# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """(SC)^2QA: Self-Contained Summary-Centric QA Dataset.""" import csv import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{zhou2021generating, author = {Li Zhou, Kevin Small, Yong Zhang, Sandeep Atluri}, title = "{Generating Self-Contained and Summary-Centric Question Answer Pairs via Differentiable Reward Imitation Learning}", conference = {The 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP 2021)}, year = 2021, } """ _DESCRIPTION = """\ """ _URLS = { "train":"https://huggingface.co/datasets/sc2qa/sc2qa_commoncrawl/resolve/main/train.csv", "val":"https://huggingface.co/datasets/sc2qa/sc2qa_commoncrawl/resolve/main/val.csv", "test":"https://huggingface.co/datasets/sc2qa/sc2qa_commoncrawl/resolve/main/test.csv", } class SC2QAConfig(datasets.BuilderConfig): """BuilderConfig for (SC)^2QA.""" def __init__(self, **kwargs): """BuilderConfig for (SC)^2QA. Args: **kwargs: keyword arguments forwarded to super. """ super(SC2QAConfig, self).__init__(**kwargs) class SC2QA(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ SC2QAConfig( name="plain_text", version=datasets.Version("1.0.0", ""), description="Plain text", ), ] def _info(self): # Should return a datasets.DatasetInfo object return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "question": datasets.Value("string"), "article": datasets.Value("string"), "summary": datasets.Value("string"), "model source": datasets.Value("string"), "length bucket": datasets.Value("int8"), "url": datasets.Value("string"), "qa classifier score": datasets.Value("float"), } ), citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"], "split": "test"}), ] def _generate_examples(self, filepath, split=None): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) key = 0 with open(filepath, encoding="ascii", errors='ignore') as f: csv_reader = csv.DictReader(f) for i, row in enumerate(csv_reader): if split == "test": # This avoids error when doing data type converation from empty string row["length bucket"] = "1" row["qa classifier score"] = "0.0" yield i, row