Datasets:

ArXiv:
Tags:
art
License:
File size: 7,308 Bytes
9c206a9
 
 
 
 
 
 
 
ea07c6e
9c206a9
 
4810ae5
 
ea07c6e
 
 
 
 
 
9c206a9
 
 
 
 
 
4810ae5
9c206a9
 
 
 
 
 
 
 
4810ae5
9c206a9
 
 
 
 
 
 
4810ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea07c6e
 
9c206a9
 
 
 
 
ea07c6e
 
 
 
 
9c206a9
 
ea07c6e
9c206a9
 
ea07c6e
 
 
 
9c206a9
 
ea07c6e
9c206a9
4810ae5
 
 
 
9c206a9
ea07c6e
 
4810ae5
 
ea07c6e
 
 
4810ae5
ea07c6e
 
4810ae5
 
ea07c6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c206a9
ea07c6e
 
 
 
 
 
 
 
 
9c206a9
ea07c6e
9c206a9
6b540a3
ea07c6e
6b540a3
ea07c6e
6b540a3
ea07c6e
6b540a3
ea07c6e
 
 
 
 
 
9c206a9
ea07c6e
 
9c206a9
ea07c6e
 
 
9c206a9
ea07c6e
 
 
9c206a9
ea07c6e
 
9c206a9
ea07c6e
9c206a9
 
ea07c6e
 
 
 
 
6b540a3
ea07c6e
 
9c206a9
4810ae5
 
 
ea07c6e
 
 
9c206a9
ea07c6e
 
 
9c206a9
ea07c6e
9c206a9
ea07c6e
 
9c206a9
ea07c6e
 
9c206a9
ea07c6e
 
9c206a9
 
 
 
 
 
 
 
 
 
ea07c6e
9c206a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea07c6e
 
 
 
 
9c206a9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import cv2
import argparse
import random
import string
import albumentations as A


def augment_final_image(image):
    transform = A.Compose(
        [
            A.MotionBlur(blur_limit=(3, 11), p=0.05),
            A.GaussNoise(var_limit=(1, 10), p=0.2),
            A.ColorJitter(
                brightness=(0.6, 1.0),
                contrast=(0.6, 1.0),
                saturation=(0.3, 1),
                hue=(0.0, 0.1),
                p=0.5,
            ),
            A.RandomFog(
                fog_coef_lower=0.05,
                fog_coef_upper=0.2,
                alpha_coef=0.08,
                always_apply=False,
                p=0.2,
            ),
            A.RandomShadow(
                shadow_roi=(0, 0.5, 1, 1),
                num_shadows_limit=(1, 2),
                num_shadows_lower=None,
                num_shadows_upper=None,
                shadow_dimension=5,
                always_apply=False,
                p=0.2,
            ),
            A.RandomToneCurve(scale=0.1, always_apply=False, p=0.5),
        ]
    )
    return transform(image=image)["image"]


def augment_background(image):
    transform = A.Compose(
        [
            A.RandomBrightnessContrast(brightness_limit=(-0.4, 0.0), p=0.2),
            A.RandomShadow(
                shadow_roi=(0, 0.7, 1, 1),
                num_shadows_limit=(1, 5),
                num_shadows_lower=None,
                num_shadows_upper=None,
                shadow_dimension=5,
                always_apply=False,
                p=1.0,
            ),
        ]
    )
    return transform(image=image)["image"]


def remove_alpha_threshold(image, alpha_threshold=160):
    # This function removes artifacts created by LayerDiffusion
    mask = image[:, :, 3] < alpha_threshold
    image[mask] = [0, 0, 0, 0]
    return image


def create_ground_truth_mask(image):
    return image[:, :, 3]


def create_random_filename_from_filepath(path):
    letters = string.ascii_lowercase
    random_string = "".join(random.choice(letters) for i in range(13))
    return random_string + "_" + os.path.basename(path)


def scale_image(image, factor=1.5):
    width = int(image.shape[1] * factor)
    height = int(image.shape[0] * factor)
    return cv2.resize(image, (width, height), interpolation=cv2.INTER_LINEAR)


def augment_and_match_size(image, target_width, target_height):

    color = [0, 0, 0, 0]
    image = cv2.copyMakeBorder(
        image, 200, 200, 200, 200, cv2.BORDER_CONSTANT, value=color
    )

    transform = A.Compose(
        [
            A.LongestMaxSize(max_size=max(target_width, target_height), p=1.0),
            A.RandomScale(scale_limit=(-0.7, 0.5)),
            A.HorizontalFlip(p=0.5),
            A.ShiftScaleRotate(
                shift_limit_x=(-0.3, 0.3),
                shift_limit_y=(0.0, 0.5),
                scale_limit=(0, 0),
                rotate_limit=(-5, 5),
                border_mode=cv2.BORDER_CONSTANT,
                p=0.5,
            ),
        ]
    )
    image = transform(image=image)["image"]

