * (len2 + 1)); memset(c + len1 + 1, 0, sizeof(long long) * (len - len1 - 1)); memset(d + len2 + 1, 0, sizeof(long long) * (len - len2 - 1)); ntt(c, len, 1); ntt(d, len, 1); for (int i = 0; i < len; i++) c[i] = c[i] * d[i] % 998244353LL; ntt(c, len, -1); memcpy(res, c, sizeof(long long) * (r - l + 2)); delete[] h1; delete[] h2; return res; } inline void dfs(int x, int y) { static long long c[262144], d[262144]; g[x] = 0; size[x] = 1; for (int i = head[x]; i; i = a[i].next) { int t = a[i].t; if (t == y) continue; dfs(t, x); size[x] += size[t]; ans = pls(ans, g[x] * g[t] % 998244353LL); g[x] = pls(g[x], g[t]); } tt = 0; for (int i = head[x]; i; i = a[i].next) if (a[i].t != y) h[++tt] = size[a[i].t]; if (!tt) { f[x] = g[x] = 1; return; } long long *res = gao(1, tt); for (int i = 0; i <= min(k, tt); i++) f[x] = pls(f[x], res[i] * fac[k] % 998244353LL * ifac[k - i] % 998244353LL); g[x] = pls(g[x], f[x]); int m = tt; sort(h + 1, h + m + 1); m = unique(h + 1, h + m + 1) - h - 1; for (int i = tt; i; i--) c[i] = pls(res[i - 1] * (n - size[x]) % 998244353LL, res[i]); c[0] = res[0]; for (int hhh = 1; hhh <= m; hhh++) { d[0] = 1; for (int i = 1; i <= tt; i++) d[i] = mns(c[i], d[i - 1] * h[hhh] % 998244353LL); long long now = 0; for (int i = 0; i <= min(k, tt); i++) now = pls(now, d[i] * fac[k] % 998244353LL * ifac[k - i] % 998244353LL); for (int i = head[x]; i; i = a[i].next) if (a[i].t != y && size[a[i].t] == h[hhh]) ans = pls(ans, g[a[i].t] * now % 998244353LL); } } int main() { n = rd(); k = rd(); pre_gao(); tot = 0; if (k == 1) { printf("%I64d\n", (long long)n * (n - 1) / 2 % 998244353LL); return 0; } for (int i = 1; i < n; i++) { int x = rd(), y = rd(); add(x, y); add(y, x); } ans = 0; dfs(1, 0); printf("%I64d\n", ans); return 0; }
### Prompt Develop a solution in cpp to the problem described below: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using namespace std; struct node { int t, next; } a[200010]; long long DCXISSOHANDSOME[20][262144], inv[262145], fac[100010], ifac[100010], f[100010], g[100010], ans; int head[100010], size[100010], h[100010], n, k, tt, tot; inline int rd() { int x = 0; char ch = getchar(); for (; ch < '0' || ch > '9'; ch = getchar()) ; for (; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0'; return x; } inline void add(int x, int y) { a[++tot].t = y; a[tot].next = head[x]; head[x] = tot; } inline long long pls(const long long x, const long long y) { return (x + y < 998244353LL) ? x + y : x + y - 998244353LL; } inline long long mns(const long long x, const long long y) { return (x - y < 0) ? x - y + 998244353LL : x - y; } inline long long ksm(long long x, long long y) { long long res = 1; for (; y; y >>= 1, x = x * x % 998244353LL) if (y & 1) res = res * x % 998244353LL; return res; } inline void pre_gao() { fac[0] = 1; for (int i = 1; i <= 100000; i++) fac[i] = fac[i - 1] * i % 998244353LL; ifac[100000] = ksm(fac[100000], 998244353LL - 2); for (int i = 99999; ~i; i--) ifac[i] = ifac[i + 1] * (i + 1) % 998244353LL; inv[1] = 1; for (int i = 2; i <= 262144; i++) inv[i] = (998244353LL - 998244353LL / i) * inv[998244353LL % i] % 998244353LL; for (int w = 2, hh = 1; w <= 262144; w <<= 1, hh++) { long long now = ksm(3, (998244353LL - 1) / w); DCXISSOHANDSOME[hh][0] = 1; for (int j = 1; j < (w >> 1); j++) DCXISSOHANDSOME[hh][j] = DCXISSOHANDSOME[hh][j - 1] * now % 998244353LL; } } inline void ntt(long long *a, int n, int on) { static int rev[262144]; for (int i = 1; i < n; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) ? (n >> 1) : 0); for (int i = 1; i < n; i++) if (i < rev[i]) swap(a[i], a[rev[i]]); for (int w = 2, hh = 1; w <= n; w <<= 1, hh++) for (int k = 0; k < n; k += w) for (int j = k; j < k + (w >> 1); j++) { long long u = a[j], t = a[j + (w >> 1)] * DCXISSOHANDSOME[hh][j - k] % 998244353LL; a[j] = pls(u, t); a[j + (w >> 1)] = mns(u, t); } if (on == -1) { reverse(a + 1, a + n); for (int i = 0; i < n; i++) a[i] = a[i] * inv[n] % 998244353LL; } } inline long long *gao(int l, int r) { static long long c[262144], d[262144]; long long *res = new long long[r - l + 2]; if (l == r) { res[0] = 1; res[1] = h[l]; return res; } int mid = (l + r) >> 1; long long *h1 = gao(l, mid), *h2 = gao(mid + 1, r); int len1 = mid - l + 1, len2 = r - mid; int len = 1; for (; len <= len1 + len2; len <<= 1) ; memcpy(c, h1, sizeof(long long) * (len1 + 1)); memcpy(d, h2, sizeof(long long) * (len2 + 1)); memset(c + len1 + 1, 0, sizeof(long long) * (len - len1 - 1)); memset(d + len2 + 1, 0, sizeof(long long) * (len - len2 - 1)); ntt(c, len, 1); ntt(d, len, 1); for (int i = 0; i < len; i++) c[i] = c[i] * d[i] % 998244353LL; ntt(c, len, -1); memcpy(res, c, sizeof(long long) * (r - l + 2)); delete[] h1; delete[] h2; return res; } inline void dfs(int x, int y) { static long long c[262144], d[262144]; g[x] = 0; size[x] = 1; for (int i = head[x]; i; i = a[i].next) { int t = a[i].t; if (t == y) continue; dfs(t, x); size[x] += size[t]; ans = pls(ans, g[x] * g[t] % 998244353LL); g[x] = pls(g[x], g[t]); } tt = 0; for (int i = head[x]; i; i = a[i].next) if (a[i].t != y) h[++tt] = size[a[i].t]; if (!tt) { f[x] = g[x] = 1; return; } long long *res = gao(1, tt); for (int i = 0; i <= min(k, tt); i++) f[x] = pls(f[x], res[i] * fac[k] % 998244353LL * ifac[k - i] % 998244353LL); g[x] = pls(g[x], f[x]); int m = tt; sort(h + 1, h + m + 1); m = unique(h + 1, h + m + 1) - h - 1; for (int i = tt; i; i--) c[i] = pls(res[i - 1] * (n - size[x]) % 998244353LL, res[i]); c[0] = res[0]; for (int hhh = 1; hhh <= m; hhh++) { d[0] = 1; for (int i = 1; i <= tt; i++) d[i] = mns(c[i], d[i - 1] * h[hhh] % 998244353LL); long long now = 0; for (int i = 0; i <= min(k, tt); i++) now = pls(now, d[i] * fac[k] % 998244353LL * ifac[k - i] % 998244353LL); for (int i = head[x]; i; i = a[i].next) if (a[i].t != y && size[a[i].t] == h[hhh]) ans = pls(ans, g[a[i].t] * now % 998244353LL); } } int main() { n = rd(); k = rd(); pre_gao(); tot = 0; if (k == 1) { printf("%I64d\n", (long long)n * (n - 1) / 2 % 998244353LL); return 0; } for (int i = 1; i < n; i++) { int x = rd(), y = rd(); add(x, y); add(y, x); } ans = 0; dfs(1, 0); printf("%I64d\n", ans); return 0; } ```
#include <bits/stdc++.h> template <typename _Tp> void read(_Tp &x) { char ch(getchar()); bool f(false); while (!isdigit(ch)) f |= ch == 45, ch = getchar(); x = ch & 15, ch = getchar(); while (isdigit(ch)) x = x * 10 + (ch & 15), ch = getchar(); if (f) x = -x; } template <typename _Tp, typename... Args> void read(_Tp &t, Args &...args) { read(t); read(args...); } template <typename _Tp> inline void chmax(_Tp &a, const _Tp &b) { a = a < b ? b : a; } const int max_len = 1 << 18, N = max_len + 5, mod = 998244353, inf = 0x3f3f3f3f; template <typename _Tp1, typename _Tp2> inline void add(_Tp1 &a, _Tp2 b) { (a += b) >= mod && (a -= mod); } template <typename _Tp1, typename _Tp2> inline void sub(_Tp1 &a, _Tp2 b) { (a -= b) < 0 && (a += mod); } template <typename _Tp> inline _Tp _sub(_Tp a, const _Tp &b) { (a += mod - b) >= mod && (a -= mod); return a; } long long ksm(long long a, long long b = mod - 2) { long long res = 1; while (b) { if (b & 1) res = res * a % mod; a = a * a % mod, b >>= 1; } return res; } void print(const std::vector<int> &a) { for (auto it : a) printf("%d ", it); printf("\n"); } inline std::vector<int> operator<<(std::vector<int> a, unsigned int b) { return a.insert(a.begin(), b, 0), a; } inline std::vector<int> operator<<=(std::vector<int> &a, unsigned int b) { return a.insert(a.begin(), b, 0), a; } inline std::vector<int> operator>>(const std::vector<int> &a, unsigned int b) { return b >= a.size() ? std::vector<int>() : std::vector<int>{a.begin() + b, a.end()}; } inline std::vector<int> operator>>=(std::vector<int> &a, unsigned int b) { return a = b >= a.size() ? std::vector<int>() : std::vector<int>{a.begin() + b, a.end()}; } std::vector<int> operator+=(std::vector<int> &a, const std::vector<int> &b) { if (b.size() > a.size()) a.resize(b.size()); for (unsigned int i = 0; i < b.size(); ++i) add(a[i], b[i]); return a; } inline std::vector<int> operator+(const std::vector<int> &a, const std::vector<int> &b) { std::vector<int> tmp(a); tmp += b; return tmp; } std::vector<int> operator-=(std::vector<int> &a, const std::vector<int> &b) { if (b.size() > a.size()) a.resize(b.size()); for (unsigned int i = 0; i < b.size(); ++i) sub(a[i], b[i]); return a; } inline std::vector<int> operator-(const std::vector<int> &a, const std::vector<int> &b) { std::vector<int> tmp(a); tmp -= b; return tmp; } const unsigned long long Omg = ksm(3, (mod - 1) / max_len); unsigned long long Omgs[N]; void setup() { Omgs[max_len / 2] = 1; for (int i = max_len / 2 + 1; i < max_len; ++i) Omgs[i] = Omgs[i - 1] * Omg % mod; for (int i = max_len / 2 - 1; i > 0; --i) Omgs[i] = Omgs[i << 1]; } unsigned int rev[N]; unsigned int getlen(unsigned int len) { unsigned int limit = 1; while (limit < len) limit <<= 1; for (unsigned int i = 0; i < limit; ++i) rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? limit >> 1 : 0); return limit; } void dft(unsigned long long *A, unsigned int limit) { for (unsigned int i = 0; i < limit; ++i) if (i < rev[i]) std::swap(A[i], A[rev[i]]); for (unsigned int len = 1; len < limit; len <<= 1) { if (len == 262144u) for (unsigned int i = 0; i < limit; ++i) A[i] %= mod; for (unsigned int i = 0; i < limit; i += len << 1) { unsigned long long *p = A + i, *q = A + i + len, *w = Omgs + len; for (unsigned int j = 0; j < len; ++j, ++p, ++q, ++w) { const unsigned long long tp = *q * *w % mod; *q = *p + mod - tp, *p += tp; } } } for (unsigned int i = 0; i < limit; ++i) A[i] %= mod; } void idft(unsigned long long *A, unsigned int limit) { std::reverse(A + 1, A + limit), dft(A, limit); unsigned long long inv = mod - (mod - 1) / limit; for (unsigned int i = 0; i < limit; ++i) A[i] = A[i] * inv % mod; } unsigned long long _f[N], _g[N], _tp[129]; std::vector<int> operator*(const std::vector<int> &a, const std::vector<int> &b) { unsigned int len = a.size() + b.size() - 1; if (a.size() <= 64u || b.size() <= 64u) { memset(_tp, 0, len << 3); unsigned int r = 0; for (unsigned int i = 0; i < a.size(); ++i) { for (unsigned int j = 0; j < b.size(); ++j) _tp[i + j] += 1ULL * a[i] * b[j]; if (++r == 18) { r = 0; for (unsigned int j = i - 17; j < i + b.size(); ++j) _tp[j] %= mod; } } if (r) for (unsigned int j = 0; j < len; ++j) _tp[j] %= mod; std::vector<int> c(len); for (unsigned int i = 0; i < len; ++i) c[i] = _tp[i]; return c; } unsigned int limit = getlen(len); memset(_f + a.size(), 0, (limit - a.size()) << 3); for (unsigned int i = 0; i < a.size(); ++i) _f[i] = a[i]; memset(_g + b.size(), 0, (limit - b.size()) << 3); for (unsigned int i = 0; i < b.size(); ++i) _g[i] = b[i]; dft(_f, limit), dft(_g, limit); for (unsigned int i = 0; i < limit; ++i) _f[i] = _f[i] * _g[i] % mod; idft(_f, limit); std::vector<int> ans(len); for (unsigned int i = 0; i < len; ++i) ans[i] = _f[i]; return ans; } std::vector<int> mul(const std::vector<int> &a, const std::vector<int> &b, unsigned int len, bool need = true) { if (a.size() <= 64u || b.size() <= 64u) { memset(_tp, 0, len << 3); unsigned int r = 0; for (unsigned int i = 0; i < a.size(); ++i) { for (unsigned int j = 0; j < b.size() && i + j < len; ++j) _tp[i + j] += 1ULL * a[i] * b[j]; if (++r == 18) { r = 0; for (unsigned int j = i - 17; j < len && j < i + b.size(); ++j) _tp[j] %= mod; } } if (r) for (unsigned int j = 0; j < len; ++j) _tp[j] %= mod; std::vector<int> c(len); for (unsigned int i = 0; i < len; ++i) c[i] = _tp[i]; return c; } int limit = getlen(len); memset(_f + a.size(), 0, (limit - a.size()) << 3); for (unsigned int i = 0; i < a.size(); ++i) _f[i] = a[i]; dft(_f, limit); if (need) { memset(_g + b.size(), 0, (limit - b.size()) << 3); for (unsigned int i = 0; i < b.size(); ++i) _g[i] = b[i]; dft(_g, limit); } for (int i = 0; i < limit; ++i) _f[i] = 1ULL * _f[i] * _g[i] % mod; idft(_f, limit); std::vector<int> ans(len); for (unsigned int i = 0; i < len; ++i) ans[i] = _f[i]; return ans; } std::vector<int> mulT(const std::vector<int> &a, const std::vector<int> &b) { if (a.size() <= 64u || b.size() <= 64u) { std::vector<int> c(a.size() - b.size() + 1); for (unsigned int i = 0; i < c.size(); ++i) for (unsigned int j = 0; j < b.size(); ++j) c[i] = (c[i] + 1ULL * a[i + j] * b[j]) % mod; return c; } int limit = getlen(a.size()); memset(_f, 0, limit << 3); for (unsigned int i = 0; i < a.size(); ++i) _f[i] = a[i]; memset(_g, 0, limit << 3); for (unsigned int i = 0; i < b.size(); ++i) _g[i] = b[i]; std::reverse(_g, _g + b.size()), dft(_f, limit), dft(_g, limit); for (int i = 0; i < limit; ++i) _f[i] = 1ULL * _f[i] * _g[i] % mod; idft(_f, limit); std::vector<int> ans(a.size() - b.size() + 1); for (unsigned int i = b.size() - 1; i < a.size(); ++i) ans[i - b.size() + 1] = _f[i]; return ans; } inline std::vector<int> operator*=(std::vector<int> &a, const std::vector<int> &b) { return a = a * b; } template <typename _Tp> inline std::vector<int> operator*=(std::vector<int> &a, const _Tp &b) { for (auto &&it : a) it = 1ULL * it * b % mod; return a; } template <typename _Tp> inline std::vector<int> operator*(std::vector<int> a, const _Tp &b) { return a *= b; } template <typename _Tp> inline std::vector<int> operator*(const _Tp &b, std::vector<int> a) { return a *= b; } template <typename _Tp> inline std::vector<int> operator/=(std::vector<int> &a, const _Tp &b) { unsigned long long inv = ksm(b); for (auto &&it : a) it = 1ULL * it * inv % mod; return a; } template <typename _Tp> inline std::vector<int> operator/(std::vector<int> a, const _Tp &b) { return a /= b; } long long inv[N], ifac[N]; std::vector<int> e[N], w[N]; int siz[N], n, k, a[N], _[N]; std::vector<int> f[N << 1]; void sol1(int l, int r, int u) { if (l == r) return f[u] = {1, a[l]}, void(); int mid = (l + r) >> 1; sol1(l, mid, u << 1), sol1(mid + 1, r, u << 1 | 1); f[u] = f[u << 1] * f[u << 1 | 1]; } void sol2(int l, int r, int u, const std::vector<int> &g) { if (l == r) return _[l] = g[0], void(); int mid = (l + r) >> 1; std::vector<int> tp = mulT(g, f[u << 1 | 1]); if (((int)tp.size()) > mid - l + 1) tp.resize(mid - l + 1); sol2(l, mid, u << 1, tp); tp = mulT(g, f[u << 1]); if (((int)tp.size()) > r - mid) tp.resize(r - mid); sol2(mid + 1, r, u << 1 | 1, tp); } void ___(int x, int fa) { std::sort(e[x].begin(), e[x].end()); siz[x] = 1; for (auto v : e[x]) if (v != fa) ___(v, x), siz[x] += siz[v]; int pos = 0; for (auto v : e[x]) a[pos++] = v == fa ? n - siz[x] : siz[v]; sol1(0, pos - 1, 1); std::vector<int> A(pos + 1); for (int i = 0; i <= pos; ++i) A[i] = k - i > 0 ? ifac[k - i] : 0; sol2(0, pos - 1, 1, A); w[x].resize(((int)e[x].size())); for (int i = 0; i < ((int)e[x].size()); ++i) w[x][i] = _[i]; } bool vis[N]; int S, mn, rt; int getsize(int x, int fa) { int siz = 1; for (auto v : e[x]) if (v != fa && !vis[v]) siz += getsize(v, x); return siz; } void getrt(int x, int fa) { int tmp = 0; siz[x] = 1; for (auto v : e[x]) if (v != fa && !vis[v]) getrt(v, x), chmax(tmp, siz[v]), siz[x] += siz[v]; chmax(tmp, S - siz[x]); if (tmp < mn) mn = tmp, rt = x; } int QAQ, ans; void dfs1(int x, int fa) { add(QAQ, w[x][std::lower_bound(e[x].begin(), e[x].end(), fa) - e[x].begin()]); for (auto v : e[x]) if (v != fa && !vis[v]) dfs1(v, x); } void dfs(int x) { S = getsize(x, 0), mn = inf, getrt(x, 0), vis[x = rt] = true; int sum = 0; for (auto v : e[x]) if (!vis[v]) QAQ = 0, dfs1(v, x), add(ans, 1LL * QAQ * w[x][std::lower_bound(e[x].begin(), e[x].end(), v) - e[x].begin()] % mod), add(ans, 1LL * sum * QAQ % mod), add(sum, QAQ); for (auto v : e[x]) if (!vis[v]) dfs(v); } int main() { inv[0] = inv[1] = ifac[0] = ifac[1] = 1; for (int i = 2; i < N; ++i) inv[i] = inv[mod % i] * (mod - mod / i) % mod, ifac[i] = ifac[i - 1] * inv[i] % mod; setup(); read(n, k); if (n == 1) return puts("0"), 0; for (int i = 1, x, y; i < n; ++i) read(x, y), e[x].push_back(y), e[y].push_back(x); ___(1, 0), dfs(1); for (int i = 1; i <= k; ++i) ans = 1LL * ans * i % mod * i % mod; printf("%d\n", ans); return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> template <typename _Tp> void read(_Tp &x) { char ch(getchar()); bool f(false); while (!isdigit(ch)) f |= ch == 45, ch = getchar(); x = ch & 15, ch = getchar(); while (isdigit(ch)) x = x * 10 + (ch & 15), ch = getchar(); if (f) x = -x; } template <typename _Tp, typename... Args> void read(_Tp &t, Args &...args) { read(t); read(args...); } template <typename _Tp> inline void chmax(_Tp &a, const _Tp &b) { a = a < b ? b : a; } const int max_len = 1 << 18, N = max_len + 5, mod = 998244353, inf = 0x3f3f3f3f; template <typename _Tp1, typename _Tp2> inline void add(_Tp1 &a, _Tp2 b) { (a += b) >= mod && (a -= mod); } template <typename _Tp1, typename _Tp2> inline void sub(_Tp1 &a, _Tp2 b) { (a -= b) < 0 && (a += mod); } template <typename _Tp> inline _Tp _sub(_Tp a, const _Tp &b) { (a += mod - b) >= mod && (a -= mod); return a; } long long ksm(long