File size: 10,738 Bytes
9f79439 a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f a5447ad 154908f 9f79439 a5447ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
---
license: mit
task_categories:
- text-classification
- text2text-generation
- translation
- zero-shot-classification
tags:
- chemistry
- biology
- SMILES
- benchmark
size_categories:
- 10k<n<100k
pretty_name: 'Lo-Hi Benchmark'
configs:
- config_name: hi-drd2-1
data_files:
- split: train
path: "hi/drd2/train_1.csv.gz"
- split: test
path: "hi/drd2/test_1.csv.gz"
- config_name: hi-drd2-2
data_files:
- split: train
path: "hi/drd2/train_2.csv.gz"
- split: test
path: "hi/drd2/test_2.csv.gz"
- config_name: hi-drd2-3
data_files:
- split: train
path: "hi/drd2/train_3.csv.gz"
- split: test
path: "hi/drd2/test_3.csv.gz"
- config_name: hi-hiv-1
data_files:
- split: train
path: "hi/hiv/train_1.csv.gz"
- split: test
path: "hi/hiv/test_1.csv.gz"
- config_name: hi-hiv-2
data_files:
- split: train
path: "hi/hiv/train_2.csv.gz"
- split: test
path: "hi/hiv/test_2.csv.gz"
- config_name: hi-hiv-3
data_files:
- split: train
path: "hi/hiv/train_3.csv.gz"
- split: test
path: "hi/hiv/test_3.csv.gz"
- config_name: hi-kdr-1
data_files:
- split: train
path: "hi/kdr/train_1.csv.gz"
- split: test
path: "hi/kdr/test_1.csv.gz"
- config_name: hi-kdr-2
data_files:
- split: train
path: "hi/kdr/train_2.csv.gz"
- split: test
path: "hi/kdr/test_2.csv.gz"
- config_name: hi-kdr-3
data_files:
- split: train
path: "hi/kdr/train_3.csv.gz"
- split: test
path: "hi/kdr/test_3.csv.gz"
- config_name: hi-sol-1
data_files:
- split: train
path: "hi/sol/train_1.csv.gz"
- split: test
path: "hi/sol/test_1.csv.gz"
- config_name: hi-sol-2
data_files:
- split: train
path: "hi/sol/train_2.csv.gz"
- split: test
path: "hi/sol/test_2.csv.gz"
- config_name: hi-sol-3
data_files:
- split: train
path: "hi/sol/train_3.csv.gz"
- split: test
path: "hi/sol/test_3.csv.gz"
- config_name: lo-drd2-1
data_files:
- split: train
path: "lo/drd2/train_1.csv.gz"
- split: test
path: "lo/drd2/test_1.csv.gz"
- config_name: lo-drd2-2
data_files:
- split: train
path: "lo/drd2/train_2.csv.gz"
- split: test
path: "lo/drd2/test_2.csv.gz"
- config_name: lo-drd2-3
data_files:
- split: train
path: "lo/drd2/train_3.csv.gz"
- split: test
path: "lo/drd2/test_3.csv.gz"
- config_name: lo-kcnh2-1
data_files:
- split: train
path: "lo/kcnh2/train_1.csv.gz"
- split: test
path: "lo/kcnh2/test_1.csv.gz"
- config_name: lo-kcnh2-2
data_files:
- split: train
path: "lo/kcnh2/train_2.csv.gz"
- split: test
path: "lo/kcnh2/test_2.csv.gz"
- config_name: lo-kcnh2-3
data_files:
- split: train
path: "lo/kcnh2/train_3.csv.gz"
- split: test
path: "lo/kcnh2/test_3.csv.gz"
- config_name: lo-kdr-1
data_files:
- split: train
path: "lo/kdr/train_1.csv.gz"
- split: test
path: "lo/kdr/test_1.csv.gz"
- config_name: lo-kdr-2
data_files:
- split: train
path: "lo/kdr/train_2.csv.gz"
- split: test
path: "lo/kdr/test_2.csv.gz"
- config_name: lo-kdr-3
data_files:
- split: train
path: "lo/kdr/train_3.csv.gz"
- split: test
path: "lo/kdr/test_3.csv.gz"
---
# Lo-Hi Benchmark
Data from [Simon Steshin, Lo-Hi: Practical ML Drug Discovery Benchmark](https://arxiv.org/abs/2310.06399), available from the [GitHub repositiory](https://github.com/SteshinSS/lohi_neurips2023). We used [schemist](https://github.com/scbirlab/schemist) (which in turn uses RDKit)
to add molecuar weight, Murcko scaffold, Crippen cLogP, and topological surface area.
## Dataset Details
From the [original README](https://github.com/SteshinSS/lohi_neurips2023?tab=readme-ov-file):
### Hit Identification
The goal of the Hit Identification task is to find novel molecules that have desirable property, but are dissimilar from the molecules with known activity. There are four datasets simulating this scenario: `DRD2-Hi`, `HIV-Hi`, `KDR-Hi` and `Sol-Hi`. They are binary classification tasks such that the most similar molecules between train and test have ECFP4 Tanimoto similarity < 0.4.
- `data/hi/drd2` -- for DRD2-Hi
- `data/hi/hiv` -- for HIV-Hi
- `data/hi/kdr` -- for KDR-Hi
- `data/hi/sol` -- for Sol-Hi
There are three splits of the datasets. Use only the first split for the hyperparameter tuning. Train your model with the same hyperparameters for all the three splits and calculate mean metric.