    # Ensure the image matches the target dimensions
    current_height, current_width = image.shape[:2]

    # Crop if the image is larger than the target size
    if current_height > target_height or current_width > target_width:
        # Calculating the top-left point to crop the image
        start_x = max(0, (current_width - target_width) // 2)
        start_y = max(0, (current_height - target_height) // 2)
        image = image[
            start_y : start_y + target_height, start_x : start_x + target_width
        ]

    # Pad if the image is smaller than the target size
    if current_height < target_height or current_width < target_width:
        delta_w = max(0, target_width - current_width)
        delta_h = max(0, target_height - current_height)
        top, bottom = delta_h // 2, delta_h - (delta_h // 2)
        left, right = delta_w // 2, delta_w - (delta_w // 2)
        image = cv2.copyMakeBorder(
            image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
        )

    return image


def merge_images(background, foreground, position=(0, 0)):

    x, y = position

    fh, fw = foreground.shape[:2]

    if x + fw > background.shape[1]:
        fw = background.shape[1] - x
        foreground = foreground[:, :fw]
    if y + fh > background.shape[0]:
        fh = background.shape[0] - y
        foreground = foreground[:fh, :]

    # Region of Interest (ROI) in the background where the foreground will be placed
    roi = background[y : y + fh, x : x + fw]

    # Split the foreground image into its color and alpha channels
    foreground_color = foreground[:, :, :3]
    alpha = foreground[:, :, 3] / 255.0

    # Blend the images based on the alpha channel
    for c in range(0, 3):
        roi[:, :, c] = (1.0 - alpha) * roi[:, :, c] + alpha * foreground_color[:, :, c]

    # Place the modified ROI back into the original image
    background[y : y + fh, x : x + fw] = roi

    return background


def create_training_data(
    background_path, segmentation_path, image_path, ground_truth_path
):
    background = cv2.imread(background_path, cv2.IMREAD_COLOR)
    segmentation = cv2.imread(segmentation_path, cv2.IMREAD_UNCHANGED)

    if segmentation.shape[2] < 4:
        raise Exception(f"Image does not have an alpha channel: {segmentation_path}")

    background = augment_background(background)
    segmentation = remove_alpha_threshold(segmentation)

    file_name = create_random_filename_from_filepath(segmentation_path)
    image_path = os.path.join(image_path, file_name)
    ground_truth_path = os.path.join(ground_truth_path, file_name)

    bg_height, bg_width = background.shape[:2]
    segmentation = augment_and_match_size(
        segmentation, target_height=bg_height, target_width=bg_width
    )
    ground_truth = create_ground_truth_mask(segmentation)

    result = merge_images(background, segmentation)
    result = augment_final_image(result)

    assert ground_truth.shape[0] == result.shape[0]
    assert ground_truth.shape[1] == result.shape[1]

    cv2.imwrite(ground_truth_path, ground_truth)
    cv2.imwrite(image_path, result)


def main():
    parser = argparse.ArgumentParser(
        description="Merge two images with one image having transparency."
    )
    parser.add_argument(
        "-b", "--background", required=True, help="Path to the background image"
    )
    parser.add_argument(
        "-s", "--segmentation", required=True, help="Path to the segmentation image"
    )
    parser.add_argument(
        "-im",
        "--image-path",
        type=str,
        default="im",
        help="Path where the merged image will be saved",
    )
    parser.add_argument(
        "-gt",
        "--groundtruth-path",
        type=str,
        default="gt",
        help="Ground truth folder",
    )
    args = parser.parse_args()

    if not os.path.exists(args.image_path):
        os.makedirs(args.image_path)
    if not os.path.exists(args.groundtruth_path):
        os.makedirs(args.groundtruth_path)

    create_training_data(
        background_path=args.background,
        segmentation_path=args.segmentation,
        image_path=args.image_path,
        ground_truth_path=args.groundtruth_path,
    )


if __name__ == "__main__":
    main()