albertvillanova HF staff commited on
Commit
b3d24c5
·
verified ·
1 Parent(s): 7804055

Delete loading script

Browse files
Files changed (1) hide show
  1. ttc4900.py +0 -130
ttc4900.py DELETED
@@ -1,130 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # Lint as: python3
16
- """TTC4900: A Benchmark Data for Turkish Text Categorization"""
17
-
18
-
19
- import csv
20
-
21
- import datasets
22
- from datasets.tasks import TextClassification
23
-
24
-
25
- logger = datasets.logging.get_logger(__name__)
26
-
27
-
28
- _DESCRIPTION = """\
29
- The data set is taken from kemik group
30
- http://www.kemik.yildiz.edu.tr/
31
- The data are pre-processed for the text categorization, collocations are found, character set is corrected, and so forth.
32
- We named TTC4900 by mimicking the name convention of TTC 3600 dataset shared by the study http://journals.sagepub.com/doi/abs/10.1177/0165551515620551
33
-
34
- If you use the dataset in a paper, please refer https://www.kaggle.com/savasy/ttc4900 as footnote and cite one of the papers as follows:
35
-
36
- - A Comparison of Different Approaches to Document Representation in Turkish Language, SDU Journal of Natural and Applied Science, Vol 22, Issue 2, 2018
37
- - A comparative analysis of text classification for Turkish language, Pamukkale University Journal of Engineering Science Volume 25 Issue 5, 2018
38
- - A Knowledge-poor Approach to Turkish Text Categorization with a Comparative Analysis, Proceedings of CICLING 2014, Springer LNCS, Nepal, 2014.
39
- """
40
-
41
- _CITATION = """\
42
- @article{doi:10.5505/pajes.2018.15931,
43
- author = {Yıldırım, Savaş and Yıldız, Tuğba},
44
- title = {A comparative analysis of text classification for Turkish language},
45
- journal = {Pamukkale Univ Muh Bilim Derg},
46
- volume = {24},
47
- number = {5},
48
- pages = {879-886},
49
- year = {2018},
50
- doi = {10.5505/pajes.2018.15931},
51
- note ={doi: 10.5505/pajes.2018.15931},
52
-
53
- URL = {https://dx.doi.org/10.5505/pajes.2018.15931},
54
- eprint = {https://dx.doi.org/10.5505/pajes.2018.15931}
55
- }
56
- """
57
-
58
- _LICENSE = "CC0: Public Domain"
59
- _HOMEPAGE = "https://www.kaggle.com/savasy/ttc4900"
60
- _DOWNLOAD_URL = "https://raw.githubusercontent.com/savasy/TurkishTextClassification/master"
61
- _FILENAME = "7allV03.csv"
62
-
63
-
64
- class TTC4900Config(datasets.BuilderConfig):
65
- """BuilderConfig for TTC4900"""
66
-
67
- def __init__(self, **kwargs):
68
- """BuilderConfig for TTC4900.
69
- Args:
70
- **kwargs: keyword arguments forwarded to super.
71
- """
72
- super(TTC4900Config, self).__init__(**kwargs)
73
-
74
-
75
- class TTC4900(datasets.GeneratorBasedBuilder):
76
- """TTC4900: A Benchmark Data for Turkish Text Categorization"""
77
-
78
- BUILDER_CONFIGS = [
79
- TTC4900Config(
80
- name="ttc4900",
81
- version=datasets.Version("1.0.0"),
82
- description="A Benchmark Data for Turkish Text Categorization",
83
- ),
84
- ]
85
-
86
- def _info(self):
87
- return datasets.DatasetInfo(
88
- description=_DESCRIPTION,
89
- features=datasets.Features(
90
- {
91
- "category": datasets.features.ClassLabel(
92
- names=["siyaset", "dunya", "ekonomi", "kultur", "saglik", "spor", "teknoloji"]
93
- ),
94
- "text": datasets.Value("string"),
95
- }
96
- ),
97
- supervised_keys=None,
98
- # Homepage of the dataset for documentation
99
- homepage=_HOMEPAGE,
100
- # License for the dataset if available
101
- license=_LICENSE,
102
- # Citation for the dataset
103
- citation=_CITATION,
104
- task_templates=[TextClassification(text_column="text", label_column="category")],
105
- )
106
-
107
- def _split_generators(self, dl_manager):
108
- """Returns SplitGenerators."""
109
-
110
- urls_to_download = {
111
- "train": _DOWNLOAD_URL + "/" + _FILENAME,
112
- }
113
- downloaded_files = dl_manager.download(urls_to_download)
114
- return [
115
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
116
- ]
117
-
118
- def _generate_examples(self, filepath):
119
- """Generate TTC4900 examples."""
120
- logger.info("⏳ Generating examples from = %s", filepath)
121
- with open(filepath, encoding="utf-8") as f:
122
- rdr = csv.reader(f, delimiter=",")
123
- next(rdr)
124
- rownum = 0
125
- for row in rdr:
126
- rownum += 1
127
- yield rownum, {
128
- "category": row[0],
129
- "text": row[1],
130
- }