long a, long long b = mod - 2) { long long res = 1; while (b) { if (b & 1) res = res * a % mod; a = a * a % mod, b >>= 1; } return res; } void print(const std::vector<int> &a) { for (auto it : a) printf("%d ", it); printf("\n"); } inline std::vector<int> operator<<(std::vector<int> a, unsigned int b) { return a.insert(a.begin(), b, 0), a; } inline std::vector<int> operator<<=(std::vector<int> &a, unsigned int b) { return a.insert(a.begin(), b, 0), a; } inline std::vector<int> operator>>(const std::vector<int> &a, unsigned int b) { return b >= a.size() ? std::vector<int>() : std::vector<int>{a.begin() + b, a.end()}; } inline std::vector<int> operator>>=(std::vector<int> &a, unsigned int b) { return a = b >= a.size() ? std::vector<int>() : std::vector<int>{a.begin() + b, a.end()}; } std::vector<int> operator+=(std::vector<int> &a, const std::vector<int> &b) { if (b.size() > a.size()) a.resize(b.size()); for (unsigned int i = 0; i < b.size(); ++i) add(a[i], b[i]); return a; } inline std::vector<int> operator+(const std::vector<int> &a, const std::vector<int> &b) { std::vector<int> tmp(a); tmp += b; return tmp; } std::vector<int> operator-=(std::vector<int> &a, const std::vector<int> &b) { if (b.size() > a.size()) a.resize(b.size()); for (unsigned int i = 0; i < b.size(); ++i) sub(a[i], b[i]); return a; } inline std::vector<int> operator-(const std::vector<int> &a, const std::vector<int> &b) { std::vector<int> tmp(a); tmp -= b; return tmp; } const unsigned long long Omg = ksm(3, (mod - 1) / max_len); unsigned long long Omgs[N]; void setup() { Omgs[max_len / 2] = 1; for (int i = max_len / 2 + 1; i < max_len; ++i) Omgs[i] = Omgs[i - 1] * Omg % mod; for (int i = max_len / 2 - 1; i > 0; --i) Omgs[i] = Omgs[i << 1]; } unsigned int rev[N]; unsigned int getlen(unsigned int len) { unsigned int limit = 1; while (limit < len) limit <<= 1; for (unsigned int i = 0; i < limit; ++i) rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? limit >> 1 : 0); return limit; } void dft(unsigned long long *A, unsigned int limit) { for (unsigned int i = 0; i < limit; ++i) if (i < rev[i]) std::swap(A[i], A[rev[i]]); for (unsigned int len = 1; len < limit; len <<= 1) { if (len == 262144u) for (unsigned int i = 0; i < limit; ++i) A[i] %= mod; for (unsigned int i = 0; i < limit; i += len << 1) { unsigned long long *p = A + i, *q = A + i + len, *w = Omgs + len; for (unsigned int j = 0; j < len; ++j, ++p, ++q, ++w) { const unsigned long long tp = *q * *w % mod; *q = *p + mod - tp, *p += tp; } } } for (unsigned int i = 0; i < limit; ++i) A[i] %= mod; } void idft(unsigned long long *A, unsigned int limit) { std::reverse(A + 1, A + limit), dft(A, limit); unsigned long long inv = mod - (mod - 1) / limit; for (unsigned int i = 0; i < limit; ++i) A[i] = A[i] * inv % mod; } unsigned long long _f[N], _g[N], _tp[129]; std::vector<int> operator*(const std::vector<int> &a, const std::vector<int> &b) { unsigned int len = a.size() + b.size() - 1; if (a.size() <= 64u || b.size() <= 64u) { memset(_tp, 0, len << 3); unsigned int r = 0; for (unsigned int i = 0; i < a.size(); ++i) { for (unsigned int j = 0; j < b.size(); ++j) _tp[i + j] += 1ULL * a[i] * b[j]; if (++r == 18) { r = 0; for (unsigned int j = i - 17; j < i + b.size(); ++j) _tp[j] %= mod; } } if (r) for (unsigned int j = 0; j < len; ++j) _tp[j] %= mod; std::vector<int> c(len); for (unsigned int i = 0; i < len; ++i) c[i] = _tp[i]; return c; } unsigned int limit = getlen(len); memset(_f + a.size(), 0, (limit - a.size()) << 3); for (unsigned int i = 0; i < a.size(); ++i) _f[i] = a[i]; memset(_g + b.size(), 0, (limit - b.size()) << 3); for (unsigned int i = 0; i < b.size(); ++i) _g[i] = b[i]; dft(_f, limit), dft(_g, limit); for (unsigned int i = 0; i < limit; ++i) _f[i] = _f[i] * _g[i] % mod; idft(_f, limit); std::vector<int> ans(len); for (unsigned int i = 0; i < len; ++i) ans[i] = _f[i]; return ans; } std::vector<int> mul(const std::vector<int> &a, const std::vector<int> &b, unsigned int len, bool need = true) { if (a.size() <= 64u || b.size() <= 64u) { memset(_tp, 0, len << 3); unsigned int r = 0; for (unsigned int i = 0; i < a.size(); ++i) { for (unsigned int j = 0; j < b.size() && i + j < len; ++j) _tp[i + j] += 1ULL * a[i] * b[j]; if (++r == 18) { r = 0; for (unsigned int j = i - 17; j < len && j < i + b.size(); ++j) _tp[j] %= mod; } } if (r) for (unsigned int j = 0; j < len; ++j) _tp[j] %= mod; std::vector<int> c(len); for (unsigned int i = 0; i < len; ++i) c[i] = _tp[i]; return c; } int limit = getlen(len); memset(_f + a.size(), 0, (limit - a.size()) << 3); for (unsigned int i = 0; i < a.size(); ++i) _f[i] = a[i]; dft(_f, limit); if (need) { memset(_g + b.size(), 0, (limit - b.size()) << 3); for (unsigned int i = 0; i < b.size(); ++i) _g[i] = b[i]; dft(_g, limit); } for (int i = 0; i < limit; ++i) _f[i] = 1ULL * _f[i] * _g[i] % mod; idft(_f, limit); std::vector<int> ans(len); for (unsigned int i = 0; i < len; ++i) ans[i] = _f[i]; return ans; } std::vector<int> mulT(const std::vector<int> &a, const std::vector<int> &b) { if (a.size() <= 64u || b.size() <= 64u) { std::vector<int> c(a.size() - b.size() + 1); for (unsigned int i = 0; i < c.size(); ++i) for (unsigned int j = 0; j < b.size(); ++j) c[i] = (c[i] + 1ULL * a[i + j] * b[j]) % mod; return c; } int limit = getlen(a.size()); memset(_f, 0, limit << 3); for (unsigned int i = 0; i < a.size(); ++i) _f[i] = a[i]; memset(_g, 0, limit << 3); for (unsigned int i = 0; i < b.size(); ++i) _g[i] = b[i]; std::reverse(_g, _g + b.size()), dft(_f, limit), dft(_g, limit); for (int i = 0; i < limit; ++i) _f[i] = 1ULL * _f[i] * _g[i] % mod; idft(_f, limit); std::vector<int> ans(a.size() - b.size() + 1); for (unsigned int i = b.size() - 1; i < a.size(); ++i) ans[i - b.size() + 1] = _f[i]; return ans; } inline std::vector<int> operator*=(std::vector<int> &a, const std::vector<int> &b) { return a = a * b; } template <typename _Tp> inline std::vector<int> operator*=(std::vector<int> &a, const _Tp &b) { for (auto &&it : a) it = 1ULL * it * b % mod; return a; } template <typename _Tp> inline std::vector<int> operator*(std::vector<int> a, const _Tp &b) { return a *= b; } template <typename _Tp> inline std::vector<int> operator*(const _Tp &b, std::vector<int> a) { return a *= b; } template <typename _Tp> inline std::vector<int> operator/=(std::vector<int> &a, const _Tp &b) { unsigned long long inv = ksm(b); for (auto &&it : a) it = 1ULL * it * inv % mod; return a; } template <typename _Tp> inline std::vector<int> operator/(std::vector<int> a, const _Tp &b) { return a /= b; } long long inv[N], ifac[N]; std::vector<int> e[N], w[N]; int siz[N], n, k, a[N], _[N]; std::vector<int> f[N << 1]; void sol1(int l, int r, int u) { if (l == r) return f[u] = {1, a[l]}, void(); int mid = (l + r) >> 1; sol1(l, mid, u << 1), sol1(mid + 1, r, u << 1 | 1); f[u] = f[u << 1] * f[u << 1 | 1]; } void sol2(int l, int r, int u, const std::vector<int> &g) { if (l == r) return _[l] = g[0], void(); int mid = (l + r) >> 1; std::vector<int> tp = mulT(g, f[u << 1 | 1]); if (((int)tp.size()) > mid - l + 1) tp.resize(mid - l + 1); sol2(l, mid, u << 1, tp); tp = mulT(g, f[u << 1]); if (((int)tp.size()) > r - mid) tp.resize(r - mid); sol2(mid + 1, r, u << 1 | 1, tp); } void ___(int x, int fa) { std::sort(e[x].begin(), e[x].end()); siz[x] = 1; for (auto v : e[x]) if (v != fa) ___(v, x), siz[x] += siz[v]; int pos = 0; for (auto v : e[x]) a[pos++] = v == fa ? n - siz[x] : siz[v]; sol1(0, pos - 1, 1); std::vector<int> A(pos + 1); for (int i = 0; i <= pos; ++i) A[i] = k - i > 0 ? ifac[k - i] : 0; sol2(0, pos - 1, 1, A); w[x].resize(((int)e[x].size())); for (int i = 0; i < ((int)e[x].size()); ++i) w[x][i] = _[i]; } bool vis[N]; int S, mn, rt; int getsize(int x, int fa) { int siz = 1; for (auto v : e[x]) if (v != fa && !vis[v]) siz += getsize(v, x); return siz; } void getrt(int x, int fa) { int tmp = 0; siz[x] = 1; for (auto v : e[x]) if (v != fa && !vis[v]) getrt(v, x), chmax(tmp, siz[v]), siz[x] += siz[v]; chmax(tmp, S - siz[x]); if (tmp < mn) mn = tmp, rt = x; } int QAQ, ans; void dfs1(int x, int fa) { add(QAQ, w[x][std::lower_bound(e[x].begin(), e[x].end(), fa) - e[x].begin()]); for (auto v : e[x]) if (v != fa && !vis[v]) dfs1(v, x); } void dfs(int x) { S = getsize(x, 0), mn = inf, getrt(x, 0), vis[x = rt] = true; int sum = 0; for (auto v : e[x]) if (!vis[v]) QAQ = 0, dfs1(v, x), add(ans, 1LL * QAQ * w[x][std::lower_bound(e[x].begin(), e[x].end(), v) - e[x].begin()] % mod), add(ans, 1LL * sum * QAQ % mod), add(sum, QAQ); for (auto v : e[x]) if (!vis[v]) dfs(v); } int main() { inv[0] = inv[1] = ifac[0] = ifac[1] = 1; for (int i = 2; i < N; ++i) inv[i] = inv[mod % i] * (mod - mod / i) % mod, ifac[i] = ifac[i - 1] * inv[i] % mod; setup(); read(n, k); if (n == 1) return puts("0"), 0; for (int i = 1, x, y; i < n; ++i) read(x, y), e[x].push_back(y), e[y].push_back(x); ___(1, 0), dfs(1); for (int i = 1; i <= k; ++i) ans = 1LL * ans * i % mod * i % mod; printf("%d\n", ans); return 0; } ```
#include <bits/stdc++.h> using std::lower_bound; using std::max; using std::min; using std::random_shuffle; using std::reverse; using std::sort; using std::swap; using std::unique; using std::upper_bound; using std::vector; void open(const char *s) {} int rd() { int s = 0, c, b = 0; while (((c = getchar()) < '0' || c > '9') && c != '-') ; if (c == '-') { c = getchar(); b = 1; } do { s = s * 10 + c - '0'; } while ((c = getchar()) >= '0' && c <= '9'); return b ? -s : s; } void put(int x) { if (!x) { putchar('0'); return; } static int c[20]; int t = 0; while (x) { c[++t] = x % 10; x /= 10; } while (t) putchar(c[t--] + '0'); } int upmin(int &a, int b) { if (b < a) { a = b; return 1; } return 0; } int upmax(int &a, int b) { if (b > a) { a = b; return 1; } return 0; } const long long p = 998244353; const int N = 100010; long long fp(long long a, long long b) { long long s = 1; for (; b; b >>= 1, a = a * a % p) if (b & 1) s = s * a % p; return s; } namespace ntt { const int N = 300000; const int W = 1 << 18; long long plus(long long a, long long b) { a += b; return a >= p ? a - p : a; } long long minus(long long a, long long b) { a -= b; return a >= 0 ? a : a + p; } long long w[N]; int rev[N]; void ntt(long long *a, int n, int t) { for (int i = 1; i < n; i++) { rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? n >> 1 : 0); if (rev[i] > i) swap(a[i], a[rev[i]]); } for (int i = 0; i < n; i++) a[i] = plus(a[i], p); for (int i = 2; i <= n; i <<= 1) for (int j = 0; j < n; j += i) for (int k = 0; k < i / 2; k++) { long long u = a[j + k]; long long v = a[j + k + i / 2] * w[W / i * k] % p; a[j + k] = plus(u, v); a[j + k + i / 2] = minus(u, v); } if (t == -1) { reverse(a + 1, a + n); long long inv = fp(n, p - 2); for (int i = 0; i < n; i++) a[i] = a[i] * inv % p; } } void init() { long long s = fp(3, (p - 1) / W); w[0] = 1; for (int i = 1; i < W / 2; i++) w[i] = w[i - 1] * s % p; } void mul(long long *a, long long *b, long long *c, int n, int m, int l) { static long long a1[N], a2[N]; int k = 1; while (k <= n + m) k <<= 1; for (int i = 0; i < k; i++) a1[i] = a2[i] = 0; for (int i = 0; i <= n; i++) a1[i] = a[i]; for (int i = 0; i <= m; i++) a2[i] = b[i]; ntt(a1, k, 1); ntt(a2, k, 1); for (int i = 0; i < k; i++) a1[i] = a1[i] * a2[i] % p; ntt(a1, k, -1); for (int i = 0; i <= l; i++) c[i] = a1[i]; } void mul2(long long *a, long long *b, long long *c, long long *d, long long *e, int n, int m, int l) { static long long a1[N], a2[N], a3[N], a4[N]; int k = 1; while (k <= n + m) k <<= 1; for (int i = 0; i < k; i++) a1[i] = a2[i] = a3[i] = a4[i] = 0; for (int i = 0; i <= n; i++) { a1[i] = a[i]; a3[i] = c[i]; } for (int i = 0; i <= m; i++) { a2[i] = b[i]; a4[i] = d[i]; } ntt(a1, k, 1); ntt(a2, k, 1); ntt(a3, k, 1); ntt(a4, k, 1); for (int i = 0; i < k; i++) a1[i] = a1[i] * a2[i] % p; for (int i = 0; i < k; i++) a3[i] = a3[i] * a4[i] % p; ntt(a1, k, -1); ntt(a3, k, -1); for (int i = 0; i <= l; i++) e[i] = (a1[i] + a3[i]) % p; } } // namespace ntt vector<int> g[N]; int s[N]; int n, k; long long ans = 0; long long fac[N]; long long ifac[N]; void init() { fac[0] = 1; for (int i = 1; i <= k; i++) fac[i] = fac[i - 1] * i % p; ifac[k] = fp(fac[k], p - 2); for (int i = k; i >= 1; i--) ifac[i - 1] = ifac[i] * i % p; } long long binom(int x, int y) { return x >= y && y >= 0 ? fac[x] * ifac[y] % p * ifac[x - y] % p : 0; } long long f1[N]; long long f2[N]; long long c[N]; long long d[N]; int l; typedef std::pair<long long *, long long *> _; _ solve(int l, int r) { _ s; if (l == r) { s.first = new long long[2]; s.second = new long long[2]; s.first[0] = 1; s.first[1] = c[l]; s.second[0] = d[l]; s.second[1] = d[l] * c[0] % p; return s; } int mid = (l + r) >> 1; _ ls = solve(l, mid); _ rs = solve(mid + 1, r); s.first = new long long[r - l + 2]; s.second = new long long[r - l + 2]; ntt::mul(ls.first, rs.first, s.first, mid - l + 1, r - mid, r - l + 1); ntt::mul2(ls.second, rs.first, ls.first, rs.second, s.second, mid - l + 1, r - mid, r - l + 1); return s; } void dfs(int x, int fa) { s[x] = 1; for (auto v : g[x]) if (v != fa) { dfs(v, x); s[x] += s[v]; ans = (ans + f2[x] * f2[v]) % p; f2[x] = (f2[x] + f2[v]) % p; } if (s[x] == 1) { f1[x] = f2[x] = 1; return; } l = 0; for (auto v : g[x]) if (v != fa) { c[++l] = s[v]; d[l] = f2[v]; } c[0] = n - s[x]; _ e = solve(1, l); for (int i = 0; i <= l && i <= k; i++) { f1[x] = (f1[x] + e.first[i] * binom(k, i) % p * fac[i]) % p; ans = (ans + e.second[i] * binom(k, i) % p * fac[i]) % p; } f2[x] = (f2[x] + f1[x]) % p; } int main() { ntt::init(); open("cf981h"); scanf("%d%d", &n, &k); if (k == 1) { printf("%I64d\n", (long long)n * (n - 1) / 2 % p); return 0; } init(); int x, y; for (int i = 1; i < n; i++) { scanf("%d%d", &x, &y); g[x].push_back(y); g[y].push_back(x); } dfs(1, 0); printf("%I64d\n", ans); return 0; }
### Prompt Develop a solution in CPP to the problem described below: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using std::lower_bound; using std::max; using std::min; using std::random_shuffle; using std::reverse; using std::sort; using std::swap; using std::unique; using std::upper_bound; using std::vector; void open(const char *s) {} int rd() { int s = 0, c, b = 0; while (((c = getchar()) < '0' || c > '9') && c != '-') ; if (c == '-') { c = getchar(); b = 1; } do { s = s * 10 + c - '0'; } while ((c = getchar()) >= '0' && c <= '9'); return b ? -s : s; } void put(int x) { if (!x) { putchar('0'); return; } static int c[20]; int t = 0; while (x) { c[++t] = x % 10; x /= 10; } while (t) putchar(c[t--] + '0'); } int upmin(int &a, int b) { if (b < a) { a = b; return 1; } return 0; } int upmax(int &a, int b) { if (b > a) { a = b; return 1; } return 0; } const long long p = 998244353; const int N = 100010; long long fp(long long a, long long b) { long long s = 1; for (; b; b >>= 1, a = a * a % p) if (b & 1) s = s * a % p; return s; } namespace ntt { const int N = 300000; const int W = 1 << 18; long long plus(long long a, long long b) { a += b; return a >= p ? a - p : a; } long long minus(long long a, long long b) { a -= b; return a >= 0 ? a : a + p; } long long w[N]; int rev[N]; void ntt(long long *a, int n, int t) { for (int i = 1; i < n; i++) { rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? n >> 1 : 0); if (rev[i] > i) swap(a[i], a[rev[i]]); } for (int i = 0; i < n; i++) a[i] = plus(a[i], p); for (int i = 2; i <= n; i <<= 1) for (int j = 0; j < n; j += i) for (int k = 0; k < i / 2; k++) { long long u = a[j + k]; long long v = a[j + k + i / 2] * w[W / i * k] % p; a[j + k] = plus(u, v); a[j + k + i / 2] = minus(u, v); } if (t == -1) { reverse(a + 1, a + n); long long inv = fp(n, p - 2); for (int i = 0; i < n; i++) a[i] = a[i] * inv % p; } } void init() { long long s = fp(3, (p - 1) / W); w[0] = 1; for (int i = 1; i < W / 2; i++) w[i] = w[i - 1] * s % p; } void mul(long long *a, long long *b, long long *c, int n, int m, int l) { static long long a1[N], a2[N]; int k = 1; while (k <= n + m) k <<= 1; for (int i = 0; i < k; i++) a1[i] = a2[i] = 0; for (int i = 0; i <= n; i++) a1[i] = a[i]; for (int i = 0; i <= m; i++) a2[i] = b[i]; ntt(a1, k, 1); ntt(a2, k, 1); for (int i = 0; i < k; i++) a1[i] = a1[i] * a2[i] % p; ntt(a1, k, -1); for (int i = 0; i <= l; i++) c[i] = a1[i]; } void mul2(long long *a, long long *b, long long *c, long long *d, long long *e, int n, int m, int l) { static long long a1[N], a2[N], a3[N], a4[N]; int k = 1; while (k <= n + m) k <<= 1; for (int i = 0; i < k; i++) a1[i] = a2[i] = a3[i] = a4[i] = 0; for (int i = 0; i <= n; i++) { a1[i] = a[i]; a3[i] = c[i]; } for (int i = 0; i <= m; i++) { a2[i] = b[i]; a4[i] = d[i]; } ntt(a1, k, 1); ntt(a2, k, 1); ntt(a3, k, 1); ntt(a4, k, 1); for (int i = 0; i < k; i++) a1[i] = a1[i] * a2[i] % p; for (int i = 0; i < k; i++) a3[i] = a3[i] * a4[i] % p; ntt(a1, k, -1); ntt(a3, k, -1); for (int i = 0; i <= l; i++) e[i] = (a1[i] + a3[i]) % p; } } // namespace ntt vector<int> g[N]; int