Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Japanese
Libraries:
Datasets
pandas
License:
teruo6939 commited on
Commit
8632a3e
1 Parent(s): 7989c77

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md CHANGED
@@ -35,3 +35,67 @@ configs:
35
  - split: validation
36
  path: data/validation-*
37
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  - split: validation
36
  path: data/validation-*
37
  ---
38
+
39
+
40
+ 評価スコアの再現性確保と SB Intuitions 修正版の公開用クローン
41
+
42
+ ソース: [yahoojapan/JGLUE](https://github.com/yahoojapan/JGLUE/tree/main)
43
+
44
+ ## JCommonsenseQA
45
+
46
+ ```
47
+ JCommonsenseQA is a Japanese version of CommonsenseQA (Talmor+, 2019), which is a multiple-choice question answering dataset that requires commonsense reasoning ability.
48
+ It is built using crowdsourcing with seeds extracted from the knowledge base ConceptNet.
49
+ ```
50
+
51
+ ### Data Fields
52
+
53
+ `q_id` (`str`): id
54
+ `question` (`str`): question
55
+ `choice{0..4}` (`list[str]`): choice
56
+ `label` (`int`): correct choice id
57
+
58
+ ### Licensing Information
59
+
60
+ [Creative Commons Attribution Share Alike 4.0 International](https://github.com/yahoojapan/JGLUE/blob/main/LICENSE)
61
+
62
+ ### Citation Information
63
+
64
+ ```
65
+ @article{栗原 健太郎2023,
66
+ title={JGLUE: 日本語言語理解ベンチマーク},
67
+ author={栗原 健太郎 and 河原 大輔 and 柴田 知秀},
68
+ journal={自然言語処理},
69
+ volume={30},
70
+ number={1},
71
+ pages={63-87},
72
+ year={2023},
73
+ url = "https://www.jstage.jst.go.jp/article/jnlp/30/1/30_63/_article/-char/ja",
74
+ doi={10.5715/jnlp.30.63}
75
+ }
76
+
77
+ @inproceedings{kurihara-etal-2022-jglue,
78
+ title = "{JGLUE}: {J}apanese General Language Understanding Evaluation",
79
+ author = "Kurihara, Kentaro and
80
+ Kawahara, Daisuke and
81
+ Shibata, Tomohide",
82
+ booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
83
+ month = jun,
84
+ year = "2022",
85
+ address = "Marseille, France",
86
+ publisher = "European Language Resources Association",
87
+ url = "https://aclanthology.org/2022.lrec-1.317",
88
+ pages = "2957--2966",
89
+ abstract = "To develop high-performance natural language understanding (NLU) models, it is necessary to have a benchmark to evaluate and analyze NLU ability from various perspectives. While the English NLU benchmark, GLUE, has been the forerunner, benchmarks are now being released for languages other than English, such as CLUE for Chinese and FLUE for French; but there is no such benchmark for Japanese. We build a Japanese NLU benchmark, JGLUE, from scratch without translation to measure the general NLU ability in Japanese. We hope that JGLUE will facilitate NLU research in Japanese.",
90
+ }
91
+
92
+ @InProceedings{Kurihara_nlp2022,
93
+ author = "栗原健太郎 and 河原大輔 and 柴田知秀",
94
+ title = "JGLUE: 日本語言語理解ベンチマーク",
95
+ booktitle = "言語処理学会第28回年次大会",
96
+ year = "2022",
97
+ url = "https://www.anlp.jp/proceedings/annual_meeting/2022/pdf_dir/E8-4.pdf"
98
+ note= "in Japanese"
99
+ }
100
+ ```
101
+