Datasets:
File size: 4,381 Bytes
8543fae e51b59a f0c4178 8543fae e93dcdf d4abd7f e93dcdf e51b59a f0c4178 e51b59a f0c4178 e51b59a f0c4178 e276436 e51b59a f0c4178 fa2de1f 8543fae e51b59a c2f35b1 e51b59a a596389 e51b59a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
license: mit
dataset_info:
features:
- name: image
dtype: image
- name: text
dtype: string
configs:
- config_name: "0-5000"
data_files: data/train_shard_000-*
- config_name: "5000-10000"
data_files: data/train_shard_001-*
- config_name: "10000-15000"
data_files: data/train_shard_002-*
- config_name: "15000-20000"
data_files: data/train_shard_003-*
- config_name: "20000-25000"
data_files: data/train_shard_004-*
- config_name: "25000-30000"
data_files: data/train_shard_005-*
- config_name: "30000-35000"
data_files: data/train_shard_006-*
- config_name: "35000-40000"
data_files: data/train_shard_007-*
- config_name: "40000-45000"
data_files: data/train_shard_008-*
- config_name: "45000-50000"
data_files: data/train_shard_009-*
- config_name: "50000-55000"
data_files: data/train_shard_010-*
- config_name: "55000-60000"
data_files: data/train_shard_011-*
- config_name: "60000-65000"
data_files: data/train_shard_012-*
- config_name: "65000-70000"
data_files: data/train_shard_013-*
- config_name: "70000-75000"
data_files: data/train_shard_014-*
- config_name: "75000-80000"
data_files: data/train_shard_015-*
- config_name: "80000-85000"
data_files: data/train_shard_016-*
- config_name: "85000-90000"
data_files: data/train_shard_017-*
- config_name: "90000-95000"
data_files: data/train_shard_018-*
- config_name: "95000-100000"
data_files: data/train_shard_019-*
- config_name: "100000-105000"
data_files: data/train_shard_020-*
- config_name: "105000-110000"
data_files: data/train_shard_021-*
- config_name: "110000-115000"
data_files: data/train_shard_022-*
- config_name: "115000-120000"
data_files: data/train_shard_023-*
- config_name: "120000-125000"
data_files: data/train_shard_024-*
- config_name: "125000-130000"
data_files: data/train_shard_025-*
- config_name: "130000-135000"
data_files: data/train_shard_026-*
- config_name: "135000-140000"
data_files: data/train_shard_027-*
- config_name: "140000-145000"
data_files: data/train_shard_028-*
- config_name: "145000-150000"
data_files: data/train_shard_029-*
- config_name: "150000-155000"
data_files: data/train_shard_030-*
- config_name: "155000-160000"
data_files: data/train_shard_031-*
- config_name: "160000-165000"
data_files: data/train_shard_032-*
- config_name: "165000-170000"
data_files: data/train_shard_033-*
- config_name: "170000-175000"
data_files: data/train_shard_034-*
- config_name: "175000-180000"
data_files: data/train_shard_035-*
- config_name: "180000-185000"
data_files: data/train_shard_036-*
- config_name: "185000-190000"
data_files: data/train_shard_037-*
- config_name: "190000-195000"
data_files: data/train_shard_038-*
- config_name: "195000-200000"
data_files: data/train_shard_039-*
pretty_name: tamily 1
language:
- ta
source_datasets:
- sasicodes/solvari-1
task_categories:
- image-to-text
- image-feature-extraction
tags:
- Vaṭṭeḻuttu
size_categories:
- 100K<n<1M
---
# Tamily-1: Ancient Tamil OCR Synthetic Dataset
Tamizhi "தமிழி"
## Description
- **Repository:** [sasicodes/tamily-1](https://huggingface.co/datasets/sasicodes/tamily-1)
- **Point of Contact:** [@sasicodes](https://huggingface.co/sasicodes)
### Summary
Tamily-1 is an ancient [Tamil](https://en.wikipedia.org/wiki/Tamil_language) OCR synthetic dataset generated from the first 200,000 rows of [Solvari-1](https://huggingface.co/datasets/sasicodes/solvari-1), a large Tamil text corpus. The dataset contains rendered images of Tamil text with various augmentations and styles, making it suitable for training OCR models.
### Fields
- `image`: PNG image of rendered Tamil text
- `text`: Original Tamil text
### Data Splits
The dataset is split into shards of 5,000 samples each, named as `train_shard_XXX`.
Annotation process
Each text is rendered with:
- Random paper style (Palm Leaf, Pale Palm Leaf, Red Stone, White Stone, Paper)
- Random background style (No Lines, With Lines, Blurred, With Lines and Noise)
- Random augmentation (Rotation, Perspective, Stain, Ink Bleed)
### License
MIT License
```bibtex
@misc{tamily-1,
author = {sasicodes},
title = {Tamily-1: Ancient Tamil OCR Synthetic Dataset},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face Hub},
howpublished = {\url{https://huggingface.co/datasets/sasicodes/tamily-1}}
}
``` |