s[N]; int n, k; long long ans = 0; long long fac[N]; long long ifac[N]; void init() { fac[0] = 1; for (int i = 1; i <= k; i++) fac[i] = fac[i - 1] * i % p; ifac[k] = fp(fac[k], p - 2); for (int i = k; i >= 1; i--) ifac[i - 1] = ifac[i] * i % p; } long long binom(int x, int y) { return x >= y && y >= 0 ? fac[x] * ifac[y] % p * ifac[x - y] % p : 0; } long long f1[N]; long long f2[N]; long long c[N]; long long d[N]; int l; typedef std::pair<long long *, long long *> _; _ solve(int l, int r) { _ s; if (l == r) { s.first = new long long[2]; s.second = new long long[2]; s.first[0] = 1; s.first[1] = c[l]; s.second[0] = d[l]; s.second[1] = d[l] * c[0] % p; return s; } int mid = (l + r) >> 1; _ ls = solve(l, mid); _ rs = solve(mid + 1, r); s.first = new long long[r - l + 2]; s.second = new long long[r - l + 2]; ntt::mul(ls.first, rs.first, s.first, mid - l + 1, r - mid, r - l + 1); ntt::mul2(ls.second, rs.first, ls.first, rs.second, s.second, mid - l + 1, r - mid, r - l + 1); return s; } void dfs(int x, int fa) { s[x] = 1; for (auto v : g[x]) if (v != fa) { dfs(v, x); s[x] += s[v]; ans = (ans + f2[x] * f2[v]) % p; f2[x] = (f2[x] + f2[v]) % p; } if (s[x] == 1) { f1[x] = f2[x] = 1; return; } l = 0; for (auto v : g[x]) if (v != fa) { c[++l] = s[v]; d[l] = f2[v]; } c[0] = n - s[x]; _ e = solve(1, l); for (int i = 0; i <= l && i <= k; i++) { f1[x] = (f1[x] + e.first[i] * binom(k, i) % p * fac[i]) % p; ans = (ans + e.second[i] * binom(k, i) % p * fac[i]) % p; } f2[x] = (f2[x] + f1[x]) % p; } int main() { ntt::init(); open("cf981h"); scanf("%d%d", &n, &k); if (k == 1) { printf("%I64d\n", (long long)n * (n - 1) / 2 % p); return 0; } init(); int x, y; for (int i = 1; i < n; i++) { scanf("%d%d", &x, &y); g[x].push_back(y); g[y].push_back(x); } dfs(1, 0); printf("%I64d\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; const int Mod = 998244353, rt = 3; void add(int &x, int y) { x += y; if (x >= Mod) x -= Mod; } int Pow(int x, int e) { int ret = 1; while (e) { if (e & 1) ret = 1ll * ret * x % Mod; x = 1ll * x * x % Mod; e >>= 1; } return ret; } int rev[N]; void DFT(int *A, int n, int wn) { static int w[N]; for (int i = 0; i <= n - 1; i++) if (i < rev[i]) swap(A[i], A[rev[i]]); for (int i = 1; i < n; i <<= 1) { w[0] = 1, w[1] = Pow(rt, (Mod - 1) / (i << 1)); if (wn == -1) w[1] = Pow(w[1], Mod - 2); for (int j = 2; j < i; ++j) w[j] = 1ll * w[j - 1] * w[1] % Mod; for (int j = 0; j < n; j += i << 1) for (int k = 0; k < i; ++k) { int x = A[j + k], y = 1ll * A[i + j + k] * w[k] % Mod; A[j + k] = (x + y) % Mod, A[i + j + k] = (x + Mod - y) % Mod; } } } void mul(vector<int> &a, const vector<int> &b) { int x = a.size(), y = b.size(), n = 1; while (n < x + y) n <<= 1; for (int i = 0; i <= n - 1; i++) rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? n / 2 : 0); static int A[N << 1], B[N << 1]; for (int i = 0; i <= n - 1; i++) A[i] = i < x ? a[i] : 0; for (int i = 0; i <= n - 1; i++) B[i] = i < y ? b[i] : 0; DFT(A, n, 1), DFT(B, n, 1); for (int i = 0; i <= n - 1; i++) A[i] = 1ll * A[i] * B[i] % Mod; DFT(A, n, -1); int inv = Pow(n, Mod - 2); for (int i = 0; i <= n - 1; i++) A[i] = 1ll * inv * A[i] % Mod; a.resize(x + y - 1); for (int i = 0; i <= x + y - 2; i++) a[i] = A[i]; } vector<int> A[N]; void mult(int *f, int *x, int n) { for (int i = 1; i <= n; i++) A[i].clear(), A[i].push_back(1), A[i].push_back(x[i]); for (int i = 1; i < n; i <<= 1) for (int j = 1; j + i <= n; j += i << 1) mul(A[j], A[j + i]); for (int i = 0; i <= n; i++) f[i] = A[1][i]; } int Begin[N], Next[N << 1], to[N << 1], e; void adde(int u, int v) { to[++e] = v, Next[e] = Begin[u], Begin[u] = e; } int n, m, k; int fac[N], rfac[N]; int sz[N]; int coe[N], f[N], dp[N]; int P[N], val[N]; int ans; void DFS_work(int o, int fa = 0) { sz[o] = 1; for (int i = Begin[o]; i; i = Next[i]) { int u = to[i]; if (u == fa) continue; DFS_work(u, o); ans = (ans + 1ll * dp[u] * dp[o]) % Mod; add(dp[o], dp[u]); sz[o] += sz[u]; } m = 0; if (fa) coe[m = 1] = n - sz[o]; for (int i = Begin[o]; i; i = Next[i]) { int u = to[i]; if (u == fa) continue; coe[++m] = sz[u]; } sort(coe + 1, coe + m + 1); mult(f, coe, m); for (int i = 1; i <= m; i++) if (coe[i] != coe[i - 1]) { for (int j = 0; j <= m; j++) P[j] = f[j]; for (int j = 0; j <= m; j++) P[j + 1] = ((P[j + 1] - 1ll * coe[i] * P[j]) % Mod + Mod) % Mod; int r = min(k, m - 1), &w = val[coe[i]]; w = 0; for (int j = 0; j <= r; j++) w = (w + 1ll * P[j] * rfac[k - j]) % Mod; w = 1ll * w * fac[k] % Mod; } for (int i = Begin[o]; i; i = Next[i]) { int u = to[i]; if (u == fa) continue; ans = (ans + 1ll * dp[u] * val[sz[u]]) % Mod; } add(dp[o], val[n - sz[o]]); } int main() { scanf("%d%d", &n, &k); if (n == 1) { puts("0"); return 0; } if (k == 1) { int res = 1ll * n * (n - 1) / 2 % Mod; printf("%d\n", res); return 0; } for (int i = 2; i <= n; i++) { int u, v; scanf("%d%d", &u, &v); adde(u, v), adde(v, u); } int s = max(n, k) + 5; fac[0] = 1; for (int i = 1; i <= s; i++) fac[i] = 1ll * fac[i - 1] * i % Mod; rfac[s] = Pow(fac[s], Mod - 2); for (int i = s; i >= 1; i--) rfac[i - 1] = 1ll * rfac[i] * i % Mod; DFS_work(1); printf("%d\n", ans); return 0; }
### Prompt Please formulate a cpp solution to the following problem: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; const int Mod = 998244353, rt = 3; void add(int &x, int y) { x += y; if (x >= Mod) x -= Mod; } int Pow(int x, int e) { int ret = 1; while (e) { if (e & 1) ret = 1ll * ret * x % Mod; x = 1ll * x * x % Mod; e >>= 1; } return ret; } int rev[N]; void DFT(int *A, int n, int wn) { static int w[N]; for (int i = 0; i <= n - 1; i++) if (i < rev[i]) swap(A[i], A[rev[i]]); for (int i = 1; i < n; i <<= 1) { w[0] = 1, w[1] = Pow(rt, (Mod - 1) / (i << 1)); if (wn == -1) w[1] = Pow(w[1], Mod - 2); for (int j = 2; j < i; ++j) w[j] = 1ll * w[j - 1] * w[1] % Mod; for (int j = 0; j < n; j += i << 1) for (int k = 0; k < i; ++k) { int x = A[j + k], y = 1ll * A[i + j + k] * w[k] % Mod; A[j + k] = (x + y) % Mod, A[i + j + k] = (x + Mod - y) % Mod; } } } void mul(vector<int> &a, const vector<int> &b) { int x = a.size(), y = b.size(), n = 1; while (n < x + y) n <<= 1; for (int i = 0; i <= n - 1; i++) rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? n / 2 : 0); static int A[N << 1], B[N << 1]; for (int i = 0; i <= n - 1; i++) A[i] = i < x ? a[i] : 0; for (int i = 0; i <= n - 1; i++) B[i] = i < y ? b[i] : 0; DFT(A, n, 1), DFT(B, n, 1); for (int i = 0; i <= n - 1; i++) A[i] = 1ll * A[i] * B[i] % Mod; DFT(A, n, -1); int inv = Pow(n, Mod - 2); for (int i = 0; i <= n - 1; i++) A[i] = 1ll * inv * A[i] % Mod; a.resize(x + y - 1); for (int i = 0; i <= x + y - 2; i++) a[i] = A[i]; } vector<int> A[N]; void mult(int *f, int *x, int n) { for (int i = 1; i <= n; i++) A[i].clear(), A[i].push_back(1), A[i].push_back(x[i]); for (int i = 1; i < n; i <<= 1) for (int j = 1; j + i <= n; j += i << 1) mul(A[j], A[j + i]); for (int i = 0; i <= n; i++) f[i] = A[1][i]; } int Begin[N], Next[N << 1], to[N << 1], e; void adde(int u, int v) { to[++e] = v, Next[e] = Begin[u], Begin[u] = e; } int n, m, k; int fac[N], rfac[N]; int sz[N]; int coe[N], f[N], dp[N]; int P[N], val[N]; int ans; void DFS_work(int o, int fa = 0) { sz[o] = 1; for (int i = Begin[o]; i; i = Next[i]) { int u = to[i]; if (u == fa) continue; DFS_work(u, o); ans = (ans + 1ll * dp[u] * dp[o]) % Mod; add(dp[o], dp[u]); sz[o] += sz[u]; } m = 0; if (fa) coe[m = 1] = n - sz[o]; for (int i = Begin[o]; i; i = Next[i]) { int u = to[i]; if (u == fa) continue; coe[++m] = sz[u]; } sort(coe + 1, coe + m + 1); mult(f, coe, m); for (int i = 1; i <= m; i++) if (coe[i] != coe[i - 1]) { for (int j = 0; j <= m; j++) P[j] = f[j]; for (int j = 0; j <= m; j++) P[j + 1] = ((P[j + 1] - 1ll * coe[i] * P[j]) % Mod + Mod) % Mod; int r = min(k, m - 1), &w = val[coe[i]]; w = 0; for (int j = 0; j <= r; j++) w = (w + 1ll * P[j] * rfac[k - j]) % Mod; w = 1ll * w * fac[k] % Mod; } for (int i = Begin[o]; i; i = Next[i]) { int u = to[i]; if (u == fa) continue; ans = (ans + 1ll * dp[u] * val[sz[u]]) % Mod; } add(dp[o], val[n - sz[o]]); } int main() { scanf("%d%d", &n, &k); if (n == 1) { puts("0"); return 0; } if (k == 1) { int res = 1ll * n * (n - 1) / 2 % Mod; printf("%d\n", res); return 0; } for (int i = 2; i <= n; i++) { int u, v; scanf("%d%d", &u, &v); adde(u, v), adde(v, u); } int s = max(n, k) + 5; fac[0] = 1; for (int i = 1; i <= s; i++) fac[i] = 1ll * fac[i - 1] * i % Mod; rfac[s] = Pow(fac[s], Mod - 2); for (int i = s; i >= 1; i--) rfac[i - 1] = 1ll * rfac[i] * i % Mod; DFS_work(1); printf("%d\n", ans); return 0; } ```
#include <bits/stdc++.h> #pragma GCC optimize("O3") using namespace std; mt19937 rnd(239); const long double pi = acos(-1.0); const long long INF = 1e18 + 239; const int BIG = 1e9 + 239; const int M = 2e5 + 239; const int T = (1 << 19); const long long MOD = 998244353; const long long root = 3; const long long sub = 15311432; long long st[T]; inline long long power(long long a, long long b) { if (b == 0) return 1; long long t = power(a, (b >> 1)); t = (t * t) % MOD; if (b & 1) return (t * a) % MOD; return t; } inline int inv(int n, int b) { int ans = 0; for (int i = 0; i < b; i++) { ans = (ans << 1) + (n & 1); n >>= 1; } return ans; } int p; long long w; map<vector<long long>, vector<long long> > pq; inline void fft(const vector<long long> &a, vector<long long> &b) { if (pq.count(a)) { b = pq[a]; return; } b.resize(a.size()); for (int i = 0; i < a.size(); i++) b[i] = a[inv(i, p)]; for (int z = 0; z < p; z++) { int u = (1 << z); for (int i = 0; i < (1 << p); i++) { int ps = i >> z; if ((ps & 1) == 0) { int t = i & (u - 1); long long bi = (b[i] + st[t << (p - z - 1)] * b[i + u]) % MOD; long long bii = (b[i] + st[(t + u) << (p - z - 1)] * b[i + u]) % MOD; b[i] = bi; b[i + u] = bii; } } } pq[a] = b; } inline vector<long long> sum(vector<long long> a, vector<long long> b) { int n = max((int)a.size(), (int)b.size()); vector<long long> ans(n, 0); while (a.size() < n) a.push_back(0); while (b.size() < n) b.push_back(0); for (int i = 0; i < n; i++) ans[i] = (a[i] + b[i]) % MOD; return ans; } vector<long long> ta, tb; vector<long long> as; inline vector<long long> multiply(vector<long long> a, vector<long long> b) { int k = (a.size() + b.size() + 1); p = trunc(log2(k)) + 1; while (a.size() < (1 << p)) a.push_back(0); while (b.size() < (1 << p)) b.push_back(0); w = power(sub, (1 << (23 - p))); st[0] = 1LL; for (int i = 1; i < (1 << p); i++) st[i] = (st[i - 1] * w) % MOD; fft(a, ta); fft(b, tb); vector<long long> v; for (int i = 0; i < (1 << p); i++) v.push_back((ta[i] * tb[i]) % MOD); fft(v, as); long long d = power((1 << p), MOD - 2); for (int i = 0; i < (1 << p); i++) as[i] = (d * as[i]) % MOD; reverse(as.begin() + 1, as.end()); while (as.back() == 0) as.pop_back(); return as; } int n, k, kol[M]; vector<int> v[M]; long long f[M], ans; long long mlt; int sz; long long a[M], s[M]; long long u, kf[M], fact[M]; inline pair<vector<long long>, vector<long long> > func(int l, int r) { if (r - l == 1) return {{s[l], (u * s[l]) % MOD}, {1, a[l]}}; int mid = (l + r) >> 1; pair<vector<long long>, vector<long long> > a1 = func(l, mid); pair<vector<long long>, vector<long long> > a2 = func(mid, r); return make_pair( sum(multiply(a1.first, a2.second), multiply(a1.second, a2.first)), multiply(a1.second, a2.second)); } long long dfs(int p, int pr) { kol[p] = 1; int szt = 0; vector<long long> aa, sa; for (int i : v[p]) if (pr != i) { long long now = dfs(i, p); kol[p] += kol[i]; aa.push_back(kol[i]); sa.push_back(now); } sz = aa.size(); for (int i = 0; i < sz; i++) { a[i] = aa[i]; s[i] = sa[i]; } u = n - kol[p]; long long sum = 0; for (int i = 0; i < sz; i++) sum = (sum + s[i]) % MOD; long long sqr = 0; for (int i = 0; i < sz; i++) sqr = (sqr + s[i] * s[i]) % MOD; sqr = (sum * sum - sqr) % MOD; if (sqr < 0) sqr += MOD; ans = (ans + sqr * mlt) % MOD; if (sz == 0) { return 1; } pair<vector<long long>, vector<long long> > t = func(0, sz); int s = (int)t.first.size(); for (int i = 0; i < min(s, k + 1); i++) { ans = (ans + kf[i] * t.first[i]) % MOD; sum = (sum + kf[i] * t.second[i]) % MOD; } return sum; } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> k; if (k == 1) { cout << (((long long)n * (long long)(n - 1)) / 2) % MOD; return 0; } for (int i = 0; i < n - 1; i++) { int s, f; cin >> s >> f; s--, f--; v[s].push_back(f); v[f].push_back(s); } fact[0] = 1; for (int i = 0; i < k; i++) fact[i + 1] = (fact[i] * (long long)(i + 1)) % MOD; for (int i = 0; i <= k; i++) kf[i] = (fact[k] * power(fact[k - i], MOD - 2)) % MOD; ans = 0; mlt = power(2, MOD - 2); dfs(0, -1); cout << ans; return 0; }
### Prompt Construct a Cpp code solution to the problem outlined: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> #pragma GCC optimize("O3") using namespace std; mt19937 rnd(239); const long double pi = acos(-1.0); const long long INF = 1e18 + 239; const int BIG = 1e9 + 239; const int M = 2e5 + 239; const int T = (1 << 19); const long long MOD = 998244353; const long long root = 3; const long long sub = 15311432; long long st[T]; inline long long power(long long a, long long b) { if (b == 0) return 1; long long t = power(a, (b >> 1)); t = (t * t) % MOD; if (b & 1) return (t * a) % MOD; return t; } inline int inv(int n, int b) { int ans = 0; for (int i = 0; i < b; i++) { ans = (ans << 1) + (n & 1); n >>= 1; } return ans; } int p; long long w; map<vector<long long>, vector<long long> > pq; inline void fft(const vector<long long> &a, vector<long long> &b) { if (pq.count(a)) { b = pq[a]; return; } b.resize(a.size()); for (int i = 0; i < a.size(); i++) b[i] = a[inv(i, p)]; for (int z = 0; z < p; z++) { int u = (1 << z); for (int i = 0; i < (1 << p); i++) { int ps = i >> z; if ((ps & 1) == 0) { int t = i & (u - 1); long long bi = (b[i] + st[t << (p - z - 1)] * b[i + u]) % MOD; long long bii = (b[i] + st[(t + u) << (p - z - 1)] * b[i + u]) % MOD; b[i] = bi; b[i + u] = bii; } } } pq[a] = b; } inline vector<long long> sum(vector<long long> a, vector<long long> b) { int n = max((int)a.size(), (int)b.size()); vector<long long> ans(n, 0); while (a.size() < n) a.push_back(0); while (b.size() < n) b.push_back(0); for (int i = 0; i < n; i++) ans[i] = (a[i] + b[i]) % MOD; return ans; } vector<long long> ta, tb; vector<long long> as; inline vector<long long> multiply(vector<long long> a, vector<long long> b) { int k = (a.size() + b.size() + 1); p = trunc(log2(k)) + 1; while (a.size() < (1 << p)) a.push_back(0); while (b.size() < (1 << p)) b.push_back(0); w = power(sub, (1 << (23 - p))); st[0] = 1LL; for (int i = 1; i < (1 << p); i++) st[i] = (st[i - 1] * w) % MOD; fft(a, ta); fft(b, tb); vector<long long> v; for (int i = 0; i < (1 << p); i++) v.push_back((ta[i] * tb[i]) % MOD); fft(v, as); long long d = power((1 << p), MOD - 2); for (int i = 0; i < (1 << p); i++) as[i] = (d * as[i]) % MOD; reverse(as.begin() + 1, as.end()); while (as.back() == 0) as.pop_back(); return as; } int n, k, kol[M]; vector<int> v[M]; long long f[M], ans; long long mlt; int sz; long long a[M], s[M]; long long u, kf[M], fact[M]; inline pair<vector<long long>, vector<long long> > func(int l, int r) { if (r - l == 1) return {{s[l], (u * s[l]) % MOD}, {1, a[l]}}; int mid = (l + r) >> 1; pair<vector<long long>, vector<long long> > a1 = func(l, mid); pair<vector<long long>, vector<long long> > a2 = func(mid, r); return make_pair( sum(multiply(a1.first, a2.second), multiply(a1.second, a2.first)), multiply(a1.second, a2.second)); } long long dfs(int p, int pr) { kol[p] = 1; int szt = 0; vector<long long> aa, sa; for (int i : v[p]) if (pr != i) { long long now = dfs(i, p); kol[p] += kol[i]; aa.push_back(kol[i]); sa.push_back(now); } sz = aa.size(); for (int i = 0; i < sz; i++) { a[i] = aa[i]; s[i] = sa[i]; } u = n - kol[p]; long long sum = 0; for (int i = 0; i < sz; i++) sum = (sum + s[i]) % MOD; long long sqr = 0; for (int i = 0; i < sz; i++) sqr = (sqr + s[i] * s[i]) % MOD; sqr = (sum * sum - sqr) % MOD; if (sqr < 0) sqr += MOD; ans = (ans + sqr * mlt) % MOD; if (sz == 0) { return 1; } pair<vector<long long>, vector<long long> > t = func(0, sz); int s = (int)t.first.size(); for (int i = 0; i < min(s, k + 1); i++) { ans = (ans + kf[i] * t.first[i]) % MOD; sum = (sum + kf[i] * t.second[i]) % MOD; } return sum; } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> k; if (k == 1) { cout << (((long long)n * (long long)(n - 1)) / 2) % MOD; return 0; } for (int i = 0; i < n - 1; i++) { int s, f; cin >> s >> f; s--, f--; v[s].push_back(f); v[f].push_back(s); } fact[0] = 1; for (int i = 0; i < k; i++) fact[i + 1] = (fact[i] * (long long)(i + 1)) % MOD; for (int i = 0; i <= k; i++) kf[i] = (fact[k] * power(fact[k - i], MOD - 2)) % MOD; ans = 0; mlt = power(2, MOD - 2); dfs(0, -1); cout << ans; return 0; } ```
#include <bits/stdc++.h> using namespace std; template <typename T, typename U> inline void smin(T &a, U b) { if (a > b) a = b; } template <typename T, typename U> inline void smax(T &a, U b) { if (a < b) a = b; } template <class T> inline void gn(T &first) { char c, sg = 0; while (c = getchar(), (c > '9' || c < '0') && c != '-') ; for ((c == '-' ? sg = 1, c = getchar() : 0), first = 0; c >= '0' && c <= '9'; c = getchar()) first = (first << 1) + (first << 3) + c - '0'; if (sg) first = -first; } template <class T, class T1> inline void gn(T &first, T1 &second) { gn(first); gn(second); } template <class T, class T1, class T2> inline void gn(T &first, T1 &second, T2 &z) { gn(first); gn(second); gn(z); } template <class T> inline void print(T first) { if (first < 0) { putchar('-'); return print(-first); } if (first < 10) { putchar('0' + first); return; } print(first / 10); putchar(first % 10 + '0'); } template <class T> inline void printsp(T first) { print(first); putchar(' '); } template <class T> inline void println(T first) { print(first); putchar('\n'); } template <class T, class U> inline void print(T first, U second) { printsp(first); println(second); } template <class T, class U, class V> inline void print(T first, U second, V z) { printsp(first); printsp(second); println(z); } int power(int a, int b, int m, int ans = 1) { for (; b; b >>= 1, a = 1LL * a * a % m) if (b & 1) ans = 1LL * ans * a % m; return ans; } vector<int> adj[101010], child[101010], tmp; int ans, sum[101010], n, sz[101010], N1, E, F, I; int A[1 << 18], B[1 << 18], k, flag, tval[101010], vst[101010]; inline void add(int &u, int v) { u += v; if (u >= 998244353) u -= 998244353; } inline int mul(int a, int b) { return (int)((long long)a * b % 998244353); unsigned long long first = (long long)a * b; unsigned xh = (unsigned)(first >> 32), xl = (unsigned)first, d, m; asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(998244353)); return m; } void fft(int *A, int P, int pw) { for (int m = N1, h; h = m >> 1, m >= 2; pw = (long long)pw * pw % P, m = h) { for (int i = 0, w = 1; i < h; i++, w = (long long)w * pw % P) { for (int j = i; j < N1; j += m) { int k = j + h, first = A[j] + 998244353 - A[k]; if (first >= 998244353) first -= 998244353; A[j] += A[k] - 998244353; A[k] = mul(first, w); if (A[j] < 0) A[j] += 998244353; } } } for (int i = 0, j = 1; j < N1 - 1; j++) { for (int k = N1 / 2; k > (i ^= k); k >>= 1) ; if (i > j) swap(A[i], A[j]); } } vector<int> multiply(const vector<int> &a, const vector<int> &b) { int n = a.size() + b.size() - 1; for (N1 = 1; N1 < n; N1 <<= 1) ; for (int i = 0; i < a.size(); i++) A[i] = a[i]; for (int i = a.size(); i < N1; i++) A[i] = 0; for (int i = 0; i < b.size(); i++) B[i] = b[i]; for (int i = b.size(); i < N1; i++) B[i] = 0; E = power(3, (998244353 - 1) / N1, 998244353); F = power(E, 998244353 - 2, 998244353); I = power(N1, 998244353 - 2, 998244353); fft(A, 998244353, E); fft(B, 998244353, E); for (int i = 0; i < N1; i++) A[i] = (long long)A[i] * B[i] % 998244353; fft(A, 998244353, F); vector<int> c(n); for (int i = 0; i < n; i++) c[i] = (long long)A[i] * I % 998244353; return c; } vector<int> calc(int st, int ed) { if (st == ed) return {1}; if (st + 1 == ed) return {1, sz[tmp[st]]}; return multiply(calc(st, ed + st >> 1), calc(st + ed >> 1, ed)); } void dfs(int u, int pa = -1) { sz[u] = 1; for (int i = 0; i < adj[u].size(); i++) { int v = adj[u][i]; if (v == pa) continue; dfs(v, u); child[u].push_back(v); sz[u] += sz[v]; add(ans, mul(sum[u], sum[v])); add(sum[u], sum[v]); } tmp = child[u]; vector<int> res = calc(0, tmp.size()); int mid = 1, val = 0; for (int i = 0, ed = min(k, (int)res.size() - 1); i <= ed; i++) { add(val, mul(mid, res[i])); mid = mul(mid, k - i); } add(sum[u], val); if (pa != -1) res = multiply(res, (vector<int>){1, n - sz[u]}); ++flag; for (int i = 0; i < child[u].size(); i++) { int v = child[u][i], a = sz[v]; int &m = tval[a]; if (vst[a] != flag) { vst[a] = flag; int cur = 0, b = 1; m = 0; for (int j = 0, ed = min(k, (int)res.size() - 1); j <= ed; j++) { cur = mul(cur, a); cur = (res[j] - cur + 998244353) % 998244353; add(m, mul(b, cur)); b = mul(b, k - j); } } add(ans, mul(m, sum[v])); } } int main() { int u, v; gn(n, k); for (int i = 1; i < n; i++) { gn(u, v); adj[u].push_back(v); adj[v].push_back(u); } if (k == 1) { println((long long)n * (n - 1) / 2 % 998244353); return 0; } dfs(1); println(ans); return 0; }
### Prompt Construct a CPP code solution to the problem outlined: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using namespace std; template <typename T, typename U> inline void smin(T &a, U b) { if (a > b) a = b; } template <typename T, typename U> inline void smax(T &a, U b) { if (a < b) a = b; } template <class T> inline void gn(T &first) { char c, sg = 0; while (c = getchar(), (c > '9' || c < '0') && c != '-') ; for ((c == '-' ? sg = 1, c = getchar() : 0), first = 0; c >= '0' && c <= '9'; c = getchar()) first = (first << 1) + (first << 3) + c - '0'; if (sg) first = -first; } template <class T, class T1> inline void gn(T &first, T1 &second) { gn(first); gn(second); } template <class T, class T1, class T2> inline void gn(T &first, T1 &second, T2 &z) { gn(first); gn(second); gn(z); } template <class T> inline void print(T first) { if (first < 0) { putchar('-'); return print(-first); } if (first < 10) { putchar('0' + first); return; } print(first / 10); putchar(first % 10 + '0'); } template <class T> inline void printsp(T first) { print(first); putchar(' '); } template <class T> inline void println(T first) { print(first); putchar('\n'); } template <class T, class U> inline void print(T first, U second) { printsp(first); println(second); } template <class T, class U, class V> inline void print(T first, U second, V z) { printsp(first); printsp(second); println(z); } int power(int a, int b, int m, int ans = 1) { for (; b; b >>= 1, a = 1LL * a * a % m) if (b & 1) ans = 1LL * ans * a % m; return ans; } vector<int> adj[101010], child[101010], tmp; int ans, sum[101010], n, sz[101010], N1, E, F, I; int A[1 << 18], B[1 << 18], k, flag, tval[101010], vst[101010]; inline void add(int &u, int v) { u += v; if (u >= 998244353) u -= 998244353; } inline int mul(int a, int b) { return (int)((long long)a * b % 998244353); unsigned long long first = (long long)a * b; unsigned xh = (unsigned)(first >> 32), xl = (unsigned)first, d, m; asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(998244353)); return m; } void fft(int *A, int P, int pw) { for (int m = N1, h; h = m >> 1, m >= 2; pw = (long long)pw * pw % P, m = h) { for (int i = 0, w = 1; i < h; i++, w = (long long)w * pw % P) { for (int j = i; j < N1; j += m) { int k = j + h, first = A[j] + 998244353 - A[k]; if (first >= 998244353) first -= 998244353; A[j] += A[k] - 998244353; A[k] = mul(first, w); if (A[j] < 0) A[j] += 998244353; } } } for (int i = 0, j = 1; j < N1 - 1; j++) { for (int k = N1 / 2; k > (i ^= k); k >>= 1) ; if (i > j) swap(A[i], A[j]); } } vector<int> multiply(const vector<int> &a, const vector<int> &b) { int n = a.size() + b.size() - 1; for (N1 = 1; N1 < n; N1 <<= 1) ; for (int i = 0; i < a.size(); i++) A[i] = a[i]; for (int i = a.size(); i < N1; i++) A[i] = 0; for (int i = 0; i < b.size(); i++) B[i] = b[i]; for (int i = b.size(); i < N1; i++) B[i] = 0; E = power(3, (998244353 - 1) / N1, 998244353); F = power(E, 998244353 - 2, 998244353); I = power(N1, 998244353 - 2, 998244353); fft(A, 998244353, E); fft(B, 998244353, E); for (int i = 0; i < N1; i++) A[i] = (long long)A[i] * B[i] % 998244353; fft(A, 998244353, F); vector<int> c(n); for (int i = 0; i < n; i++) c[i] = (long long)A[i] * I % 998244353; return c; } vector<int> calc(int st, int ed) { if (st == ed) return {1}; if (st + 1 == ed) return {1, sz[tmp[st]]}; return multiply(calc(st, ed + st >> 1), calc(st + ed >> 1, ed)); } void dfs(int u, int pa = -1) { sz[u] = 1; for (int i = 0; i < adj[u].size(); i++) { int v = adj[u][i]; if (v == pa) continue; dfs(v, u); child[u].push_back(v); sz[u] += sz[v]; add(ans, mul(sum[u], sum[v])); add(sum[u], sum[v]); } tmp = child[u]; vector<int> res = calc(0, tmp.size()); int mid = 1, val = 0; for (int i = 0, ed = min(k, (int)res.size() - 1); i <= ed; i++) { add(val, mul(mid, res[i])); mid = mul(mid, k - i); } add(sum[u], val); if (pa != -1) res = multiply(res, (vector<int>){1, n - sz[u]}); ++flag; for (int i = 0; i < child[u].size(); i++) { int v = child[u][i], a = sz[v]; int &m = tval[a]; if (vst[a] != flag) { vst[a] = flag; int cur = 0, b = 1; m = 0; for (int j = 0, ed = min(k, (int)res.size() - 1); j <= ed; j++) { cur = mul(cur, a); cur = (res[j] - cur + 998244353) % 998244353; add(m, mul(b, cur)); b = mul(b, k - j); } } add(ans, mul(m, sum[v])); } } int main() { int u, v; gn(n, k); for (int i = 1; i < n; i++) { gn(u, v); adj[u].push_back(v); adj[v].push_back(u); } if (k == 1) { println((long long)n * (n - 1) / 2 % 998244353); return 0; } dfs(1); println(ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; const int MOD = 998244353; const int g = 3; inline int Mul(int a, int b) { unsigned long long x = (long long)a * b; unsigned xh = (unsigned)(x >> 32), xl = (unsigned)x, d, m; asm("divl %4;\n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(MOD)); return m; } int Qpow(int x, int y = MOD - 2) { int res = 1; for (; y; y >>= 1, x = Mul(x, x)) if (y & 1) res = Mul(res, x); return res; } int n, K, jc[N], njc[N]; int Ar(int n, int m) { return Mul(jc[n], njc[n - m]); } int sz[N], sm[N]; vector<int> G[N]; int U(int x, int y) { return ((x += y) >= MOD) ? (x - MOD) : x; } void SU(int& x, int y) { ((x += y) >= MOD) ? (x -= MOD) : 0; } int ans; vector<int> t; int w[N] = {1}; void FFT(vector<int>& A, bool fl) { int L = A.size(); if (fl) { int t = Qpow(L); for (int& v : A) v = Mul(v, t); reverse(A.begin() + 1, A.end()); } for (int i = 1, j = L >> 1, k; i < L; ++i, j ^= k) { if (i < j) swap(A[i], A[j]); k = L >> 1; while (j & k) { j ^= k; k >>= 1; } } for (int i = 1; i < L; i <<= 1) { int t = Qpow(g, (MOD - 1) / (i << 1)); for (int j = 1; j < i; ++j) w[j] = Mul(w[j - 1], t); for (int j = 0; j < L; j += (i << 1)) { for (int k = 0; k < i; ++k) { t = Mul(A[i + j + k], w[k]); A[i + j + k] = U(A[j + k], MOD - t); SU(A[j + k], t); } } } } vector<int> operator*(vector<int> A, vector<int> B) { int need = A.size() + B.size() - 1, L; for (L = 1; L < need; L <<= 1) ; A.resize(L); FFT(A, false); B.resize(L); FFT(B, false); for (int i = 0; i < L; ++i) A[i] = Mul(A[i], B[i]); FFT(A, true); A.resize(min(K + 1, need)); return A; } vector<int> DivCalc(int l, int r) { if (l < r) return DivCalc(l, (l + r) >> 1) * DivCalc(((l + r) >> 1) + 1, r); else if (l == r) return {1, t[l]}; else return {1}; } int Dark(vector<int> p, int x, int y) { for (int i = 1; i <= (int)p.size() - 1; ++i) SU(p[i], MOD - Mul(y, p[i - 1])); for (int i = p.size() - 1; i > 0; --i) SU(p[i], Mul(x, p[i - 1])); int res = 0; for (int i = 1; i < (int)p.size(); ++i) SU(res, Mul(p[i], Ar(K, i))); return res; } int rec[N], vis[N], cc; void Dfs(int u, int fa = 0) { sz[u] = sm[u] = 1; for (int v : G[u]) if (v != fa) { Dfs(v, u); SU(ans, Mul(sm[u], sm[v])); SU(sm[u], sm[v]); sz[u] += sz[v]; } t.clear(); for (int v : G[u]) if (v != fa) t.emplace_back(sz[v]); static vector<int> p; p = DivCalc(0, t.size() - 1); if ((int)p.size() - 1 > K) p.resize(K + 1); for (int i = 1; i < (int)p.size(); ++i) SU(sm[u], Mul(Ar(K, i), p[i])); ++cc; for (int v : G[u]) if (v != fa) { if (vis[sz[v]] != cc) { rec[sz[v]] = Dark(p, n - sz[u], sz[v]); vis[sz[v]] = cc; } SU(ans, Mul(rec[sz[v]], sm[v])); } } void Prework() { jc[0] = 1; for (int i = 1; i <= K; ++i) jc[i] = Mul(jc[i - 1], i); njc[K] = Qpow(jc[K]); for (int i = K - 1; ~i; --i) njc[i] = Mul(njc[i + 1], i + 1); } int main() { scanf("%d%d", &n, &K); if (K == 1) { printf("%lld\n", (long long)n * (n - 1) / 2 % MOD); return 0; } Prework(); for (int i = 1, u, v; i < n; ++i) { scanf("%d%d", &u, &v); G[u].emplace_back(v); G[v].emplace_back(u); } Dfs(1); printf("%d\n", ans); return 0; }
### Prompt Your task is to create a Cpp solution to the following problem: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; const int MOD = 998244353; const int g = 3; inline int Mul(int a, int b) { unsigned long long x = (long long)a * b; unsigned xh = (unsigned)(x >> 32), xl = (unsigned)x, d, m; asm("divl %4;\n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(MOD)); return m; } int Qpow(int x, int y = MOD - 2) { int res = 1; for (; y; y >>= 1, x = Mul(x, x)) if (y & 1) res = Mul(res, x); return res; } int n, K, jc[N], njc[N]; int Ar(int n, int m) { return Mul(jc[n], njc[n - m]); } int sz[N], sm[N]; vector<int> G[N]; int U(int x, int y) { return ((x += y) >= MOD) ? (x - MOD) : x; } void SU(int& x, int y) { ((x += y) >= MOD) ? (x -= MOD) : 0; } int ans; vector<int> t; int w[N] = {1}; void FFT(vector<int>& A, bool fl) { int L = A.size(); if (fl) { int t = Qpow(L); for (int& v : A) v = Mul(v, t); reverse(A.begin() + 1, A.end()); } for (int i = 1, j = L >> 1, k; i < L; ++i, j ^= k) { if (i < j) swap(A[i], A[j]); k = L >> 1; while (j & k) { j ^= k; k >>= 1; } } for (int i = 1; i < L; i <<= 1) { int t = Qpow(g, (MOD - 1) / (i << 1)); for (int j = 1; j < i; ++j) w[j] = Mul(w[j - 1], t); for (int j = 0; j < L; j += (i << 1)) { for (int k = 0; k < i; ++k) { t = Mul(A[i + j + k], w[k]); A[i + j + k] = U(A[j + k], MOD - t); SU(A[j + k], t); } } } } vector<int> operator*(vector<int> A, vector<int> B) { int need = A.size() + B.size() - 1, L; for (L = 1; L < need; L <<= 1) ; A.resize(L); FFT(A, false); B.resize(L); FFT(B, false); for (int i = 0; i < L; ++i) A[i] = Mul(A[i], B[i]); FFT(A, true); A.resize(min(K + 1, need)); return A; } vector<int> DivCalc(int l, int r) { if (l < r) return DivCalc(l, (l + r) >> 1) * DivCalc(((l + r) >> 1) + 1, r); else if (l == r) return {1, t[l]}; else return {1}; } int Dark(vector<int> p, int x, int y) { for (int i = 1; i <= (int)p.size() - 1; ++i) SU(p[i], MOD - Mul(y, p[i - 1])); for (int i = p.size() - 1; i > 0; --i) SU(p[i], Mul(x, p[i - 1])); int res = 0; for (int i = 1; i < (int)p.size(); ++i) SU(res, Mul(p[i], Ar(K, i))); return res; } int rec[N], vis[N], cc; void Dfs(int u, int fa = 0) { sz[u] = sm[u] = 1; for (int v : G[u]) if (v != fa) { Dfs(v, u); SU(ans, Mul(sm[u], sm[v])); SU(sm[u], sm[v]); sz[u] += sz[v]; } t.clear(); for (int v : G[u]) if (v != fa) t.emplace_back(sz[v]); static vector<int> p; p = DivCalc(0, t.size() - 1); if ((int)p.size() - 1 > K) p.resize(K + 1); for (int i = 1; i < (int)p.size(); ++i) SU(sm[u], Mul(Ar(K, i), p[i])); ++cc; for (int v : G[u]) if (v != fa) { if (vis[sz[v]] != cc) { rec[sz[v]] = Dark(p, n - sz[u], sz[v]); vis[sz[v]] = cc; } SU(ans, Mul(rec[sz[v]], sm[v])); } } void Prework() { jc[0] = 1; for (int i = 1; i <= K; ++i) jc[i] = Mul(jc[i - 1], i); njc[K] = Qpow(jc[K]); for (int i = K - 1; ~i; --i) njc[i] = Mul(njc[i + 1], i + 1); } int main() { scanf("%d%d", &n, &K); if (K == 1) { printf("%lld\n", (long long)n * (n - 1) / 2 % MOD); return 0; } Prework(); for (int i = 1, u, v; i < n; ++i) { scanf("%d%d", &u, &v); G[u].emplace_back(v); G[v].emplace_back(u); } Dfs(1); printf("%d\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; mt19937 rnd(228); const int M = 998244353; const int P = 15311432; const int B = (1 << 23); const int N = 1e6 + 7; const int K = 18; int w[K][N]; int fact[N]; int rev_fact[N]; int sz[N]; int dp[N]; vector<int> g[N]; vector<int> ans[N]; vector<int> res[N]; inline int add(int a, int b) { return (a + b >= M ? a + b - M : a + b < 0 ? a + b + M : a + b); } inline int mul(int a, int b) { return (a * (long long)b) % M; } inline int bin(int a, int n) { int res = 1; while (n) { if (n % 2 == 0) { a = mul(a, a); n /= 2; } else { res = mul(res, a); n--; } } return res; } int rev(int x, int bit) { int cur = 0; for (int i = 0; i < bit; i++) { if ((x >> i) & 1) { cur |= (1 << (bit - 1 - i)); } } return cur; } vector<int> fft(const vector<int> &a, int bit) { int n = a.size(); vector<int> f(n); for (int i = 0; i < n; i++) { f[rev(i, bit)] = a[i]; } int bin = 0; for (int len = 1; len < n; len *= 2) { for (int st = 0; st < n; st += 2 * len) { for (int i = st; i < st + len; i++) { int t = f[i], b = mul(f[i + len], w[bin][i - st]); f[i] = add(t, b); f[i + len] = add(t, -b); } } bin++; } return f; } vector<int> mul(vector<int> a, vector<int> b) { int n = a.size(), m = b.size(); int k = n + m; int len = 1; int cnt = 0; while (len < k) { len *= 2; cnt++; } k = len; while ((int)a.size() < k) { a.push_back(0); } while ((int)b.size() < k) { b.push_back(0); } a = fft(a, cnt); b = fft(b, cnt); for (int i = 0; i < k; i++) { a[i] = mul(a[i], b[i]); } a = fft(a, cnt); int rev = bin(k, M - 2); for (int i = 0; i < k; i++) { a[i] = mul(a[i], rev); } reverse(a.begin() + 1, a.end()); while (!a.empty() && a.back() == 0) { a.pop_back(); } return a; } vector<int> solve(int l, int r, const vector<int> &sz) { if (r - l == 1) { return {1, sz[l]}; } else { int m = (l + r) / 2; return mul(solve(l, m, sz), solve(m, r, sz)); } } int ret = 0; int n, k; void dfs(int v, int pr) { sz[v] = 1; vector<int> cur; for (int to : g[v]) { if (to != pr) { dfs(to, v); sz[v] += sz[to]; cur.push_back(sz[to]); } } int have = (int)cur.size(); if (!cur.empty()) { cur = solve(0, have, cur); } else { cur = {1}; } ans[v] = cur; for (int i = 0; i < (int)cur.size() && i <= k; i++) { int vert = k - i; int ans = cur[i]; int cnt = mul(fact[k], mul(ans, rev_fact[vert])); dp[v] = add(dp[v], cnt); } } void zhfs(int v, int pr, int have, int del_sum) { ret = add(ret, -mul(dp[v], del_sum)); ret = add(ret, mul(dp[v], have)); vector<int> new_cur = ans[v]; new_cur.push_back(0); for (int i = (int)new_cur.size() - 2; i >= 0; i--) { new_cur[i + 1] = add(new_cur[i + 1], mul(new_cur[i], n - sz[v])); } map<int, int> press; for (int to : g[v]) { if (to != pr) { if (!press.count(sz[to])) { int calc_dp = 0; vector<int> me = new_cur; vector<int> cur = me; for (int i = 0; i < (int)cur.size(); i++) { if (i == 0) { cur[i] = me[i]; } else { cur[i] = add(me[i], -mul(cur[i - 1], sz[to])); } } for (int i = 0; i < (int)cur.size() && i <= k; i++) { int vert = k - i; int ans = cur[i]; int cnt = mul(fact[k], mul(ans, rev_fact[vert])); calc_dp = add(calc_dp, cnt); } press[sz[to]] = calc_dp; } } } for (int to : g[v]) { if (to != pr) { zhfs(to, v, add(have, press[sz[to]]), add(del_sum, dp[v])); } } } int main() { for (int j = 0; j < K; j++) { int cur = (1 << (j + 1)); w[j][0] = 1; w[j][1] = P; for (int i = cur; i < B; i *= 2) { w[j][1] = mul(w[j][1], w[j][1]); } for (int i = 2; i < cur; i++) { w[j][i] = mul(w[j][i - 1], w[j][1]); } } fact[0] = 1; for (int i = 1; i < N; i++) { fact[i] = mul(fact[i - 1], i); } rev_fact[N - 1] = bin(fact[N - 1], M - 2); for (int i = N - 2; i >= 0; i--) { rev_fact[i] = mul(rev_fact[i + 1], i + 1); } cin >> n >> k; if (k == 1) { cout << n * (long long)(n - 1) / 2 % M << '\n'; return 0; } for (int i = 1; i < n; i++) { int a, b; cin >> a >> b; a--, b--; g[a].push_back(b); g[b].push_back(a); } dfs(0, -1); int me = 0; for (int i = 0; i < n; i++) { ret = add(ret, mul(me, dp[i])); me = add(me, dp[i]); } zhfs(0, -1, 0, 0); cout << ret << '\n'; }
### Prompt Construct a Cpp code solution to the problem outlined: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using namespace std; mt19937 rnd(228); const int M = 998244353; const int P = 15311432; const int B = (1 << 23); const int N = 1e6 + 7; const int K = 18; int w[K][N]; int fact[N]; int rev_fact[N]; int sz[N]; int dp[N]; vector<int> g[N]; vector<int> ans[N]; vector<int> res[N]; inline int add(int a, int b) { return (a + b >= M ? a + b - M : a + b < 0 ? a + b + M : a + b); } inline int mul(int a, int b) { return (a * (long long)b) % M; } inline int bin(int a, int n) { int res = 1; while (n) { if (n % 2 == 0) { a = mul(a, a); n /= 2; } else { res = mul(res, a); n--; } } return res; } int rev(int x, int bit) { int cur = 0; for (int i = 0; i < bit; i++) { if ((x >> i) & 1) { cur |= (1 << (bit - 1 - i)); } } return cur; } vector<int> fft(const vector<int> &a, int bit) { int n = a.size(); vector<int> f(n); for (int i = 0; i < n; i++) { f[rev(i, bit)] = a[i]; } int bin = 0; for (int len = 1; len < n; len *= 2) { for (int st = 0; st < n; st += 2 * len) { for (int i = st; i < st + len; i++) { int t = f[i], b = mul(f[i + len], w[bin][i - st]); f[i] = add(t, b); f[i + len] = add(t, -b); } } bin++; } return f; } vector<int> mul(vector<int> a, vector<int> b) { int n = a.size(), m = b.size(); int k = n + m; int len = 1; int cnt = 0; while (len < k) { len *= 2; cnt++; } k = len; while ((int)a.size() < k) { a.push_back(0); } while ((int)b.size() < k) { b.push_back(0); } a = fft(a, cnt); b = fft(b, cnt); for (int i = 0; i < k; i++) { a[i] = mul(a[i], b[i]); } a = fft(a, cnt); int rev = bin(k, M - 2); for (int i = 0; i < k; i++) { a[i] = mul(a[i], rev); } reverse(a.begin() + 1, a.end()); while (!a.empty() && a.back() == 0) { a.pop_back(); } return a; } vector<int> solve(int l, int r, const vector<int> &sz) { if (r - l == 1) { return {1, sz[l]}; } else { int m = (l + r) / 2; return mul(solve(l, m, sz), solve(m, r, sz)); } } int ret = 0; int n, k; void dfs(int v, int pr) { sz[v] = 1; vector<int> cur; for (int to : g[v]) { if (to != pr) { dfs(to, v); sz[v] += sz[to]; cur.push_back(sz[to]); } } int have = (int)cur.size(); if (!cur.empty()) { cur = solve(0, have, cur); } else { cur = {1}; } ans[v] = cur; for (int i = 0; i < (int)cur.size() && i <= k; i++) { int vert = k - i; int ans = cur[i]; int cnt = mul(fact[k], mul(ans, rev_fact[vert])); dp[v] = add(dp[v], cnt); } } void zhfs(int v, int pr, int have, int del_sum) { ret = add(ret, -mul(dp[v], del_sum)); ret = add(ret, mul(dp[v], have)); vector<int> new_cur = ans[v]; new_cur.push_back(0); for (int i = (int)new_cur.size() - 2; i >= 0; i--) { new_cur[i + 1] = add(new_cur[i + 1], mul(new_cur[i], n - sz[v])); } map<int, int> press; for (int to : g[v]) { if (to != pr) { if (!press.count(sz[to])) { int calc_dp = 0; vector<int> me = new_cur; vector<int> cur = me; for (int i = 0; i < (int)cur.size(); i++) { if (i == 0) { cur[i] = me[i]; } else { cur[i] = add(me[i], -mul(cur[i - 1], sz[to])); } } for (int i = 0; i < (int)cur.size() && i <= k; i++) { int vert = k - i; int ans = cur[i]; int cnt = mul(fact[k], mul(ans, rev_fact[vert])); calc_dp = add(calc_dp, cnt); } press[sz[to]] = calc_dp; } } } for (int to : g[v]) { if (to != pr) { zhfs(to, v, add(have, press[sz[to]]), add(del_sum, dp[v])); } } } int main() { for (int j = 0; j < K; j++) { int cur = (1 << (j + 1)); w[j][0] = 1; w[j][1] = P; for (int i = cur; i < B; i *= 2) { w[j][1] = mul(w[j][1], w[j][1]); } for (int i = 2; i < cur; i++) { w[j][i] = mul(w[j][i - 1], w[j][1]); } } fact[0] = 1; for (int i = 1; i < N; i++) { fact[i] = mul(fact[i - 1], i); } rev_fact[N - 1] = bin(fact[N - 1], M - 2); for (int i = N - 2; i >= 0; i--) { rev_fact[i] = mul(rev_fact[i + 1], i + 1); } cin >> n >> k; if (k == 1) { cout << n * (long long)(n - 1) / 2 % M << '\n'; return 0; } for (int i = 1; i < n; i++) { int a, b; cin >> a >> b; a--, b--; g[a].push_back(b); g[b].push_back(a); } dfs(0, -1); int me = 0; for (int i = 0; i < n; i++) { ret = add(ret, mul(me, dp[i])); me = add(me, dp[i]); } zhfs(0, -1, 0, 0); cout << ret << '\n'; } ```
#include <bits/stdc++.h> using namespace std; namespace Base { const int inf = 0x3f3f3f3f, INF = 0x7fffffff; const long long infll = 0x3f3f3f3f3f3f3f3fll, INFll = 0x7fffffffffffffffll; template <typename T> void read(T &x) { x = 0; int fh = 1; double num = 1.0; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') fh = -1; ch = getchar(); } while (isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } if (ch == '.') { ch = getchar(); while (isdigit(ch)) { num /= 10; x = x + num * (ch - '0'); ch = getchar(); } } x = x * fh; } template <typename T> void chmax(T &x, T y) { x = x < y ? y : x; } template <typename T> void chmin(T &x, T y) { x = x > y ? y : x; } } // namespace Base using namespace Base; const int P = 998244353, G = 3, N = 500010; struct Edge { int data, next; } e[N * 2]; int a[N], b[N], c[N], num[N], nxt[N], p[N], size[N], dad[N], head[N], place, k, mul[N], inv[N], n, s[N], ans; map<int, int> mp[N]; int power(int x, int y) { int i = x; x = 1; while (y > 0) { if (y % 2 == 1) x = 1ll * i * x % P; i = 1ll * i * i % P; y /= 2; } return x; } int C(int n, int m) { if (m > n) return 0; return 1ll * mul[n] * inv[n - m] % P; } void update(int &x, int y) { x += y; x = (x >= P) ? x - P : x; } void build(int u, int v) { e[++place].data = v; e[place].next = head[u]; head[u] = place; } void NTT(int *a, int l, int tag) { for (int i = 0, j = 0; i < l; i++) { if (i > j) swap(a[i], a[j]); for (int k = (l >> 1); (j ^= k) < k; k >>= 1) ; } for (int i = 1; i < l; i <<= 1) { int wn = power(G, (P - 1) / (i * 2)); if (tag == -1) wn = power(wn, P - 2); for (int j = 0; j < l; j += i + i) { int w = 1; for (int k = 0; k < i; k++, w = 1ll * w * wn % P) { int x = a[k + j], y = 1ll * w * a[k + j + i] % P; a[k + j] = (x + y) % P, a[k + j + i] = (x - y + P) % P; } } } if (tag == -1) { int in = power(l, P - 2); for (int i = 0; i < l; i++) a[i] = 1ll * a[i] * in % P; } } void doit(int *t1, int *t2, int *c, int l) { for (int i = 0; i < l; i++) a[i] = t1[i], b[i] = t2[i]; for (int i = l; i < 2 * l; i++) a[i] = b[i] = 0; for (int i = 0; i < 2 * l; i++) c[i] = 0; NTT(a, l * 2, 1); NTT(b, l * 2, 1); for (int i = 0; i < 2 * l; i++) c[i] = 1ll * a[i] * b[i] % P; NTT(c, l * 2, -1); } void dfs(int x, int fa) { size[x] = 1; dad[x] = fa; int id = 0; for (int ed = head[x]; ed != 0; ed = e[ed].next) if (e[ed].data != fa) { dfs(e[ed].data, x); size[x] += size[e[ed].data]; update(s[x], s[e[ed].data]); } for (int ed = head[x]; ed != 0; ed = e[ed].next) if (e[ed].data != fa) { num[id] = 1, num[id + 1] = size[e[ed].data]; id += 2; } int tmp = 1; while (tmp < id) tmp <<= 1; for (int i = id; i < tmp; i += 2) num[i] = 1, num[i + 1] = 0; id = tmp; for (int i = 2; i < tmp; i <<= 1) { for (int k = 0; k < tmp; k += 2 * i) { doit(num + k, num + k + i, nxt, i); for (int t = 0; t < 2 * i; t++) num[k + t] = nxt[t]; } } for (int i = 0; i <= min(k, id - 1); i++) update(p[x], 1ll * num[i] * C(k, i) % P); for (int i = 0; i < id + 2; i++) nxt[i] = 0; for (int i = 0; i < id; i++) { update(nxt[i], num[i]); update(nxt[i + 1], 1ll * num[i] * (n - size[x]) % P); } id += 2; for (int i = 0; i < id; i++) num[i] = nxt[i]; for (int ed = head[x]; ed != 0; ed = e[ed].next) if (e[ed].data != fa) { if (mp[x].find(size[e[ed].data]) == mp[x].end()) { for (int i = 0; i < id; i++) nxt[i] = 0; int in = power(size[e[ed].data], P - 2), las = 0; for (int i = id - 1; i >= 1; i--) { las = 1ll * (num[i] - las + P) % P * in % P; nxt[i - 1] = las; } tmp = 0; for (int i = 0; i <= min(k, id - 1); i++) update(tmp, 1ll * nxt[i] * C(k, i) % P); mp[x][size[e[ed].data]] = tmp; } } update(s[x], p[x]); } void solve(int x, int fa, int sum) { ans = (ans + 1ll * sum * p[x]) % P; int now = 0; for (int ed = head[x]; ed != 0; ed = e[ed].next) { if (e[ed].data == fa) continue; update(ans, 1ll * mp[x][size[e[ed].data]] * s[e[ed].data] % P); update(now, s[e[ed].data]); } for (int ed = head[x]; ed != 0; ed = e[ed].next) { if (e[ed].data == fa) continue; solve(e[ed].data, x, (1ll * sum + mp[x][size[e[ed].data]] + now - s[e[ed].data] + P) % P); } } int main() { read(n), read(k); if (k == 1) { cout << (1ll * n * (n - 1) / 2) % P << endl; return 0; } mul[0] = 1; for (int i = 1; i <= k; i++) mul[i] = 1ll * mul[i - 1] * i % P; inv[k] = power(mul[k], P - 2); for (int i = k - 1; i >= 0; i--) inv[i] = 1ll * inv[i + 1] * (i + 1) % P; for (int i = 1; i < n; i++) { int u = 1, v = i + 1; read(u); read(v); build(u, v); build(v, u); } dfs(1, 0); solve(1, 0, 0); ans = 1ll * ans * power(2, P - 2) % P; printf("%d\n", ans); return 0; }
### Prompt In CPP, your task is to solve the following problem: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using namespace std; namespace Base { const int inf = 0x3f3f3f3f, INF = 0x7fffffff; const long long infll = 0x3f3f3f3f3f3f3f3fll, INFll = 0x7fffffffffffffffll; template <typename T> void read(T &x) { x = 0; int fh = 1; double num = 1.0; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') fh = -1; ch = getchar(); } while (isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } if (ch == '.') { ch = getchar(); while (isdigit(ch)) { num /= 10; x = x + num * (ch - '0'); ch = getchar(); } } x = x * fh; } template <typename T> void chmax(T &x, T y) { x = x < y ? y : x; } template <typename T> void chmin(T &x, T y) { x = x > y ? y : x; } } // namespace Base using namespace Base; const int P = 998244353, G = 3, N = 500010; struct Edge { int data, next; } e[N * 2]; int a[N], b[N], c[N], num[N], nxt[N], p[N], size[N], dad[N], head[N], place, k, mul[N], inv[N], n, s[N], ans; map<int, int> mp[N]; int power(int x, int y) { int i = x; x = 1; while (y > 0) { if (y % 2 == 1) x = 1ll * i * x % P; i = 1ll * i * i % P; y /= 2; } return x; } int C(int n, int m) { if (m > n) return 0; return 1ll * mul[n] * inv[n - m] % P; } void update(int &x, int y) { x += y; x = (x >= P) ? x - P : x; } void build(int u, int v) { e[++place].data = v; e[place].next = head[u]; head[u] = place; } void NTT(int *a, int l, int tag) { for (int i = 0, j = 0; i < l; i++) { if (i > j) swap(a[i], a[j]); for (int k = (l >> 1); (j ^= k) < k; k >>= 1) ; } for (int i = 1; i < l; i <<= 1) { int wn = power(G, (P - 1) / (i * 2)); if (tag == -1) wn = power(wn, P - 2); for (int j = 0; j < l; j += i + i) { int w = 1; for (int k = 0; k < i; k++, w = 1ll * w * wn % P) { int x = a[k + j], y = 1ll * w * a[k + j + i] % P; a[k + j] = (x + y) % P, a[k + j + i] = (x - y + P) % P; } } } if (tag == -1) { int in = power(l, P - 2); for (int i = 0; i < l; i++) a[i] = 1ll * a[i] * in % P; } } void doit(int *t1, int *t2, int *c, int l) { for (int i = 0; i < l; i++) a[i] = t1[i], b[i] = t2[i]; for (int i = l; i < 2 * l; i++) a[i] = b[i] = 0; for (int i = 0; i < 2 * l; i++) c[i] = 0; NTT(a, l * 2, 1); NTT(b, l * 2, 1); for (int i = 0; i < 2 * l; i++) c[i] = 1ll * a[i] * b[i] % P; NTT(c, l * 2, -1); } void dfs(int x, int fa) { size[x] = 1; dad[x] = fa; int id = 0; for (int ed = head[x]; ed != 0; ed = e[ed].next) if (e[ed].data != fa) { dfs(e[ed].data, x); size[x] += size[e[ed].data]; update(s[x], s[e[ed].data]); } for (int ed = head[x]; ed != 0; ed = e[ed].next) if (e[ed].data != fa) { num[id] = 1, num[id + 1] = size[e[ed].data]; id += 2; } int tmp = 1; while (tmp < id) tmp <<= 1; for (int i = id; i < tmp; i += 2) num[i] = 1, num[i + 1] = 0; id = tmp; for (int i = 2; i < tmp; i <<= 1) { for (int k = 0; k < tmp; k += 2 * i) { doit(num + k, num + k + i, nxt, i); for (int t = 0; t < 2 * i; t++) num[k + t] = nxt[t]; } } for (int i = 0; i <= min(k, id - 1); i++) update(p[x], 1ll * num[i] * C(k, i) % P); for (int i = 0; i < id + 2; i++) nxt[i] = 0; for (int i = 0; i < id; i++) { update(nxt[i], num[i]); update(nxt[i + 1], 1ll * num[i] * (n - size[x]) % P); } id += 2; for (int i = 0; i < id; i++) num[i] = nxt[i]; for (int ed = head[x]; ed != 0; ed = e[ed].next) if (e[ed].data != fa) { if (mp[x].find(size[e[ed].data]) == mp[x].end()) { for (int i = 0; i < id; i++) nxt[i] = 0; int in = power(size[e[ed].data], P - 2), las = 0; for (int i = id - 1; i >= 1; i--) { las = 1ll * (num[i] - las + P) % P * in % P; nxt[i - 1] = las; } tmp = 0; for (int i = 0; i <= min(k, id - 1); i++) update(tmp, 1ll * nxt[i] * C(k, i) % P); mp[x][size[e[ed].data]] = tmp; } } update(s[x], p[x]); } void solve(int x, int fa, int sum) { ans = (ans + 1ll * sum * p[x]) % P; int now = 0; for (int ed = head[x]; ed != 0; ed = e[ed].next) { if (e[ed].data == fa) continue; update(ans, 1ll * mp[x][size[e[ed].data]] * s[e[ed].data] % P); update(now, s[e[ed].data]); } for (int ed = head[x]; ed != 0; ed = e[ed].next) { if (e[ed].data == fa) continue; solve(e[ed].data, x, (1ll * sum + mp[x][size[e[ed].data]] + now - s[e[ed].data] + P) % P); } } int main() { read(n), read(k); if (k == 1) { cout << (1ll * n * (n - 1) / 2) % P << endl; return 0; } mul[0] = 1; for (int i = 1; i <= k; i++) mul[i] = 1ll * mul[i - 1] * i % P; inv[k] = power(mul[k], P - 2); for (int i = k - 1; i >= 0; i--) inv[i] = 1ll * inv[i + 1] * (i + 1) % P; for (int i = 1; i < n; i++) { int u = 1, v = i + 1; read(u); read(v); build(u, v); build(v, u); } dfs(1, 0); solve(1, 0, 0); ans = 1ll * ans * power(2, P - 2) % P; printf("%d\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; namespace gbd_ns { template <typename C> struct is_iterable { template <class T> static long check(...); template <class T> static char check(int, typename T::const_iterator = C().end()); enum { value = sizeof(check<C>(0)) == sizeof(char), neg_value = sizeof(check<C>(0)) != sizeof(char) }; }; template <class T> ostream &_out_str(ostream &os, const T &x) { return os << '"' << x << '"'; } template <bool B, typename T = void> using eit = typename enable_if<B, T>::type; template <class T> struct _gbd3C; template <class T> ostream &_gbd3(ostream &os, const T &x) { return _gbd3C<T>::call(os, x); } template <class T> struct _gbd3C { template <class U = T> static ostream &call(ostream &os, eit<is_iterable<U>::value, const T> &V) { os << "{"; bool ff = 0; for (const auto &E : V) _gbd3<decltype(E)>(ff ? os << "," : os, E), ff = 1; return os << "}"; } template <class U = T> static ostream &call(ostream &os, eit<is_iterable<U>::neg_value, const T> &x) { return os << x; } }; template <> struct _gbd3C<string> { static ostream &call(ostream &os, const string &s) { return os << '"' << s << '"'; } }; template <> struct _gbd3C<char *> { static ostream &call(ostream &os, char *const &s) { return os << '"' << s << '"'; } }; template <class S, class T> struct _gbd3C<pair<S, T> > { static ostream &call(ostream &os, const pair<S, T> &p) { _gbd3(os << '(', p.first); _gbd3(os << ',', p.second); return os << ')'; } }; template <class T, typename... Args> ostream &_gbd2(ostream &os, vector<string>::iterator nm, const T &x, Args &&...args); ostream &_gbd2(ostream &os, vector<string>::iterator) { return os; } template <typename... Args> ostream &_gbd2(ostream &os, vector<string>::iterator nm, const char *x, Args &&...args) { return _gbd2(os << " " << x, nm + 1, args...); } template <class T, typename... Args> ostream &_gbd2(ostream &os, vector<string>::iterator nm, const T &x, Args &&...args) { return _gbd2(_gbd3<T>(os << " " << *nm << "=", x), nm + 1, args...); } vector<string> split(string s) { vector<string> Z; string z = ""; s += ','; int dep = 0; for (char c : s) { if (c == ',' && !dep) Z.push_back(z), z = ""; else z += c; if (c == '(') ++dep; if (c == ')') --dep; } return Z; } template <typename... Args> ostream &_gbd1(int ln, const string &nm, Args &&...args) { auto nms = split(nm); _gbd2(cerr << "L" << ln << ":", nms.begin(), args...); return cerr << endl; } } // namespace gbd_ns inline void nop() {} const int e3 = 1000; const int e6 = e3 * e3; const int e9 = e6 * e3; const long double tau = 2 * acosl(-1); typedef long double ld; const ld eps = (ld)1e-8; const int inf = e9 + 99; const long long linf = 1LL * e9 * e9 + 99; const int P = 998244353; void add(int &x, int y) { x += y; if (x >= P) x -= P; } void sub(int &x, int y) { x -= y; if (x < 0) x += P; } unsigned long long powq_ull(unsigned long long x, unsigned long long e, unsigned long long p) { if (!e) return 1; if (e & 1) return x * powq_ull(x, e - 1, p) % p; x = powq_ull(x, e >> 1, p); return x * x % p; } const unsigned long long PP = (119ULL << 23) + 1; const int AA = 119; const unsigned long long ROOT = 3; const unsigned long long INV_ROOT = 332748118; const unsigned long long TWO_INV = 499122177; vector<unsigned long long> fft(const vector<unsigned long long> &input, const bool inv = 0) { const unsigned long long P = PP; const int A = AA; const unsigned long long RT = ROOT; const unsigned long long IRT = INV_ROOT; const unsigned long long I2 = TWO_INV; const int N = (int)input.size(); vector<unsigned long long> arr(input); for (unsigned long long &x : arr) x %= P; for (int half = inv ? 