Datasets:

ArXiv:
Tags:
art
License:
humans / util /ic-light.py
schirrmacher's picture
Upload folder using huggingface_hub
58ed4f8 verified
raw
history blame
16 kB
import os
import math
import random
import string
import numpy as np
import torch
import safetensors.torch as sf
import albumentations as A
import cv2
from diffusers.utils import load_image
from PIL import Image, ImageFilter, ImageOps
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionLatentUpscalePipeline,
)
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
)
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
from enum import Enum
# from torch.hub import download_url_to_file
# 'stablediffusionapi/realistic-vision-v51'
# 'runwayml/stable-diffusion-v1-5'
sd15_name = "stablediffusionapi/realistic-vision-v51"
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
)
# Change UNet
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(
8,
unet.conv_in.out_channels,
unet.conv_in.kernel_size,
unet.conv_in.stride,
unet.conv_in.padding,
)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
unet_original_forward = unet.forward
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
c_concat = kwargs["cross_attention_kwargs"]["concat_conds"].to(sample)
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
new_sample = torch.cat([sample, c_concat], dim=1)
kwargs["cross_attention_kwargs"] = {}
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
unet.forward = hooked_unet_forward
# Load
model_path = "./models/iclight_sd15_fc.safetensors"
# download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors', dst=model_path)
sd_offset = sf.load_file(model_path)
sd_origin = unet.state_dict()
keys = sd_origin.keys()
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged, keys
# Device
device = torch.device("cuda")
text_encoder = text_encoder.to(device=device, dtype=torch.float16)
vae = vae.to(device=device, dtype=torch.bfloat16)
unet = unet.to(device=device, dtype=torch.float16)
# SDP
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
# Samplers
ddim_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
euler_a_scheduler = EulerAncestralDiscreteScheduler(
num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, steps_offset=1
)
dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
algorithm_type="sde-dpmsolver++",
use_karras_sigmas=True,
steps_offset=1,
)
# Pipelines
t2i_pipe = StableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=dpmpp_2m_sde_karras_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None,
)
i2i_pipe = StableDiffusionImg2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=dpmpp_2m_sde_karras_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None,
)
@torch.inference_mode()
def encode_prompt_inner(txt: str):
max_length = tokenizer.model_max_length
chunk_length = tokenizer.model_max_length - 2
id_start = tokenizer.bos_token_id
id_end = tokenizer.eos_token_id
id_pad = id_end
def pad(x, p, i):
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
chunks = [
[id_start] + tokens[i : i + chunk_length] + [id_end]
for i in range(0, len(tokens), chunk_length)
]
chunks = [pad(ck, id_pad, max_length) for ck in chunks]
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64)
conds = text_encoder(token_ids).last_hidden_state
return conds
@torch.inference_mode()
def encode_prompt_pair(positive_prompt, negative_prompt):
c = encode_prompt_inner(positive_prompt)
uc = encode_prompt_inner(negative_prompt)
c_len = float(len(c))
uc_len = float(len(uc))
max_count = max(c_len, uc_len)
c_repeat = int(math.ceil(max_count / c_len))
uc_repeat = int(math.ceil(max_count / uc_len))
max_chunk = max(len(c), len(uc))
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]
c = torch.cat([p[None, ...] for p in c], dim=1)
uc = torch.cat([p[None, ...] for p in uc], dim=1)
return c, uc
@torch.inference_mode()
def pytorch2numpy(imgs, quant=True):
results = []
for x in imgs:
y = x.movedim(0, -1)
if quant:
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
else:
y = y * 0.5 + 0.5
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32)
results.append(y)
return results
@torch.inference_mode()
def numpy2pytorch(imgs):
h = (
torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0
) # so that 127 must be strictly 0.0
h = h.movedim(-1, 1)
return h
def resize_and_center_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
original_width, original_height = pil_image.size
scale_factor = max(target_width / original_width, target_height / original_height)
resized_width = int(round(original_width * scale_factor))
resized_height = int(round(original_height * scale_factor))
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
left = (resized_width - target_width) / 2
top = (resized_height - target_height) / 2
right = (resized_width + target_width) / 2
bottom = (resized_height + target_height) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return np.array(cropped_image)
def resize_without_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(resized_image)
def remove_alpha_threshold(image, alpha_threshold=160):
# This function removes artifacts created by LayerDiffusion
mask = image[:, :, 3] < alpha_threshold
image[mask] = [0, 0, 0, 0]
return image
@torch.inference_mode()
def process(
input_fg,
prompt,
image_width,
image_height,
num_samples,
seed,
steps,
a_prompt,
n_prompt,
cfg,
highres_scale,
highres_denoise,
lowres_denoise,
bg_source,
):
bg_source = BGSource(bg_source)
input_bg = None
if bg_source == BGSource.NONE:
pass
elif bg_source == BGSource.LEFT:
gradient = np.linspace(255, 0, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.RIGHT:
gradient = np.linspace(0, 255, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.TOP:
gradient = np.linspace(255, 0, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.BOTTOM:
gradient = np.linspace(0, 255, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
else:
raise "Wrong initial latent!"
