Last commit not found
import argparse | |
from optimum.quanto import freeze, qfloat8, qint4, qint8, quantize | |
import torch | |
import json | |
import torch.utils.benchmark as benchmark | |
from diffusers import DiffusionPipeline | |
import gc | |
WARM_UP_ITERS = 5 | |
PROMPT = "ghibli style, a fantasy landscape with castles" | |
TORCH_DTYPES = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16} | |
QTYPES = {"fp8": qfloat8, "int8": qint8, "int4": qint4, "none": None} | |
PREFIXES = { | |
"stabilityai/stable-diffusion-3-medium-diffusers": "sd3", | |
} | |
def flush(): | |
"""Wipes off memory.""" | |
gc.collect() | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
def load_pipeline( | |
ckpt_id, torch_dtype, qtype=None, exclude_layers=None, qte=False, first=False, second=False, third=False | |
): | |
pipe = DiffusionPipeline.from_pretrained(ckpt_id, torch_dtype=torch_dtype).to("cuda") | |
if qtype: | |
quantize(pipe.transformer, weights=qtype, exclude=exclude_layers) | |
freeze(pipe.transformer) | |
if qte: | |
if first: | |
quantize(pipe.text_encoder, weights=qtype) | |
freeze(pipe.text_encoder) | |
if second: | |
quantize(pipe.text_encoder_2, weights=qtype) | |
freeze(pipe.text_encoder) | |
if third: | |
quantize(pipe.text_encoder_3, weights=qtype) | |
freeze(pipe.text_encoder_3) | |
pipe.set_progress_bar_config(disable=True) | |
return pipe | |
def run_inference(pipe, batch_size=1): | |
_ = pipe( | |
prompt=PROMPT, | |
num_images_per_prompt=batch_size, | |
generator=torch.manual_seed(0), | |
) | |
def benchmark_fn(f, *args, **kwargs): | |
t0 = benchmark.Timer(stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}) | |
return f"{(t0.blocked_autorange().mean):.3f}" | |
def bytes_to_giga_bytes(bytes): | |
return f"{(bytes / 1024 / 1024 / 1024):.3f}" | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--ckpt_id", | |
type=str, | |
default="stabilityai/stable-diffusion-3-medium-diffusers", | |
choices=list(PREFIXES.keys()), | |
) | |
parser.add_argument("--batch_size", type=int, default=1) | |
parser.add_argument("--torch_dtype", type=str, default="fp16", choices=list(TORCH_DTYPES.keys())) | |
parser.add_argument("--qtype", type=str, default="none", choices=list(QTYPES.keys())) | |
parser.add_argument("--qte", type=int, default=0, help="Quantize text encoder") | |
parser.add_argument("--first", type=int, default=0, help="Quantize first text encoder") | |
parser.add_argument("--second", type=int, default=0, help="Quantize second text encoder") | |
parser.add_argument("--third", type=int, default=0, help="Quantize third text encoder") | |
parser.add_argument("--exclude_layers", metavar="N", type=str, nargs="*", default=None) | |
args = parser.parse_args() | |
flush() | |
print( | |
f"Running with ckpt_id: {args.ckpt_id}, batch_size: {args.batch_size}, torch_dtype: {args.torch_dtype}, qtype: {args.qtype}, qte: {bool(args.qte)}" | |
) | |
pipeline = load_pipeline( | |
ckpt_id=args.ckpt_id, | |
torch_dtype=TORCH_DTYPES[args.torch_dtype], | |
qtype=QTYPES[args.qtype], | |
exclude_layers=args.exclude_layers, | |
qte=args.qte, | |
first=args.first, | |
second=args.second, | |
third=args.third, | |
) | |
for _ in range(WARM_UP_ITERS): | |
run_inference(pipeline, args.batch_size) | |
time = benchmark_fn(run_inference, pipeline, args.batch_size) | |
memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs. | |
print( | |
f"ckpt: {args.ckpt_id} batch_size: {args.batch_size}, qte: {args.qte}, " | |
f"torch_dtype: {args.torch_dtype}, qtype: {args.qtype} in {time} seconds and {memory} GBs." | |
) | |
ckpt_id = PREFIXES[args.ckpt_id] | |
img_name = f"ckpt@{ckpt_id}-bs@{args.batch_size}-dtype@{args.torch_dtype}-qtype@{args.qtype}-qte@{args.qte}" | |
if args.exclude_layers: | |
exclude_layers = "_".join(args.exclude_layers) | |
img_name += f"-exclude@{exclude_layers}" | |
if args.first: | |
img_name += f"-first@{args.first}" | |
if args.second: | |
img_name += f"-second@{args.second}" | |
if args.third: | |
img_name += f"-third@{args.third}" | |
image = pipeline( | |
prompt=PROMPT, | |
num_images_per_prompt=args.batch_size, | |
generator=torch.manual_seed(0), | |
).images[0] | |
image.save(f"{img_name}.png") | |
info = dict( | |
batch_size=args.batch_size, | |
memory=memory, | |
time=time, | |
dtype=args.torch_dtype, | |
qtype=args.qtype, | |
qte=args.qte, | |
exclude_layers=args.exclude_layers, | |
first=args.first, | |
second=args.second, | |
third=args.third, | |
) | |
info_file = f"{img_name}_info.json" | |
with open(info_file, "w") as f: | |
json.dump(info, f) | |