1 : N / 2; 1 <= half && half < N; inv ? half <<= 1 : half >>= 1) { unsigned long long wm = inv ? IRT : RT; wm = powq_ull(wm, A, P); for (int ord = int((P - 1) / A); ord > 2 * half; ord >>= 1) wm = (wm * wm) % P; for (int st = 0; st < N; st += 2 * half) { unsigned long long w = 1; for (int j = st; j < st + half; ++j) { if (inv) arr[j + half] = arr[j + half] * w % P; unsigned long long a = arr[j], b = arr[j + half]; arr[j] = a + b; if (arr[j] >= P) arr[j] -= P; arr[j + half] = a + P - b; if (arr[j + half] >= P) arr[j + half] -= P; if (!inv) arr[j + half] = arr[j + half] * w % P; w = (w * wm) % P; } } } if (inv) { unsigned long long size_inv = 1; for (int sz = 2; sz <= N; sz <<= 1) size_inv = (size_inv * I2) % P; for (unsigned long long &x : arr) x = (x * size_inv) % P; } return arr; } vector<int> mulfst(const vector<int> &A, const vector<int> &B) { int m = (int((A).size())), n = (int((B).size())); int w = m + n - 1; for (; w & (w - 1);) ++w; vector<unsigned long long> AA(w, 0), BB(w, 0); for (int i = 0; i < m; i++) AA[i] = A[i]; for (int i = 0; i < n; i++) BB[i] = B[i]; AA = fft(AA); BB = fft(BB); for (int i = 0; i < w; i++) AA[i] *= BB[i]; AA = fft(AA, 1); for (; (int((AA).size())) > m + n - 1;) assert(!AA.back()), AA.pop_back(); vector<int> Z; for (unsigned long long x : AA) Z.push_back((int)x); return Z; } vector<int> mulslo(const vector<int> &A, const vector<int> &B) { int n = (int((A).size())), m = (int((B).size())); int w = m + n - 1; vector<int> Z(w, 0); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) add(Z[i + j], int(1LL * A[i] * B[j] % P)); return Z; } const int N = 100 << 10; int n, k; set<int> adj[N]; int p[N], sz[N]; int nn; int dfs_sz(int u, int _p = -1) { p[u] = _p; sz[u] = 1; for (int v : adj[u]) if (v != _p) sz[u] += dfs_sz(v, u); if (!~_p) nn = sz[u]; return sz[u]; } int siz(int u, int _p) { if (p[u] == _p) return sz[u]; assert(p[_p] == u); return nn - sz[_p]; } vector<int> ml(const vector<int> &szs, int l, int r) { if (l == r) return {1, szs[l]}; int m = (l + r) >> 1; return mulfst(ml(szs, l, m), ml(szs, m + 1, r)); } int ff(int x) { if (!x) return 1; static bool seen[N]; static int dp[N]; bool &sn = seen[x]; int &ans = dp[x]; if (sn) return ans; sn = 1; return ans = int(1LL * ff(x - 1) * x % P); } int iff(int x) { if (x == N - 3) return (int)powq_ull(ff(x), P - 2, P); static bool seen[N]; static int dp[N]; bool &sn = seen[x]; int &ans = dp[x]; if (sn) return ans; sn = 1; return ans = int(1LL * iff(x + 1) * (x + 1) % P); } int slow_eval(const vector<int> &p, int x) { int Z = 0; int qq = 0; for (int i = 0; i < (int((p).size())); i++) { qq = int((p[i] + P - 1LL * qq * x % P) % P); int fxqq = int(1LL * qq * ff(k) % P * iff(k - i) % P); add(Z, fxqq); } return Z; } map<int, int> WW[N]; int RR[N]; void solve(int u) { vector<int> sizs; for (int v : adj[u]) sizs.push_back(siz(v, u)); vector<int> poly = ml(sizs, 0, (int((sizs).size())) - 1); for (; (int((poly).size())) > k + 1;) poly.pop_back(); RR[u] = 0; for (int x : poly) add(RR[u], x); sort(sizs.begin(), sizs.end()); sizs.resize(unique(sizs.begin(), sizs.end()) - sizs.begin()); map<int, int> edp; for (int x : sizs) edp[x] = slow_eval(poly, x); for (int v : adj[u]) { int zz = edp[siz(v, u)]; WW[u][v] = zz; } } int dfs_ins(int u, int p) { assert(WW[u].count(p)); int z = WW[u][p]; for (int v : adj[u]) if (v != p) add(z, dfs_ins(v, u)); return z; } int FF; int dfs_zz(int u, int p) { assert(WW[u].count(p)); int Z = int(1LL * WW[u][p] * FF % P); for (int v : adj[u]) if (v != p) add(Z, dfs_zz(v, u)); return Z; } int decomp(int u) { dfs_sz(u); loop:; for (int v : adj[u]) if (siz(v, u) > siz(u, v)) { u = v; goto loop; } int Z = 0; FF = 0; for (int v : adj[u]) { add(Z, dfs_zz(v, u)); int r = dfs_ins(v, u); add(FF, r); add(Z, int(1LL * r * WW[u][v] % P)); } for (int v : adj[u]) adj[v].erase(u), add(Z, decomp(v)); adj[u].clear(); return Z; } int32_t main() { gbd_ns::_gbd1(344, "ff(3), ff(7), iff(3), iff(2), iff(1)", ff(3), ff(7), iff(3), iff(2), iff(1)); assert(P == PP); scanf("%d%d", &n, &k); for (int i = 1; i <= n - 1; i++) { int u, v; scanf("%d%d", &u, &v); adj[u].insert(v); adj[v].insert(u); } if (n == 1) return printf("0\n"), 0; if (k == 1) return printf("%d\n", int((1LL * n * (n - 1) / 2) % P)), 0; dfs_sz(1); assert(n == nn); for (int u = 1; u <= n; u++) solve(u); printf("%d\n", decomp(1)); }
### Prompt Construct a CPP code solution to the problem outlined: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using namespace std; namespace gbd_ns { template <typename C> struct is_iterable { template <class T> static long check(...); template <class T> static char check(int, typename T::const_iterator = C().end()); enum { value = sizeof(check<C>(0)) == sizeof(char), neg_value = sizeof(check<C>(0)) != sizeof(char) }; }; template <class T> ostream &_out_str(ostream &os, const T &x) { return os << '"' << x << '"'; } template <bool B, typename T = void> using eit = typename enable_if<B, T>::type; template <class T> struct _gbd3C; template <class T> ostream &_gbd3(ostream &os, const T &x) { return _gbd3C<T>::call(os, x); } template <class T> struct _gbd3C { template <class U = T> static ostream &call(ostream &os, eit<is_iterable<U>::value, const T> &V) { os << "{"; bool ff = 0; for (const auto &E : V) _gbd3<decltype(E)>(ff ? os << "," : os, E), ff = 1; return os << "}"; } template <class U = T> static ostream &call(ostream &os, eit<is_iterable<U>::neg_value, const T> &x) { return os << x; } }; template <> struct _gbd3C<string> { static ostream &call(ostream &os, const string &s) { return os << '"' << s << '"'; } }; template <> struct _gbd3C<char *> { static ostream &call(ostream &os, char *const &s) { return os << '"' << s << '"'; } }; template <class S, class T> struct _gbd3C<pair<S, T> > { static ostream &call(ostream &os, const pair<S, T> &p) { _gbd3(os << '(', p.first); _gbd3(os << ',', p.second); return os << ')'; } }; template <class T, typename... Args> ostream &_gbd2(ostream &os, vector<string>::iterator nm, const T &x, Args &&...args); ostream &_gbd2(ostream &os, vector<string>::iterator) { return os; } template <typename... Args> ostream &_gbd2(ostream &os, vector<string>::iterator nm, const char *x, Args &&...args) { return _gbd2(os << " " << x, nm + 1, args...); } template <class T, typename... Args> ostream &_gbd2(ostream &os, vector<string>::iterator nm, const T &x, Args &&...args) { return _gbd2(_gbd3<T>(os << " " << *nm << "=", x), nm + 1, args...); } vector<string> split(string s) { vector<string> Z; string z = ""; s += ','; int dep = 0; for (char c : s) { if (c == ',' && !dep) Z.push_back(z), z = ""; else z += c; if (c == '(') ++dep; if (c == ')') --dep; } return Z; } template <typename... Args> ostream &_gbd1(int ln, const string &nm, Args &&...args) { auto nms = split(nm); _gbd2(cerr << "L" << ln << ":", nms.begin(), args...); return cerr << endl; } } // namespace gbd_ns inline void nop() {} const int e3 = 1000; const int e6 = e3 * e3; const int e9 = e6 * e3; const long double tau = 2 * acosl(-1); typedef long double ld; const ld eps = (ld)1e-8; const int inf = e9 + 99; const long long linf = 1LL * e9 * e9 + 99; const int P = 998244353; void add(int &x, int y) { x += y; if (x >= P) x -= P; } void sub(int &x, int y) { x -= y; if (x < 0) x += P; } unsigned long long powq_ull(unsigned long long x, unsigned long long e, unsigned long long p) { if (!e) return 1; if (e & 1) return x * powq_ull(x, e - 1, p) % p; x = powq_ull(x, e >> 1, p); return x * x % p; } const unsigned long long PP = (119ULL << 23) + 1; const int AA = 119; const unsigned long long ROOT = 3; const unsigned long long INV_ROOT = 332748118; const unsigned long long TWO_INV = 499122177; vector<unsigned long long> fft(const vector<unsigned long long> &input, const bool inv = 0) { const unsigned long long P = PP; const int A = AA; const unsigned long long RT = ROOT; const unsigned long long IRT = INV_ROOT; const unsigned long long I2 = TWO_INV; const int N = (int)input.size(); vector<unsigned long long> arr(input); for (unsigned long long &x : arr) x %= P; for (int half = inv ? 1 : N / 2; 1 <= half && half < N; inv ? half <<= 1 : half >>= 1) { unsigned long long wm = inv ? IRT : RT; wm = powq_ull(wm, A, P); for (int ord = int((P - 1) / A); ord > 2 * half; ord >>= 1) wm = (wm * wm) % P; for (int st = 0; st < N; st += 2 * half) { unsigned long long w = 1; for (int j = st; j < st + half; ++j) { if (inv) arr[j + half] = arr[j + half] * w % P; unsigned long long a = arr[j], b = arr[j + half]; arr[j] = a + b; if (arr[j] >= P) arr[j] -= P; arr[j + half] = a + P - b; if (arr[j + half] >= P) arr[j + half] -= P; if (!inv) arr[j + half] = arr[j + half] * w % P; w = (w * wm) % P; } } } if (inv) { unsigned long long size_inv = 1; for (int sz = 2; sz <= N; sz <<= 1) size_inv = (size_inv * I2) % P; for (unsigned long long &x : arr) x = (x * size_inv) % P; } return arr; } vector<int> mulfst(const vector<int> &A, const vector<int> &B) { int m = (int((A).size())), n = (int((B).size())); int w = m + n - 1; for (; w & (w - 1);) ++w; vector<unsigned long long> AA(w, 0), BB(w, 0); for (int i = 0; i < m; i++) AA[i] = A[i]; for (int i = 0; i < n; i++) BB[i] = B[i]; AA = fft(AA); BB = fft(BB); for (int i = 0; i < w; i++) AA[i] *= BB[i]; AA = fft(AA, 1); for (; (int((AA).size())) > m + n - 1;) assert(!AA.back()), AA.pop_back(); vector<int> Z; for (unsigned long long x : AA) Z.push_back((int)x); return Z; } vector<int> mulslo(const vector<int> &A, const vector<int> &B) { int n = (int((A).size())), m = (int((B).size())); int w = m + n - 1; vector<int> Z(w, 0); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) add(Z[i + j], int(1LL * A[i] * B[j] % P)); return Z; } const int N = 100 << 10; int n, k; set<int> adj[N]; int p[N], sz[N]; int nn; int dfs_sz(int u, int _p = -1) { p[u] = _p; sz[u] = 1; for (int v : adj[u]) if (v != _p) sz[u] += dfs_sz(v, u); if (!~_p) nn = sz[u]; return sz[u]; } int siz(int u, int _p) { if (p[u] == _p) return sz[u]; assert(p[_p] == u); return nn - sz[_p]; } vector<int> ml(const vector<int> &szs, int l, int r) { if (l == r) return {1, szs[l]}; int m = (l + r) >> 1; return mulfst(ml(szs, l, m), ml(szs, m + 1, r)); } int ff(int x) { if (!x) return 1; static bool seen[N]; static int dp[N]; bool &sn = seen[x]; int &ans = dp[x]; if (sn) return ans; sn = 1; return ans = int(1LL * ff(x - 1) * x % P); } int iff(int x) { if (x == N - 3) return (int)powq_ull(ff(x), P - 2, P); static bool seen[N]; static int dp[N]; bool &sn = seen[x]; int &ans = dp[x]; if (sn) return ans; sn = 1; return ans = int(1LL * iff(x + 1) * (x + 1) % P); } int slow_eval(const vector<int> &p, int x) { int Z = 0; int qq = 0; for (int i = 0; i < (int((p).size())); i++) { qq = int((p[i] + P - 1LL * qq * x % P) % P); int fxqq = int(1LL * qq * ff(k) % P * iff(k - i) % P); add(Z, fxqq); } return Z; } map<int, int> WW[N]; int RR[N]; void solve(int u) { vector<int> sizs; for (int v : adj[u]) sizs.push_back(siz(v, u)); vector<int> poly = ml(sizs, 0, (int((sizs).size())) - 1); for (; (int((poly).size())) > k + 1;) poly.pop_back(); RR[u] = 0; for (int x : poly) add(RR[u], x); sort(sizs.begin(), sizs.end()); sizs.resize(unique(sizs.begin(), sizs.end()) - sizs.begin()); map<int, int> edp; for (int x : sizs) edp[x] = slow_eval(poly, x); for (int v : adj[u]) { int zz = edp[siz(v, u)]; WW[u][v] = zz; } } int dfs_ins(int u, int p) { assert(WW[u].count(p)); int z = WW[u][p]; for (int v : adj[u]) if (v != p) add(z, dfs_ins(v, u)); return z; } int FF; int dfs_zz(int u, int p) { assert(WW[u].count(p)); int Z = int(1LL * WW[u][p] * FF % P); for (int v : adj[u]) if (v != p) add(Z, dfs_zz(v, u)); return Z; } int decomp(int u) { dfs_sz(u); loop:; for (int v : adj[u]) if (siz(v, u) > siz(u, v)) { u = v; goto loop; } int Z = 0; FF = 0; for (int v : adj[u]) { add(Z, dfs_zz(v, u)); int r = dfs_ins(v, u); add(FF, r); add(Z, int(1LL * r * WW[u][v] % P)); } for (int v : adj[u]) adj[v].erase(u), add(Z, decomp(v)); adj[u].clear(); return Z; } int32_t main() { gbd_ns::_gbd1(344, "ff(3), ff(7), iff(3), iff(2), iff(1)", ff(3), ff(7), iff(3), iff(2), iff(1)); assert(P == PP); scanf("%d%d", &n, &k); for (int i = 1; i <= n - 1; i++) { int u, v; scanf("%d%d", &u, &v); adj[u].insert(v); adj[v].insert(u); } if (n == 1) return printf("0\n"), 0; if (k == 1) return printf("%d\n", int((1LL * n * (n - 1) / 2) % P)), 0; dfs_sz(1); assert(n == nn); for (int u = 1; u <= n; u++) solve(u); printf("%d\n", decomp(1)); } ```
#include <bits/stdc++.h> using namespace std; int get() { char ch; while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-') ; if (ch == '-') { int s = 0; while (ch = getchar(), ch >= '0' && ch <= '9') s = s * 10 + ch - '0'; return -s; } int s = ch - '0'; while (ch = getchar(), ch >= '0' && ch <= '9') s = s * 10 + ch - '0'; return s; } const int MAXN = (1 << 18) + 5; const int maxn = (1 << 18); const int mo = 998244353; const int g0 = 3; long long quickmi(long long x, long long tim) { long long ret = 1; for (; tim; tim /= 2, x = x * x % mo) if (tim & 1) ret = ret * x % mo; return ret; } long long add(long long x, long long y) { return x + y >= mo ? x + y - mo : x + y; } long long dec(long long x, long long y) { return x < y ? x - y + mo : x - y; } long long mi[MAXN], A[MAXN], B[MAXN], ny; int N; long long js[MAXN], inv[MAXN]; void DFT(long long *a) { for (int i = 0, j = 0; i < N; i++) { if (i < j) swap(a[i], a[j]); int x = N >> 1; for (; (j ^ x) < j; x >>= 1) j ^= x; j ^= x; } for (int i = 1, d = 1; i < N; i <<= 1, d++) for (int j = 0; j < N; j += (i << 1)) for (int k = 0; k < i; k++) { long long l = a[j + k], r = a[i + j + k] * mi[(maxn >> d) * k] % mo; a[i + j + k] = l < r ? l - r + mo : l - r; a[j + k] = l + r >= mo ? l + r - mo : l + r; } } void IDFT(long long *a) { DFT(a); reverse(a + 1, a + N); for (int i = 0; i <= N - 1; i++) a[i] = a[i] * ny % mo; } void prepare() { mi[0] = 1; mi[1] = quickmi(g0, (mo - 1) / maxn); for (int i = 2; i <= maxn; i++) mi[i] = mi[i - 1] * mi[1] % mo; js[0] = js[1] = 1; for (int i = 2; i <= maxn; i++) js[i] = js[i - 1] * i % mo; inv[0] = inv[1] = 1; for (int i = 2; i <= maxn; i++) inv[i] = 1ll * (mo - mo / i) * inv[mo % i] % mo; for (int i = 2; i <= maxn; i++) inv[i] = inv[i] * inv[i - 1] % mo; } int n, k; struct edge { int x, nxt; } e[MAXN * 2]; int h[MAXN], tot; void inse(int x, int y) { e[++tot].x = y; e[tot].nxt = h[x]; h[x] = tot; } int siz[MAXN], fa[MAXN]; int lef[MAXN], rig[MAXN]; void dfs1(int x) { siz[x] = 1; for (int p = h[x]; p; p = e[p].nxt) if (!siz[e[p].x]) { fa[e[p].x] = x; rig[e[p].x] = lef[x]; lef[x] = e[p].x; dfs1(e[p].x); siz[x] += siz[e[p].x]; } } int key[MAXN], u; long long poly[MAXN]; int st[MAXN], len[MAXN]; void getpoly() { int l = 0; for (int i = 1; i <= u; i++) { poly[++l] = key[i]; st[i] = l; len[i] = 1; } N = 2; for (; u > 1; N <<= 1) { ny = quickmi(N, mo - 2); int u_ = 0; for (int i = 1; i <= u;) { int j = i + 1; for (; j <= u && len[i] + len[j] < N; j++) { for (int x = 0; x <= N - 1; x++) A[x] = B[x] = 0; A[0] = B[0] = 1; for (int x = 1; x <= len[i]; x++) A[x] = poly[st[i] + x - 1]; for (int x = 1; x <= len[j]; x++) B[x] = poly[st[j] + x - 1]; DFT(A), DFT(B); for (int x = 0; x <= N - 1; x++) A[x] = A[x] * B[x] % mo; IDFT(A); for (int x = 1; x <= len[i] + len[j]; x++) poly[st[i] + x - 1] = A[x]; len[i] += len[j]; } st[++u_] = st[i]; len[u_] = len[i]; i = j; } u = u_; } } long long tmp[MAXN]; long long val[MAXN]; long long f[MAXN], g[MAXN], vf[MAXN], vg[MAXN]; long long ans; void dfs2(int x) { vf[x] = f[x]; for (int y = lef[x]; y; y = rig[y]) { dfs2(y); vf[x] = add(vf[x], vf[y]); } } void dfs3(int x) { ans = add(ans, f[x] * vg[x] % mo); long long pre = vg[x]; for (int y = lef[x]; y; y = rig[y]) { vg[y] = add(pre, g[y]); dfs3(y); pre = add(pre, vf[y]); } } int main() { n = get(); k = get(); if (k == 1) return printf("%I64d\n", 1ll * n * (n - 1) / 2 % mo), 0; for (int i = 2; i <= n; i++) { int x = get(), y = get(); inse(x, y), inse(y, x); } prepare(); dfs1(1); for (int ti = 1; ti <= n; ti++) { int st = ti; u = 0; for (int y = lef[st]; y; y = rig[y]) key[++u] = siz[y]; if (fa[st]) key[++u] = n - siz[st]; int pu = u; getpoly(); int Len = len[1]; poly[0] = 1; u = pu; sort(key + 1, key + 1 + u); int u_ = 1; for (int i = 2; i <= u; i++) if (key[i] > key[i - 1]) key[++u_] = key[i]; u = u_; for (int i = 1; i <= u; i++) { int v = key[i]; tmp[0] = poly[0]; for (int j = 1; j <= Len; j++) tmp[j] = (poly[j] + mo - tmp[j - 1] * v % mo) % mo; val[v] = 0; for (int j = 0; j <= min(k, Len); j++) val[v] = add(val[v], tmp[j] * inv[k - j] % mo); val[v] = val[v] * js[k] % mo; } for (int y = lef[st]; y; y = rig[y]) g[y] = val[siz[y]]; if (fa[st]) f[st] = val[n - siz[st]]; } ans = 0; dfs2(1); dfs3(1); printf("%I64d\n", ans); return 0; }
