File size: 3,851 Bytes
8d16a51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73ed1f9
8d16a51
0cecf0a
8d16a51
73ed1f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""(SC)^2QA: Self-Contained Summary-Centric QA Dataset."""


import csv

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@article{zhou2021generating,
       author = {Li Zhou, Kevin Small, Yong Zhang, Sandeep Atluri},
       title = "{Generating Self-Contained and Summary-Centric Question Answer Pairs via Differentiable Reward Imitation Learning}",
       conference = {The 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP 2021)},
       year = 2021,
}
"""

_DESCRIPTION = """\
"""

_URLS = {
        "train":"https://huggingface.co/datasets/sc2qa/sc2qa_commoncrawl/resolve/main/train.csv",
        "val":"https://huggingface.co/datasets/sc2qa/sc2qa_commoncrawl/resolve/main/val.csv",
        "test":"https://huggingface.co/datasets/sc2qa/sc2qa_commoncrawl/resolve/main/test.csv",
}

class SC2QAConfig(datasets.BuilderConfig):
    """BuilderConfig for (SC)^2QA."""

    def __init__(self, **kwargs):
        """BuilderConfig for (SC)^2QA.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(SC2QAConfig, self).__init__(**kwargs)


class SC2QA(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        SC2QAConfig(
            name="plain_text",
            version=datasets.Version("1.0.0", ""),
            description="Plain text",
        ),
    ]

    def _info(self):
        # Should return a datasets.DatasetInfo object
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "question": datasets.Value("string"),
                    "article": datasets.Value("string"),
                    "summary": datasets.Value("string"),
                    "model source": datasets.Value("string"),
                    "length bucket": datasets.Value("int8"),
                    "url": datasets.Value("string"),
                    "qa classifier score": datasets.Value("float"),
                }
            ),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"], "split": "test"}),
        ]

    def _generate_examples(self, filepath, split=None):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        key = 0
        with open(filepath, encoding="ascii", errors='ignore') as f:
            csv_reader = csv.DictReader(f)
            for i, row in enumerate(csv_reader):
                if split == "test": # This avoids error when doing data type converation from empty string
                    row["length bucket"] = "1"
                    row["qa classifier score"] = "0.0"
                yield i, row