Metric: PR AUC.
### Lead Optimization
The goal of the Lead Optimization task is to predict how minor modifications of a molecule affect its activity. There are three datasets simulating this scenario: `DRD2-Lo`, `KCNH2-Lo` and more challenging `KDR-Lo`. They are ranking tasks that have clusters in the test set, so that the molecules in each clusters are quite similar with Tanimoto similarity > 0.4 to the central molecules, and each cluster has one similar molecule in the train set, representing known hit.
- `data/lo/drd2` -- for DRD2-Lo
- `data/lo/kcnh2` -- for KCNH2-Lo
- `data/lo/kdr` -- for KDR-Lo
There are three splits of the datasets. Use only the first split for the hyperparameter tuning. Train your model with the same hyperparameters for all the three splits and calculate mean metric.
Metric: spearman correlation is calculated for each cluster in the test set and the mean is taken.
### Dataset Description
- **Curated by:** Simon Steshin
<!-- - **Funded by:** The Francis Crick Institute -->
- **License:** MIT
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://github.com/SteshinSS/lohi_neurips2023
- **Paper:** https://arxiv.org/abs/2310.06399
<!-- - **Demo [optional]:** [More Information Needed] -->
## Uses
Bechmarking chemical property prediction models.
<!-- ### Direct Use -->
<!-- This section describes suitable use cases for the dataset. -->
<!-- [More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
<!-- [More Information Needed] -->
## Dataset Structure
The data are divided into the Hit Identification (`hi`, binary classification) and Lead Optimization (`lo`, regression) tasks. Within each are several datasets from a number of assays. Within each of these are three splits of train and test.
Each split is in a separate pair of train and test files. So the files for split 1 are in `train_1.csv.gz`, `test_1.csv.gz` and the files for split 2 are in `train_2.csv.gz`, `test_2.csv.gz`.
```
.
βββ hi
β βββ drd2
β β βββ test_1.csv.gz
β β βββ test_2.csv.gz
β β βββ test_3.csv.gz
β β βββ train_1.csv.gz
β β βββ train_2.csv.gz
β β βββ train_3.csv.gz
β βββ hiv
β β βββ test_1.csv.gz
β β βββ test_2.csv.gz
β β βββ test_3.csv.gz
β β βββ train_1.csv.gz
β β βββ train_2.csv.gz
β β βββ train_3.csv.gz
β βββ kdr
β β βββ test_1.csv.gz
β β βββ test_2.csv.gz
β β βββ test_3.csv.gz
β β βββ train_1.csv.gz
β β βββ train_2.csv.gz
β β βββ train_3.csv.gz
β βββ sol
β βββ test_1.csv.gz
β βββ test_2.csv.gz
β βββ test_3.csv.gz
β βββ train_1.csv.gz
β βββ train_2.csv.gz
β βββ train_3.csv.gz
βββ lo
βββ drd2
β βββ test_1.csv.gz
β βββ test_2.csv.gz
β βββ test_3.csv.gz
β βββ train_1.csv.gz
β βββ train_2.csv.gz
β βββ train_3.csv.gz
βββ kcnh2
β βββ test_1.csv.gz
β βββ test_2.csv.gz
β βββ test_3.csv.gz
β βββ train_1.csv.gz
β βββ train_2.csv.gz
β βββ train_3.csv.gz
βββ kdr
βββ test_1.csv.gz
βββ test_2.csv.gz
βββ test_3.csv.gz
βββ train_1.csv.gz
βββ train_2.csv.gz
βββ train_3.csv.gz
```
The column headings of the data are:
- **smiles**: SMILES string
- **value**: The assay result. This is True/False for `hi` and numeric for `lo`.
- **id**: Numeric structure identifier
- **inchikey**: Unique structure identifier
- **scaffold**: Murcko scaffold
- **mwt**: Molecular weight
- **clogp**: Crippen LogP
- **tpsa**: Calculated topological polar surface area.
The `hi` datasets also have a `cluster` column, indicating the structural cluster of the compound.
## Dataset Creation
### Curation Rationale
To make the Lo-Hi Benchmark readily available with light preprocessing.
#### Data Collection and Processing
Additional properties were calculated using [schemist](https://github.com/scbirlab/schemist), a tool for processing chemical datasets.
#### Who are the source data producers?
Simon Steshin (https://github.com/SteshinSS).
#### Personal and Sensitive Information
None
<!-- ## Bias, Risks, and Limitations -->
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
<!-- [More Information Needed] -->
<!-- ### Recommendations -->
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
<!-- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. -->
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@misc{steshin2023lohipracticalmldrug,
title={Lo-Hi: Practical ML Drug Discovery Benchmark},
author={Simon Steshin},
year={2023},
eprint={2310.06399},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2310.06399},
}
```
<!-- **APA:** -->
<!-- ## Glossary [optional] -->
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
<!-- [More Information Needed]
<!-- ## More Information [optional]
<!-- [More Information Needed]
<!-- ## Dataset Card Authors [optional]
<!-- [More Information Needed] -->
## Dataset Card Contact
[@eachanjohnson](https://huggingface.co/eachanjohnson) |