# Summarization Fine-tuning Dataset A dataset of 2000 examples for fine-tuning small language models on summarization tasks. ## Statistics - **Total examples**: 2000 - **Train examples**: 1600 (80.0%) - **Validation examples**: 200 (10.0%) - **Test examples**: 200 (10.0%) ## Dataset Distribution | Dataset | Count | Percentage | |---------|-------|------------| | xsum | 2000 | 100.0% | ## Format The dataset is provided in alpaca format. ## Configuration - **Maximum tokens**: 2000 - **Tokenizer**: gpt2 - **Random seed**: 42 ## Usage ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("YOUR_USERNAME/summarization-finetune-10k") # Access the splits train_data = dataset["train"] val_data = dataset["validation"] test_data = dataset["test"] ```