### Prompt Generate a cpp solution to the following problem: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using namespace std; int get() { char ch; while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-') ; if (ch == '-') { int s = 0; while (ch = getchar(), ch >= '0' && ch <= '9') s = s * 10 + ch - '0'; return -s; } int s = ch - '0'; while (ch = getchar(), ch >= '0' && ch <= '9') s = s * 10 + ch - '0'; return s; } const int MAXN = (1 << 18) + 5; const int maxn = (1 << 18); const int mo = 998244353; const int g0 = 3; long long quickmi(long long x, long long tim) { long long ret = 1; for (; tim; tim /= 2, x = x * x % mo) if (tim & 1) ret = ret * x % mo; return ret; } long long add(long long x, long long y) { return x + y >= mo ? x + y - mo : x + y; } long long dec(long long x, long long y) { return x < y ? x - y + mo : x - y; } long long mi[MAXN], A[MAXN], B[MAXN], ny; int N; long long js[MAXN], inv[MAXN]; void DFT(long long *a) { for (int i = 0, j = 0; i < N; i++) { if (i < j) swap(a[i], a[j]); int x = N >> 1; for (; (j ^ x) < j; x >>= 1) j ^= x; j ^= x; } for (int i = 1, d = 1; i < N; i <<= 1, d++) for (int j = 0; j < N; j += (i << 1)) for (int k = 0; k < i; k++) { long long l = a[j + k], r = a[i + j + k] * mi[(maxn >> d) * k] % mo; a[i + j + k] = l < r ? l - r + mo : l - r; a[j + k] = l + r >= mo ? l + r - mo : l + r; } } void IDFT(long long *a) { DFT(a); reverse(a + 1, a + N); for (int i = 0; i <= N - 1; i++) a[i] = a[i] * ny % mo; } void prepare() { mi[0] = 1; mi[1] = quickmi(g0, (mo - 1) / maxn); for (int i = 2; i <= maxn; i++) mi[i] = mi[i - 1] * mi[1] % mo; js[0] = js[1] = 1; for (int i = 2; i <= maxn; i++) js[i] = js[i - 1] * i % mo; inv[0] = inv[1] = 1; for (int i = 2; i <= maxn; i++) inv[i] = 1ll * (mo - mo / i) * inv[mo % i] % mo; for (int i = 2; i <= maxn; i++) inv[i] = inv[i] * inv[i - 1] % mo; } int n, k; struct edge { int x, nxt; } e[MAXN * 2]; int h[MAXN], tot; void inse(int x, int y) { e[++tot].x = y; e[tot].nxt = h[x]; h[x] = tot; } int siz[MAXN], fa[MAXN]; int lef[MAXN], rig[MAXN]; void dfs1(int x) { siz[x] = 1; for (int p = h[x]; p; p = e[p].nxt) if (!siz[e[p].x]) { fa[e[p].x] = x; rig[e[p].x] = lef[x]; lef[x] = e[p].x; dfs1(e[p].x); siz[x] += siz[e[p].x]; } } int key[MAXN], u; long long poly[MAXN]; int st[MAXN], len[MAXN]; void getpoly() { int l = 0; for (int i = 1; i <= u; i++) { poly[++l] = key[i]; st[i] = l; len[i] = 1; } N = 2; for (; u > 1; N <<= 1) { ny = quickmi(N, mo - 2); int u_ = 0; for (int i = 1; i <= u;) { int j = i + 1; for (; j <= u && len[i] + len[j] < N; j++) { for (int x = 0; x <= N - 1; x++) A[x] = B[x] = 0; A[0] = B[0] = 1; for (int x = 1; x <= len[i]; x++) A[x] = poly[st[i] + x - 1]; for (int x = 1; x <= len[j]; x++) B[x] = poly[st[j] + x - 1]; DFT(A), DFT(B); for (int x = 0; x <= N - 1; x++) A[x] = A[x] * B[x] % mo; IDFT(A); for (int x = 1; x <= len[i] + len[j]; x++) poly[st[i] + x - 1] = A[x]; len[i] += len[j]; } st[++u_] = st[i]; len[u_] = len[i]; i = j; } u = u_; } } long long tmp[MAXN]; long long val[MAXN]; long long f[MAXN], g[MAXN], vf[MAXN], vg[MAXN]; long long ans; void dfs2(int x) { vf[x] = f[x]; for (int y = lef[x]; y; y = rig[y]) { dfs2(y); vf[x] = add(vf[x], vf[y]); } } void dfs3(int x) { ans = add(ans, f[x] * vg[x] % mo); long long pre = vg[x]; for (int y = lef[x]; y; y = rig[y]) { vg[y] = add(pre, g[y]); dfs3(y); pre = add(pre, vf[y]); } } int main() { n = get(); k = get(); if (k == 1) return printf("%I64d\n", 1ll * n * (n - 1) / 2 % mo), 0; for (int i = 2; i <= n; i++) { int x = get(), y = get(); inse(x, y), inse(y, x); } prepare(); dfs1(1); for (int ti = 1; ti <= n; ti++) { int st = ti; u = 0; for (int y = lef[st]; y; y = rig[y]) key[++u] = siz[y]; if (fa[st]) key[++u] = n - siz[st]; int pu = u; getpoly(); int Len = len[1]; poly[0] = 1; u = pu; sort(key + 1, key + 1 + u); int u_ = 1; for (int i = 2; i <= u; i++) if (key[i] > key[i - 1]) key[++u_] = key[i]; u = u_; for (int i = 1; i <= u; i++) { int v = key[i]; tmp[0] = poly[0]; for (int j = 1; j <= Len; j++) tmp[j] = (poly[j] + mo - tmp[j - 1] * v % mo) % mo; val[v] = 0; for (int j = 0; j <= min(k, Len); j++) val[v] = add(val[v], tmp[j] * inv[k - j] % mo); val[v] = val[v] * js[k] % mo; } for (int y = lef[st]; y; y = rig[y]) g[y] = val[siz[y]]; if (fa[st]) f[st] = val[n - siz[st]]; } ans = 0; dfs2(1); dfs3(1); printf("%I64d\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; namespace NTT { int mbase, base, root; int w[1 << 19]; int rev[1 << 19]; int modPow(int b, int e) { int r = 1; while (e > 0) { if (e & 1) r = ((long long int)r * b) % 998244353; e >>= 1; b = ((long long int)b * b) % 998244353; } return r; } int setBase(int nbase) { int i, j; mbase = 1; while (!(998244353 & (1 << mbase))) mbase++; root = 2; while ((modPow(root, 1 << mbase) != 1) || (modPow(root, 1 << (mbase - 1)) == 1)) root++; base = nbase; for (i = 0; i < (1 << base); i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (base - 1)); w[0] = 0, w[1] = 1; for (i = 1; i < nbase; i++) { int z = modPow(root, 1 << (mbase - i - 1)); for (j = (1 << (i - 1)); j < (1 << i); j++) w[j << 1] = w[j], w[(j << 1) | 1] = ((long long int)w[j] * z) % 998244353; } return 0; } int FFT(vector<int> &a, int inv) { int i, j, k; int l = 0; while ((1 << l) < a.size()) l++; int s = base - l; for (i = 0; i < a.size(); i++) { if (i < (rev[i] >> s)) swap(a[i], a[rev[i] >> s]); } for (k = 1; k < a.size(); k <<= 1) { for (i = 0; i < a.size(); i += (k << 1)) { for (j = 0; j < k; j++) { int z = ((long long int)a[i + j + k] * w[j + k]) % 998244353; a[i + j + k] = a[i + j] - z, a[i + j] += z; if (a[i + j + k] < 0) a[i + j + k] += 998244353; if (a[i + j] >= 998244353) a[i + j] -= 998244353; } } } return 0; } vector<int> multiply(vector<int> A, vector<int> B) { int i, n = 1; while (n < A.size() + B.size() - 1) n <<= 1; vector<int> a(n, 0), b(n, 0); for (i = 0; i < A.size(); i++) a[i] = A[i]; for (i = 0; i < B.size(); i++) b[i] = B[i]; FFT(a, 0), FFT(b, 0); int x = modPow(n, 998244353 - 2); for (i = 0; i < n; i++) a[i] = ((((long long int)a[i] * b[i]) % 998244353) * x) % 998244353; reverse(a.begin() + 1, a.end()), FFT(a, 1), a.resize(A.size() + B.size() - 1); return a; } } // namespace NTT vector<int> adjList[100000]; int parent[100000], size[100000]; int doDFS(int u, int p) { int i; parent[u] = p, size[u] = 1; for (i = 0; i < adjList[u].size(); i++) { int v = adjList[u][i]; if (v != p) size[u] += doDFS(v, u); } return size[u]; } int down[100000], up[100000]; vector<int> mult(vector<vector<int> > &v, int l, int r) { if (l == r) return v[l]; else if (l > r) return vector<int>(1, 1); int i; int mid = (l + r) / 2; vector<int> ll = mult(v, l, mid), rr = mult(v, mid + 1, r), ans; vector<int> temp = NTT::multiply(ll, rr); for (i = 0; i < temp.size(); i++) ans.push_back(temp[i] % 998244353); return ans; } vector<int> p[100000]; int ans = 0; int doDFS2(int u, int p) { int i; int s = 0; for (i = 0; i < adjList[u].size(); i++) { int v = adjList[u][i]; if (v != p) { doDFS2(v, u); down[u] += down[v], down[u] %= 998244353; ans += ((long long int)down[v] * up[v]) % 998244353, ans %= 998244353; ans += ((long long int)s * down[v]) % 998244353, ans %= 998244353; s += down[v], s %= 998244353; } } return 0; } int main() { int i; int n, k, a, b; scanf("%d %d", &n, &k); for (i = 0; i < n - 1; i++) { scanf("%d %d", &a, &b); a--, b--; adjList[a].push_back(b); adjList[b].push_back(a); } if (k == 1) { printf("%d\n", ((long long int)n * (n - 1) / 2) % 998244353); return 0; } int j, l; doDFS(0, -1); NTT::setBase(17); for (i = 0; i < n; i++) { vector<vector<int> > vv; for (j = 0; j < adjList[i].size(); j++) { int v = adjList[i][j]; if (v != parent[i]) { vector<int> vvv(2); vvv[0] = size[v], vvv[1] = 1; vv.push_back(vvv); } else { vector<int> vvv(2); vvv[0] = n - size[i], vvv[1] = 1; vv.push_back(vvv); } } p[i] = mult(vv, 0, (int)vv.size() - 1); } for (i = 0; i < n; i++) { map<int, int> M; vector<int> poly = p[i]; if (i > 0) { for (j = poly.size() - 1; j >= 1; j--) poly[j - 1] += 998244353 - (((long long int)(n - size[i]) * poly[j]) % 998244353), poly[j - 1] %= 998244353; for (j = 0; j < poly.size() - 1; j++) poly[j] = poly[j + 1]; poly.pop_back(); } long long int c = 1; for (j = 0; j < poly.size(); j++) { down[i] += (poly[poly.size() - j - 1] * c) % 998244353, down[i] %= 998244353; c *= k - j, c %= 998244353; } M[n - size[i]] = down[i]; for (j = 0; j < adjList[i].size(); j++) { int v = adjList[i][j]; if (v != parent[i]) { if (M.count(size[v])) up[v] = M[size[v]]; else { vector<int> poly = p[i]; for (l = poly.size() - 1; l >= 1; l--) poly[l - 1] += 998244353 - (((long long int)size[v] * poly[l]) % 998244353), poly[l - 1] %= 998244353; for (l = 0; l < poly.size() - 1; l++) poly[l] = poly[l + 1]; poly.pop_back(); long long int c = 1; for (l = 0; l < poly.size(); l++) { up[v] += (poly[poly.size() - l - 1] * c) % 998244353, up[v] %= 998244353; c *= k - l, c %= 998244353; } M[size[v]] = up[v]; } } } } doDFS2(0, -1); printf("%d\n", ans); return 0; }
### Prompt Your challenge is to write a Cpp solution to the following problem: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using namespace std; namespace NTT { int mbase, base, root; int w[1 << 19]; int rev[1 << 19]; int modPow(int b, int e) { int r = 1; while (e > 0) { if (e & 1) r = ((long long int)r * b) % 998244353; e >>= 1; b = ((long long int)b * b) % 998244353; } return r; } int setBase(int nbase) { int i, j; mbase = 1; while (!(998244353 & (1 << mbase))) mbase++; root = 2; while ((modPow(root, 1 << mbase) != 1) || (modPow(root, 1 << (mbase - 1)) == 1)) root++; base = nbase; for (i = 0; i < (1 << base); i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (base - 1)); w[0] = 0, w[1] = 1; for (i = 1; i < nbase; i++) { int z = modPow(root, 1 << (mbase - i - 1)); for (j = (1 << (i - 1)); j < (1 << i); j++) w[j << 1] = w[j], w[(j << 1) | 1] = ((long long int)w[j] * z) % 998244353; } return 0; } int FFT(vector<int> &a, int inv) { int i, j, k; int l = 0; while ((1 << l) < a.size()) l++; int s = base - l; for (i = 0; i < a.size(); i++) { if (i < (rev[i] >> s)) swap(a[i], a[rev[i] >> s]); } for (k = 1; k < a.size(); k <<= 1) { for (i = 0; i < a.size(); i += (k << 1)) { for (j = 0; j < k; j++) { int z = ((long long int)a[i + j + k] * w[j + k]) % 998244353; a[i + j + k] = a[i + j] - z, a[i + j] += z; if (a[i + j + k] < 0) a[i + j + k] += 998244353; if (a[i + j] >= 998244353) a[i + j] -= 998244353; } } } return 0; } vector<int> multiply(vector<int> A, vector<int> B) { int i, n = 1; while (n < A.size() + B.size() - 1) n <<= 1; vector<int> a(n, 0), b(n, 0); for (i = 0; i < A.size(); i++) a[i] = A[i]; for (i = 0; i < B.size(); i++) b[i] = B[i]; FFT(a, 0), FFT(b, 0); int x = modPow(n, 998244353 - 2); for (i = 0; i < n; i++) a[i] = ((((long long int)a[i] * b[i]) % 998244353) * x) % 998244353; reverse(a.begin() + 1, a.end()), FFT(a, 1), a.resize(A.size() + B.size() - 1); return a; } } // namespace NTT vector<int> adjList[100000]; int parent[100000], size[100000]; int doDFS(int u, int p) { int i; parent[u] = p, size[u] = 1; for (i = 0; i < adjList[u].size(); i++) { int v = adjList[u][i]; if (v != p) size[u] += doDFS(v, u); } return size[u]; } int down[100000], up[100000]; vector<int> mult(vector<vector<int> > &v, int l, int r) { if (l == r) return v[l]; else if (l > r) return vector<int>(1, 1); int i; int mid = (l + r) / 2; vector<int> ll = mult(v, l, mid), rr = mult(v, mid + 1, r), ans; vector<int> temp = NTT::multiply(ll, rr); for (i = 0; i < temp.size(); i++) ans.push_back(temp[i] % 998244353); return ans; } vector<int> p[100000]; int ans = 0; int doDFS2(int u, int p) { int i; int s = 0; for (i = 0; i < adjList[u].size(); i++) { int v = adjList[u][i]; if (v != p) { doDFS2(v, u); down[u] += down[v], down[u] %= 998244353; ans += ((long long int)down[v] * up[v]) % 998244353, ans %= 998244353; ans += ((long long int)s * down[v]) % 998244353, ans %= 998244353; s += down[v], s %= 998244353; } } return 0; } int main() { int i; int n, k, a, b; scanf("%d %d", &n, &k); for (i = 0; i < n - 1; i++) { scanf("%d %d", &a, &b); a--, b--; adjList[a].push_back(b); adjList[b].push_back(a); } if (k == 1) { printf("%d\n", ((long long int)n * (n - 1) / 2) % 998244353); return 0; } int j, l; doDFS(0, -1); NTT::setBase(17); for (i = 0; i < n; i++) { vector<vector<int> > vv; for (j = 0; j < adjList[i].size(); j++) { int v = adjList[i][j]; if (v != parent[i]) { vector<int> vvv(2); vvv[0] = size[v], vvv[1] = 1; vv.push_back(vvv); } else { vector<int> vvv(2); vvv[0] = n - size[i], vvv[1] = 1; vv.push_back(vvv); } } p[i] = mult(vv, 0, (int)vv.size() - 1); } for (i = 0; i < n; i++) { map<int, int> M; vector<int> poly = p[i]; if (i > 0) { for (j = poly.size() - 1; j >= 1; j--) poly[j - 1] += 998244353 - (((long long int)(n - size[i]) * poly[j]) % 998244353), poly[j - 1] %= 998244353; for (j = 0; j < poly.size() - 1; j++) poly[j] = poly[j + 1]; poly.pop_back(); } long long int c = 1; for (j = 0; j < poly.size(); j++) { down[i] += (poly[poly.size() - j - 1] * c) % 998244353, down[i] %= 998244353; c *= k - j, c %= 998244353; } M[n - size[i]] = down[i]; for (j = 0; j < adjList[i].size(); j++) { int v = adjList[i][j]; if (v != parent[i]) { if (M.count(size[v])) up[v] = M[size[v]]; else { vector<int> poly = p[i]; for (l = poly.size() - 1; l >= 1; l--) poly[l - 1] += 998244353 - (((long long int)size[v] * poly[l]) % 998244353), poly[l - 1] %= 998244353; for (l = 0; l < poly.size() - 1; l++) poly[l] = poly[l + 1]; poly.pop_back(); long long int c = 1; for (l = 0; l < poly.size(); l++) { up[v] += (poly[poly.size() - l - 1] * c) % 998244353, up[v] %= 998244353; c *= k - l, c %= 998244353; } M[size[v]] = up[v]; } } } } doDFS2(0, -1); printf("%d\n", ans); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 262333, mod = 998244353, G = 3, inv2 = (mod + 1) >> 1; int read() { int ret = 0; char c = getchar(); while (!isdigit(c)) c = getchar(); while (isdigit(c)) ret = ret * 10 + (c ^ 48), c = getchar(); return ret; } namespace Math { int fac[N], ifac[N], inv[N]; int add(int x) { return x >= mod ? x - mod : x; } int sub(int x) { return x < 0 ? x + mod : x; } void Add(int &x, int y) { x = add(x + y); } void Sub(int &x, int y) { x = sub(x - y); } int mul(int x, int y) { return 1ll * x * y % mod; } int qpow(int x, int y) { int res = 1; for (; y; y >>= 1, x = mul(x, x)) if (y & 1) res = mul(res, x); return res; } int getinv(int x) { return qpow(x, mod - 2); } void initmath() { fac[0] = 1; for (int i = 1; i < N; ++i) fac[i] = mul(fac[i - 1], i); ifac[N - 1] = getinv(fac[N - 1]); for (int i = N - 2; ~i; --i) ifac[i] = mul(ifac[i + 1], i + 1); inv[0] = inv[1] = 1; for (int i = 2; i < N; ++i) inv[i] = mul(mod - mod / i, inv[mod % i]); } int P(int x, int y) { return 1ll * fac[x] * ifac[x - y] % mod; } } // namespace Math using namespace Math; namespace Poly { int m, L, rev[N]; void ntt(int *a, int n, int op) { for (int i = 0; i < n; ++i) if (i < rev[i]) swap(a[i], a[rev[i]]); for (int i = 1; i < n; i <<= 1) { int wn = qpow(G, (mod - 1) / (i << 1)); if (!~op) wn = getinv(wn); for (int j = 0; j < n; j += i << 1) { int w = 1; for (int k = 0; k < i; ++k, w = mul(w, wn)) { int x = a[j + k], y = mul(w, a[i + j + k]); a[j + k] = add(x + y); a[i + j + k] = sub(x - y); } } } if (!