rng = torch.Generator(device=device).manual_seed(int(seed))
fg = resize_and_center_crop(input_fg, image_width, image_height)
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = (
vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
)
conds, unconds = encode_prompt_pair(
positive_prompt=prompt + ", " + a_prompt, negative_prompt=n_prompt
)
if input_bg is None:
latents = (
t2i_pipe(
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=steps,
num_images_per_prompt=num_samples,
generator=rng,
output_type="latent",
guidance_scale=cfg,
cross_attention_kwargs={"concat_conds": concat_conds},
).images.to(vae.dtype)
/ vae.config.scaling_factor
)
else:
bg = resize_and_center_crop(input_bg, image_width, image_height)
bg_latent = numpy2pytorch([bg]).to(device=vae.device, dtype=vae.dtype)
bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor
latents = (
i2i_pipe(
image=bg_latent,
strength=lowres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=int(round(steps / lowres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type="latent",
guidance_scale=cfg,
cross_attention_kwargs={"concat_conds": concat_conds},
).images.to(vae.dtype)
/ vae.config.scaling_factor
)
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels)
pixels = [
resize_without_crop(
image=p,
target_width=int(round(image_width * highres_scale / 64.0) * 64),
target_height=int(round(image_height * highres_scale / 64.0) * 64),
)
for p in pixels
]
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
latents = latents.to(device=unet.device, dtype=unet.dtype)
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8
fg = resize_and_center_crop(input_fg, image_width, image_height)
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = (
vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
)
latents = (
i2i_pipe(
image=latents,
strength=highres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=int(round(steps / highres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type="latent",
guidance_scale=cfg,
cross_attention_kwargs={"concat_conds": concat_conds},
).images.to(vae.dtype)
/ vae.config.scaling_factor
)
pixels = vae.decode(latents).sample
return pytorch2numpy(pixels)
def augment(image):
original = image.copy()
image_height, image_width, _ = original.shape
if random.choice([True, False]):
target_height, target_width = 640 * 2, 512 * 2
else:
target_height, target_width = 512 * 2, 640 * 2
left_right_padding = (
max(target_width, image_width) - min(target_width, image_width)
) // 2
original = cv2.copyMakeBorder(
original,
top=max(target_height, image_height) - min(target_height, image_height),
bottom=0,
left=left_right_padding,
right=left_right_padding,
borderType=cv2.BORDER_CONSTANT,
value=(0, 0, 0),
)
transform = A.Compose(
[
A.HorizontalFlip(p=0.5),
A.ShiftScaleRotate(
shift_limit_x=(-0.2, 0.2),
shift_limit_y=(0.0, 0.2),
scale_limit=(0, 0),
rotate_limit=(-2, 2),
border_mode=cv2.BORDER_CONSTANT,
p=0.5,
),
]
)
return transform(image=original)["image"]
class BGSource(Enum):
NONE = "None"
LEFT = "Left Light"
RIGHT = "Right Light"
TOP = "Top Light"
BOTTOM = "Bottom Light"
input_dir = "/mnt/g/My Drive/humans/humans/"
output_dir = "dataset"
ground_truth_dir = os.path.join(output_dir, "gr")
image_dir = os.path.join(output_dir, "im")
prompts = [
"sunshine, cafe, chilled",
"exhibition, paintings",
"beach",
"winter, snow" "forrest, cloudy",
"party, people",
"cozy living room, sofa, shelf",
"mountains",
"nature, landscape",
"city centre, busy",
"neighbourhood, street, cars",
"bright sun from behind, sunset, dark",
"appartment, soft light",
"garden",
"school",
"art exhibition with paintings in background",
]
os.makedirs(ground_truth_dir, exist_ok=True)
os.makedirs(image_dir, exist_ok=True)
all_images = os.listdir(input_dir)
random.shuffle(all_images)
for filename in all_images:
if filename.lower().endswith(
(".png", ".jpg", ".jpeg")
): # Check if the file is an image
letters = string.ascii_lowercase
random_string = "".join(random.choice(letters) for i in range(13))
random_filename = f"{random_string}_{filename}"
image_path = os.path.join(input_dir, filename)
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGBA)
mask = image[:, :, 3] < 100
image[mask] = [0, 0, 0, 0]
image = cv2.GaussianBlur(image, (5, 5), 0)
image = np.array(image)
image_augmented = augment(image)
Image.fromarray(image_augmented).getchannel("A").save(
os.path.join(ground_truth_dir, random_filename)
)
image_augmented = image_augmented[:, :, :3]
# We half the size and width because SD 1.5 creates much better results then
image_augmented = image_augmented[::2, ::2]
image_height, image_width, _ = image_augmented.shape
num_samples = 1
seed = random.randint(1, 123456789012345678901234567890)
steps = 25
constant_prompt = "details, high quality"
prompt = random.choice(prompts)
n_prompt = "bad quality, blurry"
cfg = 2.0
highres_scale = 2.0
highres_denoise = 0.7
lowres_denoise = 0.5
bg_source = BGSource.NONE
results = process(
image_augmented,
constant_prompt,
image_width,
image_height,
num_samples,
seed,
steps,
prompt,
n_prompt,
cfg,
highres_scale,
highres_denoise,
lowres_denoise,
bg_source,
)
result_image = Image.fromarray(results[0])
result_image.save(os.path.join(image_dir, random_filename))