File size: 10,738 Bytes
9f79439
 
a5447ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
a5447ad
 
 
154908f
a5447ad
154908f
9f79439
a5447ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
---

license: mit
task_categories:
- text-classification
- text2text-generation
- translation
- zero-shot-classification
tags:
- chemistry
- biology
- SMILES
- benchmark
size_categories:
- 10k<n<100k
pretty_name: 'Lo-Hi Benchmark'
configs:
- config_name: hi-drd2-1
  data_files:
  - split: train
    path: "hi/drd2/train_1.csv.gz"
  - split: test
    path: "hi/drd2/test_1.csv.gz"
- config_name: hi-drd2-2
  data_files:
  - split: train
    path: "hi/drd2/train_2.csv.gz"
  - split: test
    path: "hi/drd2/test_2.csv.gz"
- config_name: hi-drd2-3
  data_files:
  - split: train
    path: "hi/drd2/train_3.csv.gz"
  - split: test
    path: "hi/drd2/test_3.csv.gz"
- config_name: hi-hiv-1
  data_files:
  - split: train
    path: "hi/hiv/train_1.csv.gz"
  - split: test
    path: "hi/hiv/test_1.csv.gz"
- config_name: hi-hiv-2
  data_files:
  - split: train
    path: "hi/hiv/train_2.csv.gz"
  - split: test
    path: "hi/hiv/test_2.csv.gz"
- config_name: hi-hiv-3
  data_files:
  - split: train
    path: "hi/hiv/train_3.csv.gz"
  - split: test
    path: "hi/hiv/test_3.csv.gz"
- config_name: hi-kdr-1
  data_files:
  - split: train
    path: "hi/kdr/train_1.csv.gz"
  - split: test
    path: "hi/kdr/test_1.csv.gz"
- config_name: hi-kdr-2
  data_files:
  - split: train
    path: "hi/kdr/train_2.csv.gz"
  - split: test
    path: "hi/kdr/test_2.csv.gz"
- config_name: hi-kdr-3
  data_files:
  - split: train
    path: "hi/kdr/train_3.csv.gz"
  - split: test
    path: "hi/kdr/test_3.csv.gz"
- config_name: hi-sol-1
  data_files:
  - split: train
    path: "hi/sol/train_1.csv.gz"
  - split: test
    path: "hi/sol/test_1.csv.gz"
- config_name: hi-sol-2
  data_files:
  - split: train
    path: "hi/sol/train_2.csv.gz"
  - split: test
    path: "hi/sol/test_2.csv.gz"
- config_name: hi-sol-3
  data_files:
  - split: train
    path: "hi/sol/train_3.csv.gz"
  - split: test
    path: "hi/sol/test_3.csv.gz"
- config_name: lo-drd2-1
  data_files:
  - split: train
    path: "lo/drd2/train_1.csv.gz"
  - split: test
    path: "lo/drd2/test_1.csv.gz"
- config_name: lo-drd2-2
  data_files:
  - split: train
    path: "lo/drd2/train_2.csv.gz"
  - split: test
    path: "lo/drd2/test_2.csv.gz"
- config_name: lo-drd2-3
  data_files:
  - split: train
    path: "lo/drd2/train_3.csv.gz"
  - split: test
    path: "lo/drd2/test_3.csv.gz"
- config_name: lo-kcnh2-1
  data_files:
  - split: train
    path: "lo/kcnh2/train_1.csv.gz"
  - split: test
    path: "lo/kcnh2/test_1.csv.gz"
- config_name: lo-kcnh2-2
  data_files:
  - split: train
    path: "lo/kcnh2/train_2.csv.gz"
  - split: test
    path: "lo/kcnh2/test_2.csv.gz"
- config_name: lo-kcnh2-3
  data_files:
  - split: train
    path: "lo/kcnh2/train_3.csv.gz"
  - split: test
    path: "lo/kcnh2/test_3.csv.gz"
- config_name: lo-kdr-1
  data_files:
  - split: train
    path: "lo/kdr/train_1.csv.gz"
  - split: test
    path: "lo/kdr/test_1.csv.gz"
- config_name: lo-kdr-2
  data_files:
  - split: train
    path: "lo/kdr/train_2.csv.gz"
  - split: test
    path: "lo/kdr/test_2.csv.gz"
- config_name: lo-kdr-3
  data_files:
  - split: train
    path: "lo/kdr/train_3.csv.gz"
  - split: test
    path: "lo/kdr/test_3.csv.gz"
---