~op) for (int i = 0, iv = getinv(n); i < n; ++i) a[i] = mul(iv, a[i]); } void reget(int n) { for (m = 1, L = 0; m < n; m <<= 1, ++L) ; for (int i = 0; i < m; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (L - 1)); } void polymul(int *a, int *b, int *c) { ntt(a, m, 1); ntt(b, m, 1); for (int i = 0; i < m; ++i) c[i] = mul(a[i], b[i]); ntt(c, m, -1); } void polymult(int *a, int *b, int *c, int dega, int degb) { static int A[N], B[N]; reget(dega + degb - 1); copy(a, a + dega, A); copy(b, b + degb, B); polymul(A, B, c); fill(c + dega + degb - 1, c + m, 0); fill(A, A + m, 0); fill(B, B + m, 0); } void polydec(int *a, int deg, int v) { static int A[N]; int coe = getinv(v), iv; for (int i = 0; i < deg; ++i) A[i] = a[i], a[i] = 0; for (int i = deg - 1; i; --i) { if (A[i]) { a[i - 1] = iv = mul(A[i], coe); Sub(A[i], mul(iv, coe)); Sub(A[i - 1], iv); } } fill(A, A + deg, 0); } void polyadd(int *a, int deg, int v) { for (int i = deg; i; --i) Add(a[i], mul(a[i - 1], v)); } } // namespace Poly using namespace Poly; namespace DreamLolita { int n, K, tot, ans; int head[N], siz[N], now[N], val[N], tmp[N]; int f[N], g[N], h[N], F[20][N]; struct Tway { int v, nex; } e[N]; void add(int u, int v) { e[++tot] = (Tway){v, head[u]}; head[u] = tot; e[++tot] = (Tway){u, head[v]}; head[v] = tot; } void solve(int l, int r, int d) { if (l == r) { F[d][1] = val[l]; F[d][0] = 1; return; } int mid = (l + r) >> 1; solve(l, mid, d); solve(mid + 1, r, d + 1); polymult(F[d], F[d + 1], F[d], mid - l + 2, r - mid + 1); fill(F[d + 1], F[d + 1] + Poly::m, 0); } int calc(int *a, int len) { int res = 0, lim = min(len, K); for (int i = 0; i <= lim; ++i) Add(res, mul(a[i], P(K, i))); return res; } bool cmp(int x, int y) { return siz[x] < siz[y]; } void dfs1(int x, int fa) { siz[x] = 1; int son = 0; for (int i = head[x]; i; i = e[i].nex) { int v = e[i].v; if (v == fa) continue; dfs1(v, x); Add(g[x], g[v]); siz[x] += siz[v]; } for (int i = head[x]; i; i = e[i].nex) if (e[i].v != fa) val[++son] = siz[e[i].v]; ; if (!son) { f[x] = g[x] = 1; return; } solve(1, son, 0); f[x] = calc(F[0], son); Add(g[x], f[x]); son = 0; for (int i = head[x]; i; i = e[i].nex) if (e[i].v != fa) val[++son] = e[i].v; sort(val + 1, val + son + 1, cmp); for (int i = 0; i <= son; ++i) tmp[i] = F[0][i]; for (int i = 1; i <= son; ++i) { if (siz[val[i]] == siz[val[i - 1]]) h[val[i]] = h[val[i - 1]]; else { for (int j = 0; j <= son; ++j) now[j] = tmp[j]; polydec(now, son + 1, siz[val[i]]); polyadd(now, son, n - siz[x]); h[val[i]] = calc(now, son); } } fill(F[0], F[0] + Poly::m, 0); for (int i = 0; i <= son; ++i) now[i] = tmp[i] = 0; } void dfs2(int x, int fa) { for (int i = head[x]; i; i = e[i].nex) { int v = e[i].v; if (v == fa) continue; Add(ans, mul(sub(h[v] - f[x]), g[v])); dfs2(v, x); } } void solution() { initmath(); n = read(); K = read(); if (K == 1) { printf("%lld\n", 1ll * n * (n - 1) / 2 % mod); return; } for (int i = 1; i < n; ++i) add(read(), read()); dfs1(1, 0); dfs2(1, 0); int sum = 0; for (int i = 1; i <= n; ++i) Add(sum, f[i]); sum = mul(sum, sum); for (int i = 1; i <= n; ++i) Sub(sum, mul(f[i], f[i])); sum = mul(sum, inv2); Add(ans, sum); printf("%d\n", ans); } } // namespace DreamLolita int main() { DreamLolita::solution(); return 0; }
### Prompt Please provide a CPP coded solution to the problem described below: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 262333, mod = 998244353, G = 3, inv2 = (mod + 1) >> 1; int read() { int ret = 0; char c = getchar(); while (!isdigit(c)) c = getchar(); while (isdigit(c)) ret = ret * 10 + (c ^ 48), c = getchar(); return ret; } namespace Math { int fac[N], ifac[N], inv[N]; int add(int x) { return x >= mod ? x - mod : x; } int sub(int x) { return x < 0 ? x + mod : x; } void Add(int &x, int y) { x = add(x + y); } void Sub(int &x, int y) { x = sub(x - y); } int mul(int x, int y) { return 1ll * x * y % mod; } int qpow(int x, int y) { int res = 1; for (; y; y >>= 1, x = mul(x, x)) if (y & 1) res = mul(res, x); return res; } int getinv(int x) { return qpow(x, mod - 2); } void initmath() { fac[0] = 1; for (int i = 1; i < N; ++i) fac[i] = mul(fac[i - 1], i); ifac[N - 1] = getinv(fac[N - 1]); for (int i = N - 2; ~i; --i) ifac[i] = mul(ifac[i + 1], i + 1); inv[0] = inv[1] = 1; for (int i = 2; i < N; ++i) inv[i] = mul(mod - mod / i, inv[mod % i]); } int P(int x, int y) { return 1ll * fac[x] * ifac[x - y] % mod; } } // namespace Math using namespace Math; namespace Poly { int m, L, rev[N]; void ntt(int *a, int n, int op) { for (int i = 0; i < n; ++i) if (i < rev[i]) swap(a[i], a[rev[i]]); for (int i = 1; i < n; i <<= 1) { int wn = qpow(G, (mod - 1) / (i << 1)); if (!~op) wn = getinv(wn); for (int j = 0; j < n; j += i << 1) { int w = 1; for (int k = 0; k < i; ++k, w = mul(w, wn)) { int x = a[j + k], y = mul(w, a[i + j + k]); a[j + k] = add(x + y); a[i + j + k] = sub(x - y); } } } if (!~op) for (int i = 0, iv = getinv(n); i < n; ++i) a[i] = mul(iv, a[i]); } void reget(int n) { for (m = 1, L = 0; m < n; m <<= 1, ++L) ; for (int i = 0; i < m; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (L - 1)); } void polymul(int *a, int *b, int *c) { ntt(a, m, 1); ntt(b, m, 1); for (int i = 0; i < m; ++i) c[i] = mul(a[i], b[i]); ntt(c, m, -1); } void polymult(int *a, int *b, int *c, int dega, int degb) { static int A[N], B[N]; reget(dega + degb - 1); copy(a, a + dega, A); copy(b, b + degb, B); polymul(A, B, c); fill(c + dega + degb - 1, c + m, 0); fill(A, A + m, 0); fill(B, B + m, 0); } void polydec(int *a, int deg, int v) { static int A[N]; int coe = getinv(v), iv; for (int i = 0; i < deg; ++i) A[i] = a[i], a[i] = 0; for (int i = deg - 1; i; --i) { if (A[i]) { a[i - 1] = iv = mul(A[i], coe); Sub(A[i], mul(iv, coe)); Sub(A[i - 1], iv); } } fill(A, A + deg, 0); } void polyadd(int *a, int deg, int v) { for (int i = deg; i; --i) Add(a[i], mul(a[i - 1], v)); } } // namespace Poly using namespace Poly; namespace DreamLolita { int n, K, tot, ans; int head[N], siz[N], now[N], val[N], tmp[N]; int f[N], g[N], h[N], F[20][N]; struct Tway { int v, nex; } e[N]; void add(int u, int v) { e[++tot] = (Tway){v, head[u]}; head[u] = tot; e[++tot] = (Tway){u, head[v]}; head[v] = tot; } void solve(int l, int r, int d) { if (l == r) { F[d][1] = val[l]; F[d][0] = 1; return; } int mid = (l + r) >> 1; solve(l, mid, d); solve(mid + 1, r, d + 1); polymult(F[d], F[d + 1], F[d], mid - l + 2, r - mid + 1); fill(F[d + 1], F[d + 1] + Poly::m, 0); } int calc(int *a, int len) { int res = 0, lim = min(len, K); for (int i = 0; i <= lim; ++i) Add(res, mul(a[i], P(K, i))); return res; } bool cmp(int x, int y) { return siz[x] < siz[y]; } void dfs1(int x, int fa) { siz[x] = 1; int son = 0; for (int i = head[x]; i; i = e[i].nex) { int v = e[i].v; if (v == fa) continue; dfs1(v, x); Add(g[x], g[v]); siz[x] += siz[v]; } for (int i = head[x]; i; i = e[i].nex) if (e[i].v != fa) val[++son] = siz[e[i].v]; ; if (!son) { f[x] = g[x] = 1; return; } solve(1, son, 0); f[x] = calc(F[0], son); Add(g[x], f[x]); son = 0; for (int i = head[x]; i; i = e[i].nex) if (e[i].v != fa) val[++son] = e[i].v; sort(val + 1, val + son + 1, cmp); for (int i = 0; i <= son; ++i) tmp[i] = F[0][i]; for (int i = 1; i <= son; ++i) { if (siz[val[i]] == siz[val[i - 1]]) h[val[i]] = h[val[i - 1]]; else { for (int j = 0; j <= son; ++j) now[j] = tmp[j]; polydec(now, son + 1, siz[val[i]]); polyadd(now, son, n - siz[x]); h[val[i]] = calc(now, son); } } fill(F[0], F[0] + Poly::m, 0); for (int i = 0; i <= son; ++i) now[i] = tmp[i] = 0; } void dfs2(int x, int fa) { for (int i = head[x]; i; i = e[i].nex) { int v = e[i].v; if (v == fa) continue; Add(ans, mul(sub(h[v] - f[x]), g[v])); dfs2(v, x); } } void solution() { initmath(); n = read(); K = read(); if (K == 1) { printf("%lld\n", 1ll * n * (n - 1) / 2 % mod); return; } for (int i = 1; i < n; ++i) add(read(), read()); dfs1(1, 0); dfs2(1, 0); int sum = 0; for (int i = 1; i <= n; ++i) Add(sum, f[i]); sum = mul(sum, sum); for (int i = 1; i <= n; ++i) Sub(sum, mul(f[i], f[i])); sum = mul(sum, inv2); Add(ans, sum); printf("%d\n", ans); } } // namespace DreamLolita int main() { DreamLolita::solution(); return 0; } ```
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; const int MOD = 998244353; const int g = 3; int qpow(int x, int y = MOD - 2) { int res = 1; for (; y; y >>= 1, x = (long long)x * x % MOD) if (y & 1) res = (long long)res * x % MOD; return res; } int n, K, jc[N], njc[N]; void Prework() { jc[0] = 1; for (int i = 1; i <= K; ++i) jc[i] = (long long)jc[i - 1] * i % MOD; njc[K] = qpow(jc[K]); for (int i = K - 1; ~i; --i) njc[i] = (long long)njc[i + 1] * (i + 1) % MOD; } int Ar(int n, int m) { return (long long)jc[n] * njc[n - m] % MOD; } int sz[N], sm[N]; vector<int> G[N]; int U(int x, int y) { return ((x += y) >= MOD) ? (x - MOD) : x; } void SU(int& x, int y) { ((x += y) >= MOD) ? (x -= MOD) : 0; } int ans; vector<int> t; int w[N] = {1}; void FFT(vector<int>& A, bool fl) { int L = A.size(); for (int i = 1, j = L >> 1, k; i < L; ++i, j ^= k) { if (i < j) swap(A[i], A[j]); k = L >> 1; while (j & k) { j ^= k; k >>= 1; } } for (int i = 1; i < L; i <<= 1) { int t = qpow(g, (MOD - 1) / (i << 1)); if (fl) t = qpow(t); for (int j = 1; j < i; ++j) w[j] = (long long)w[j - 1] * t % MOD; vector<int>::iterator p = A.begin(), q = p + i; for (int j = 0; j < L; j += (i << 1), p += i, q += i) { for (int k = 0; k < i; ++k, ++p, ++q) { t = (long long)(*q) * w[k] % MOD; *q = U(*p, MOD - t); SU(*p, t); } } } if (fl) { int t = qpow(L); for (int i = 0; i < L; ++i) A[i] = (long long)A[i] * t % MOD; } } void Print(const vector<int> p) { for (int v : p) cout << v << " "; cout << endl; } void Fuck() { cout << "!!!!!!!!!!!!!!!!!!" << endl; } void deFuck() { cout << "------------------" << endl; } vector<int> operator*(vector<int> A, vector<int> B) { int len = A.size() + B.size() - 1, l; for (l = 1; l < len; l <<= 1) ; A.resize(l); FFT(A, false); B.resize(l); FFT(B, false); for (int i = 0; i < l; ++i) A[i] = (long long)A[i] * B[i] % MOD; FFT(A, true); A.resize(len); return A; } vector<int> DivCalc(int l, int r) { vector<int> res; if (l < r) { int mid = (l + r) >> 1; vector<int> A = DivCalc(l, mid), B = DivCalc(mid + 1, r); res = A * B; } else if (l == r) { res.emplace_back(1); res.emplace_back(t[l]); } else if (l > r) res.emplace_back(1); return res; } int Dark(vector<int> p, int x, int y) { for (int i = 1; i <= (int)p.size() - 1; ++i) SU(p[i], MOD - (long long)y * p[i - 1] % MOD); for (int i = p.size() - 1; i > 0; --i) SU(p[i], (long long)x * p[i - 1] % MOD); int res = 0; for (int i = 1; i < (int)p.size(); ++i) SU(res, (long long)p[i] * Ar(K, i) % MOD); return res; } int rec[N], vis[N], cc; void Dfs(int u, int fa = 0) { sz[u] = sm[u] = 1; for (int v : G[u]) if (v != fa) { Dfs(v, u); SU(ans, (long long)sm[u] * sm[v] % MOD); SU(sm[u], sm[v]); sz[u] += sz[v]; } t.clear(); for (int v : G[u]) if (v != fa) t.emplace_back(sz[v]); static vector<int> p; p = DivCalc(0, t.size() - 1); if ((int)p.size() - 1 > K) p.resize(K + 1); for (int i = 1; i < (int)p.size(); ++i) SU(sm[u], (long long)Ar(K, i) * p[i] % MOD); ++cc; for (int v : G[u]) if (v != fa) { if (vis[sz[v]] != cc) { rec[sz[v]] = Dark(p, n - sz[u], sz[v]); vis[sz[v]] = cc; } SU(ans, (long long)rec[sz[v]] * sm[v] % MOD); } } int main() { scanf("%d%d", &n, &K); if (K == 1) { printf("%lld\n", (long long)n * (n - 1) / 2 % MOD); return 0; } Prework(); for (int i = 1, u, v; i < n; ++i) { scanf("%d%d", &u, &v); G[u].emplace_back(v); G[v].emplace_back(u); } Dfs(1); printf("%d\n", ans); return 0; }
### Prompt Develop a solution in cpp to the problem described below: You are given a tree of n vertices. You are to select k (not necessarily distinct) simple paths in such a way that it is possible to split all edges of the tree into three sets: edges not contained in any path, edges that are a part of exactly one of these paths, and edges that are parts of all selected paths, and the latter set should be non-empty. Compute the number of ways to select k paths modulo 998244353. The paths are enumerated, in other words, two ways are considered distinct if there are such i (1 ≤ i ≤ k) and an edge that the i-th path contains the edge in one way and does not contain it in the other. Input The first line contains two integers n and k (1 ≤ n, k ≤ 10^{5}) — the number of vertices in the tree and the desired number of paths. The next n - 1 lines describe edges of the tree. Each line contains two integers a and b (1 ≤ a, b ≤ n, a ≠ b) — the endpoints of an edge. It is guaranteed that the given edges form a tree. Output Print the number of ways to select k enumerated not necessarily distinct simple paths in such a way that for each edge either it is not contained in any path, or it is contained in exactly one path, or it is contained in all k paths, and the intersection of all paths is non-empty. As the answer can be large, print it modulo 998244353. Examples Input 3 2 1 2 2 3 Output 7 Input 5 1 4 1 2 3 4 5 2 1 Output 10 Input 29 29 1 2 1 3 1 4 1 5 5 6 5 7 5 8 8 9 8 10 8 11 11 12 11 13 11 14 14 15 14 16 14 17 17 18 17 19 17 20 20 21 20 22 20 23 23 24 23 25 23 26 26 27 26 28 26 29 Output 125580756 Note In the first example the following ways are valid: * ((1,2), (1,2)), * ((1,2), (1,3)), * ((1,3), (1,2)), * ((1,3), (1,3)), * ((1,3), (2,3)), * ((2,3), (1,3)), * ((2,3), (2,3)). In the second example k=1, so all n ⋅ (n - 1) / 2 = 5 ⋅ 4 / 2 = 10 paths are valid. In the third example, the answer is ≥ 998244353, so it was taken modulo 998244353, don't forget it! ### Response ```cpp #include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; const int MOD = 998244353; const int g = 3; int qpow(int x, int y = MOD - 2) { int res = 1; for (; y; y >>= 1, x = (long long)x * x % MOD) if (y & 1) res = (long long)res * x % MOD; return res; } int n, K, jc[N], njc[N]; void Prework() { jc[0] = 1; for (int i = 1; i <= K; ++i) jc[i] = (long long)jc[i - 1] * i % MOD; njc[K] = qpow(jc[K]); for (int i = K - 1; ~i; --i) njc[i] = (long long)njc[i + 1] * (i + 1) % MOD; } int Ar(int n, int m) { return (long long)jc[n] * njc[n - m] % MOD; } int sz[N], sm[N]; vector<int> G[N]; int U(int x, int y) { return ((x += y) >= MOD) ? (x - MOD) : x; } void SU(int& x, int y) { ((x += y) >= MOD) ? (x -= MOD) : 0; } int ans; vector<int> t; int w[N] = {1}; void FFT(vector<int>& A, bool fl) { int L = A.size(); for (int i = 1, j = L >> 1, k; i < L; ++i, j ^= k) { if (i < j) swap(A[i], A[j]); k = L >> 1; while (j & k) { j ^= k; k >>= 1; } } for (int i = 1; i < L; i <<= 1) { int t = qpow(g, (MOD - 1) / (i << 1)); if (fl) t = qpow(t); for (int j = 1; j < i; ++j) w[j] = (long long)w[j - 1] * t % MOD; vector<int>::iterator p = A.begin(), q = p + i; for (int j = 0; j < L; j += (i << 1), p += i, q += i) { for (int k = 0; k < i; ++k, ++p, ++q) { t = (long long)(*q) * w[k] % MOD; *q = U(*p, MOD - t); SU(*p, t); } } } if (fl) { int t = qpow(L); for (int i = 0; i < L; ++i) A[i] = (long long)A[i] * t % MOD; } } void Print(const vector<int> p) { for (int v : p) cout << v << " "; cout << endl; } void Fuck() { cout << "!!!!!!!!!!!!!!!!!!" << endl; } void deFuck() { cout << "------------------" << endl; } vector<int> operator*(vector<int> A, vector<int> B) { int len = A.size() + B.size() - 1, l; for (l = 1; l < len; l <<= 1) ; A.resize(l); FFT(A, false); B.resize(l); FFT(B, false); for (int i = 0; i < l; ++i) A[i] = (long long)A[i] * B[i] % MOD; FFT(A, true); A.resize(len); return A; } vector<int> DivCalc(int l, int r) { vector<int> res; if (l < r) { int mid = (l + r) >> 1; vector<int> A = DivCalc(l, mid), B = DivCalc(mid + 1, r); res = A * B; } else if (l == r) { res.emplace_back(1); res.emplace_back(t[l]); } else if (l > r) res.emplace_back(1); return res; } int Dark(vector<int> p, int x, int y) { for (int i = 1; i <= (int)p.size() - 1; ++i) SU(p[i], MOD - (long long)y * p[i - 1] % MOD); for (int i = p.size() - 1; i > 0; --i) SU(p[i], (long long)x * p[i - 1] % MOD); int res = 0; for (int i = 1; i < (int)p.size(); ++i) SU(res, (long long)p[i] * Ar(K, i) % MOD); return res; } int rec[N], vis[N], cc; void Dfs(int u, int fa = 0) { sz[u] = sm[u] = 1; for (int v : G[u]) if (v != fa) { Dfs(v, u); SU(ans, (long long)sm[u] * sm[v] % MOD); SU(sm[u], sm[v]); sz[u] += sz[v]; } t.clear(); for (int v : G[u]) if (v != fa) t.emplace_back(sz[v]); static vector<int> p; p = DivCalc(0, t.size() - 1); if ((int)p.size() - 1 > K) p.resize(K + 1); for (int i = 1; i < (int)p.size(); ++i) SU(sm[u], (long long)Ar(K, i) * p[i] % MOD); ++cc; for (int v : G[u]) if (v != fa) { if (vis[sz[v]] != cc) { rec[sz[v]] = Dark(p, n - sz[u], sz[v]); vis[sz[v]] = cc; } SU(ans, (long long)rec[sz[v]] * sm[v] % MOD); } } int main() { scanf("%d%d", &n, &K); if (K == 1) { printf("%lld\n", (long long)n * (n - 1) / 2 % MOD); return 0; } Prework(); for (int i = 1, u, v; i < n; ++i) { scanf("%d%d", &u, &v); G[u].emplace_back(v); G[v].emplace_back(u); } Dfs(1); printf("%d\n", ans); return 0; } ```