File size: 5,622 Bytes
61bed00
 
2b62bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61bed00
2b62bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---

license: mit
task_categories:
- text-classification
- text2text-generation
- translation
- zero-shot-classification
tags:
- chemistry
- biology
- SMILES
- benchmark
size_categories:
- 1k<n<10k
pretty_name: 'Biogen ADME (public data)'
configs:
- config_name: full
  data_files: "biogen-adme.csv.gz"
- config_name: scaffold-split
  data_files:
  - split: train
    path: "biogen-adme_train.csv.gz"
  - split: test
    path: "biogen-adme_test.csv.gz"
---

# Biogen ADME dataset (public data)

Data from [Fang et al., Prospective Validation of Machine Learning Algorithms for Absorption, Distribution, Metabolism, and Excretion Prediction: An Industrial Perspective](https://doi.org/10.1021/acs.jcim.3c00160), available from the [GitHub repositiory](https://github.com/molecularinformatics/Computational-ADME). We used [schemist](https://github.com/scbirlab/schemist) (which in turn uses RDKit)
to add molecuar weight, Murcko scaffold, Crippen cLogP, and topological surface area, and to generate scaffold splits.

## Dataset Details

From the [original README](https://github.com/molecularinformatics/Computational-ADME):

>

> To benefit the broader computational chemistry community and improve the > quality and diversity of public-domain ADME data sets we have disclosed a > collection of 3521 diverse compounds selected from commercially available > compound libraries (i.e. Enamine, eMolecules, WuXi LabNetwork, Mcule) and > tested them against our internal six ADME in vitro assays described in this > study using the same experimental conditions as of our in-house datasets.
> 



### Dataset Description

- **Curated by:** Biogen
<!-- - **Funded by:** The Francis Crick Institute -->
- **License:** MIT

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Repository:** https://github.com/molecularinformatics/Computational-ADME
- **Paper:** https://doi.org/10.1021/acs.jcim.3c00160
<!-- - **Demo [optional]:** [More Information Needed] -->

## Uses

Benchmarking chemical property prediction models.

<!-- ### Direct Use   -->

<!-- This section describes suitable use cases for the dataset. -->

<!-- [More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

<!-- [More Information Needed]  -->

## Dataset Structure

The train-test splits are generated by scaffold.

The column headings of the data are:

- **SMILES**: Original SMILES string, as in the original data release in the [GitHub repositiory](https://github.com/molecularinformatics/Computational-ADME) 
- **smiles**: Canonicalized SMILES string
- **id**: Numeric structure identifier
- **inchikey**: Unique structure identifier
- **scaffold**: Murcko scaffold
- **mwt**: Molecular weight
- **clogp**: Crippen LogP
- **tpsa**: Calculated topological polar surface area.

The following columns are ADME properties:

- log_hlm: human liver microsomal (HLM) stability (Clint, mL/min/kg)

- log_mdr1_mdck_er: MDR1-MDCK efflux ratio
- log_solubility: solubility at pH 6.8 (ug/mL)

- log_plasma_protein_binding_human: human plasma protein binding (hPPB) percent unbound 

- log_plasma_protein_binding_rat: rat plasma protein binding (rPPB) percent unbound

- log_rlm: rat liver microsomal (RLM) stability (Clint, mL/min/kg)

## Dataset Creation

### Curation Rationale

To make the Biogen ADME dataset readily available with light preprocessing.

#### Data Collection and Processing

Additional properties and scaffold splits were calculated using [schemist](https://github.com/scbirlab/schemist), a tool for processing chemical datasets.

#### Who are the source data producers?

Biogen

#### Personal and Sensitive Information

None

<!-- ## Bias, Risks, and Limitations  -->

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

<!--  [More Information Needed]  -->

<!-- ### Recommendations  -->

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

<!-- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.  -->

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```

@article{doi:10.1021/acs.jcim.3c00160,

    author = {Fang, Cheng and Wang, Ye and Grater, Richard and Kapadnis, Sudarshan and Black, Cheryl and Trapa, Patrick and Sciabola, Simone},

    title = {Prospective Validation of Machine Learning Algorithms for Absorption, Distribution, Metabolism, and Excretion  Prediction: An Industrial Perspective},

    journal = {Journal of Chemical Information and Modeling},

    volume = {63},

    number = {11},

    pages = {3263-3274},

    year = {2023},

    doi = {10.1021/acs.jcim.3c00160},

    note = {PMID: 37216672},

    URL = {https://doi.org/10.1021/acs.jcim.3c00160},

    eprint = {https://doi.org/10.1021/acs.jcim.3c00160}

}

```

<!-- **APA:** -->

<!-- ## Glossary [optional]  -->

<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->

<!-- [More Information Needed]

<!-- ## More Information [optional]

<!-- [More Information Needed]

<!-- ## Dataset Card Authors [optional]

<!-- [More Information Needed]  -->

## Dataset Card Contact

[@eachanjohnson](https://huggingface.co/eachanjohnson)