# Lo-Hi Benchmark

Data from [Simon Steshin, Lo-Hi: Practical ML Drug Discovery Benchmark](https://arxiv.org/abs/2310.06399), available from the [GitHub repositiory](https://github.com/SteshinSS/lohi_neurips2023). We used [schemist](https://github.com/scbirlab/schemist) (which in turn uses RDKit)
to add molecuar weight, Murcko scaffold, Crippen cLogP, and topological surface area.

## Dataset Details

From the [original README](https://github.com/SteshinSS/lohi_neurips2023?tab=readme-ov-file):

### Hit Identification
The goal of the Hit Identification task is to find novel molecules that have desirable property, but are dissimilar from the molecules with known activity. There are four datasets simulating this scenario: `DRD2-Hi`, `HIV-Hi`, `KDR-Hi` and `Sol-Hi`. They are binary classification tasks such that the most similar molecules between train and test have ECFP4 Tanimoto similarity < 0.4.

- `data/hi/drd2` -- for DRD2-Hi
- `data/hi/hiv` -- for HIV-Hi
- `data/hi/kdr` -- for KDR-Hi
- `data/hi/sol` -- for Sol-Hi

There are three splits of the datasets. Use only the first split for the hyperparameter tuning. Train your model with the same hyperparameters for all the three splits and calculate mean metric.

Metric: PR AUC.

### Lead Optimization
The goal of the Lead Optimization task is to predict how minor modifications of a molecule affect its activity. There are three datasets simulating this scenario: `DRD2-Lo`, `KCNH2-Lo` and more challenging `KDR-Lo`. They are ranking tasks that have clusters in the test set, so that the molecules in each clusters are quite similar with Tanimoto similarity > 0.4 to the central molecules, and each cluster has one similar molecule in the train set, representing known hit. 

- `data/lo/drd2` -- for DRD2-Lo
- `data/lo/kcnh2` -- for KCNH2-Lo
- `data/lo/kdr` -- for KDR-Lo

There are three splits of the datasets. Use only the first split for the hyperparameter tuning. Train your model with the same hyperparameters for all the three splits and calculate mean metric.

Metric: spearman correlation is calculated for each cluster in the test set and the mean is taken.

### Dataset Description

- **Curated by:** Simon Steshin
<!-- - **Funded by:** The Francis Crick Institute -->
- **License:** MIT

### Dataset Sources [optional]

<!-- Provide the basic links for the dataset. -->

- **Repository:** https://github.com/SteshinSS/lohi_neurips2023

- **Paper:** https://arxiv.org/abs/2310.06399

<!-- - **Demo [optional]:** [More Information Needed] -->



## Uses



Bechmarking chemical property prediction models.



<!-- ### Direct Use   -->



<!-- This section describes suitable use cases for the dataset. -->



<!-- [More Information Needed]



### Out-of-Scope Use



<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->



<!-- [More Information Needed]  -->



## Dataset Structure



The data are divided into the Hit Identification (`hi`, binary classification) and Lead Optimization (`lo`, regression) tasks. Within each are several datasets from a number of assays. Within each of these are three splits of train and test.



Each split is in a separate pair of train and test files. So the files for split 1 are in `train_1.csv.gz`, `test_1.csv.gz` and the files for split 2 are in `train_2.csv.gz`, `test_2.csv.gz`.



```

.

β”œβ”€β”€ hi

β”‚   β”œβ”€β”€ drd2

β”‚   β”‚   β”œβ”€β”€ test_1.csv.gz
β”‚   β”‚   β”œβ”€β”€ test_2.csv.gz

β”‚   β”‚   β”œβ”€β”€ test_3.csv.gz
β”‚   β”‚   β”œβ”€β”€ train_1.csv.gz

β”‚   β”‚   β”œβ”€β”€ train_2.csv.gz
β”‚   β”‚   └── train_3.csv.gz

β”‚   β”œβ”€β”€ hiv

β”‚   β”‚   β”œβ”€β”€ test_1.csv.gz
β”‚   β”‚   β”œβ”€β”€ test_2.csv.gz

β”‚   β”‚   β”œβ”€β”€ test_3.csv.gz
β”‚   β”‚   β”œβ”€β”€ train_1.csv.gz

β”‚   β”‚   β”œβ”€β”€ train_2.csv.gz
β”‚   β”‚   └── train_3.csv.gz

β”‚   β”œβ”€β”€ kdr

β”‚   β”‚   β”œβ”€β”€ test_1.csv.gz
β”‚   β”‚   β”œβ”€β”€ test_2.csv.gz

β”‚   β”‚   β”œβ”€β”€ test_3.csv.gz
β”‚   β”‚   β”œβ”€β”€ train_1.csv.gz

β”‚   β”‚   β”œβ”€β”€ train_2.csv.gz
β”‚   β”‚   └── train_3.csv.gz

β”‚   └── sol

β”‚       β”œβ”€β”€ test_1.csv.gz
β”‚       β”œβ”€β”€ test_2.csv.gz

β”‚       β”œβ”€β”€ test_3.csv.gz
β”‚       β”œβ”€β”€ train_1.csv.gz

β”‚       β”œβ”€β”€ train_2.csv.gz
β”‚       └── train_3.csv.gz

└── lo

    β”œβ”€β”€ drd2

    β”‚   β”œβ”€β”€ test_1.csv.gz
    β”‚   β”œβ”€β”€ test_2.csv.gz

    β”‚   β”œβ”€β”€ test_3.csv.gz

    β”‚   β”œβ”€β”€ train_1.csv.gz

    β”‚   β”œβ”€β”€ train_2.csv.gz

    β”‚   └── train_3.csv.gz

    β”œβ”€β”€ kcnh2

    β”‚   β”œβ”€β”€ test_1.csv.gz

    β”‚   β”œβ”€β”€ test_2.csv.gz

    β”‚   β”œβ”€β”€ test_3.csv.gz

    β”‚   β”œβ”€β”€ train_1.csv.gz

    β”‚   β”œβ”€β”€ train_2.csv.gz

    β”‚   └── train_3.csv.gz

    └── kdr

        β”œβ”€β”€ test_1.csv.gz

        β”œβ”€β”€ test_2.csv.gz

        β”œβ”€β”€ test_3.csv.gz

        β”œβ”€β”€ train_1.csv.gz

        β”œβ”€β”€ train_2.csv.gz

        └── train_3.csv.gz

```


The column headings of the data are:

- **smiles**: SMILES string
- **value**: The assay result. This is True/False for `hi` and numeric for `lo`.
- **id**: Numeric structure identifier
- **inchikey**: Unique structure identifier
- **scaffold**: Murcko scaffold
- **mwt**: Molecular weight
- **clogp**: Crippen LogP
- **tpsa**: Calculated topological polar surface area.

The `hi` datasets also have a `cluster` column, indicating the structural cluster of the compound.

## Dataset Creation

### Curation Rationale

To make the Lo-Hi Benchmark readily available with light preprocessing.

#### Data Collection and Processing

Additional properties were calculated using [schemist](https://github.com/scbirlab/schemist), a tool for processing chemical datasets.

#### Who are the source data producers?

Simon Steshin (https://github.com/SteshinSS).

#### Personal and Sensitive Information

None

<!-- ## Bias, Risks, and Limitations  -->

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

<!--  [More Information Needed]  -->

<!-- ### Recommendations  -->

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

<!-- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.  -->

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```

@misc{steshin2023lohipracticalmldrug,

    title={Lo-Hi: Practical ML Drug Discovery Benchmark}, 

    author={Simon Steshin},

    year={2023},

    eprint={2310.06399},

    archivePrefix={arXiv},

    primaryClass={cs.LG},

    url={https://arxiv.org/abs/2310.06399}, 

}

```

<!-- **APA:** -->

<!-- ## Glossary [optional]  -->

<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->

<!-- [More Information Needed]

<!-- ## More Information [optional]

<!-- [More Information Needed]

<!-- ## Dataset Card Authors [optional]

<!-- [More Information Needed]  -->

## Dataset Card Contact

[@eachanjohnson](https://huggingface.co/eachanjohnson)