|
import os |
|
import math |
|
import random |
|
import string |
|
import numpy as np |
|
import torch |
|
import safetensors.torch as sf |
|
import albumentations as A |
|
import cv2 |
|
from diffusers.utils import load_image |
|
|
|
from PIL import Image, ImageFilter, ImageOps |
|
from diffusers import ( |
|
StableDiffusionPipeline, |
|
StableDiffusionImg2ImgPipeline, |
|
StableDiffusionLatentUpscalePipeline, |
|
) |
|
from diffusers import ( |
|
AutoencoderKL, |
|
UNet2DConditionModel, |
|
DDIMScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
) |
|
from diffusers.models.attention_processor import AttnProcessor2_0 |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
from enum import Enum |
|
|
|
|
|
|
|
|
|
|
|
|
|
sd15_name = "stablediffusionapi/realistic-vision-v51" |
|
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer") |
|
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder") |
|
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae") |
|
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet") |
|
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained( |
|
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16 |
|
) |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
new_conv_in = torch.nn.Conv2d( |
|
8, |
|
unet.conv_in.out_channels, |
|
unet.conv_in.kernel_size, |
|
unet.conv_in.stride, |
|
unet.conv_in.padding, |
|
) |
|
new_conv_in.weight.zero_() |
|
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight) |
|
new_conv_in.bias = unet.conv_in.bias |
|
unet.conv_in = new_conv_in |
|
|
|
unet_original_forward = unet.forward |
|
|
|
|
|
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs): |
|
c_concat = kwargs["cross_attention_kwargs"]["concat_conds"].to(sample) |
|
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0) |
|
new_sample = torch.cat([sample, c_concat], dim=1) |
|
kwargs["cross_attention_kwargs"] = {} |
|
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs) |
|
|
|
|
|
unet.forward = hooked_unet_forward |
|
|
|
|
|
|
|
model_path = "./models/iclight_sd15_fc.safetensors" |
|
|
|
sd_offset = sf.load_file(model_path) |
|
sd_origin = unet.state_dict() |
|
keys = sd_origin.keys() |
|
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()} |
|
unet.load_state_dict(sd_merged, strict=True) |
|
del sd_offset, sd_origin, sd_merged, keys |
|
|
|
|
|
|
|
device = torch.device("cuda") |
|
text_encoder = text_encoder.to(device=device, dtype=torch.float16) |
|
vae = vae.to(device=device, dtype=torch.bfloat16) |
|
unet = unet.to(device=device, dtype=torch.float16) |
|
|
|
|
|
|
|
unet.set_attn_processor(AttnProcessor2_0()) |
|
vae.set_attn_processor(AttnProcessor2_0()) |
|
|
|
|
|
|
|
ddim_scheduler = DDIMScheduler( |
|
num_train_timesteps=1000, |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
steps_offset=1, |
|
) |
|
|
|
euler_a_scheduler = EulerAncestralDiscreteScheduler( |
|
num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, steps_offset=1 |
|
) |
|
|
|
dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler( |
|
num_train_timesteps=1000, |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
algorithm_type="sde-dpmsolver++", |
|
use_karras_sigmas=True, |
|
steps_offset=1, |
|
) |
|
|
|
|
|
|
|
t2i_pipe = StableDiffusionPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=dpmpp_2m_sde_karras_scheduler, |
|
safety_checker=None, |
|
requires_safety_checker=False, |
|
feature_extractor=None, |
|
image_encoder=None, |
|
) |
|
|
|
i2i_pipe = StableDiffusionImg2ImgPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=dpmpp_2m_sde_karras_scheduler, |
|
safety_checker=None, |
|
requires_safety_checker=False, |
|
feature_extractor=None, |
|
image_encoder=None, |
|
) |
|
|
|
|
|
@torch.inference_mode() |
|
def encode_prompt_inner(txt: str): |
|
max_length = tokenizer.model_max_length |
|
chunk_length = tokenizer.model_max_length - 2 |
|
id_start = tokenizer.bos_token_id |
|
id_end = tokenizer.eos_token_id |
|
id_pad = id_end |
|
|
|
def pad(x, p, i): |
|
return x[:i] if len(x) >= i else x + [p] * (i - len(x)) |
|
|
|
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"] |
|
chunks = [ |
|
[id_start] + tokens[i : i + chunk_length] + [id_end] |
|
for i in range(0, len(tokens), chunk_length) |
|
] |
|
chunks = [pad(ck, id_pad, max_length) for ck in chunks] |
|
|
|
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64) |
|
conds = text_encoder(token_ids).last_hidden_state |
|
|
|
return conds |
|
|
|
|
|
@torch.inference_mode() |
|
def encode_prompt_pair(positive_prompt, negative_prompt): |
|
c = encode_prompt_inner(positive_prompt) |
|
uc = encode_prompt_inner(negative_prompt) |
|
|
|
c_len = float(len(c)) |
|
uc_len = float(len(uc)) |
|
max_count = max(c_len, uc_len) |
|
c_repeat = int(math.ceil(max_count / c_len)) |
|
uc_repeat = int(math.ceil(max_count / uc_len)) |
|
max_chunk = max(len(c), len(uc)) |
|
|
|
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk] |
|
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk] |
|
|
|
c = torch.cat([p[None, ...] for p in c], dim=1) |
|
uc = torch.cat([p[None, ...] for p in uc], dim=1) |
|
|
|
return c, uc |
|
|
|
|
|
@torch.inference_mode() |
|
def pytorch2numpy(imgs, quant=True): |
|
results = [] |
|
for x in imgs: |
|
y = x.movedim(0, -1) |
|
|
|
if quant: |
|
y = y * 127.5 + 127.5 |
|
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) |
|
else: |
|
y = y * 0.5 + 0.5 |
|
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32) |
|
|
|
results.append(y) |
|
return results |
|
|
|
|
|
@torch.inference_mode() |
|
def numpy2pytorch(imgs): |
|
h = ( |
|
torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 |
|
) |
|
h = h.movedim(-1, 1) |
|
return h |
|
|
|
|
|
def resize_and_center_crop(image, target_width, target_height): |
|
pil_image = Image.fromarray(image) |
|
original_width, original_height = pil_image.size |
|
scale_factor = max(target_width / original_width, target_height / original_height) |
|
resized_width = int(round(original_width * scale_factor)) |
|
resized_height = int(round(original_height * scale_factor)) |
|
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS) |
|
left = (resized_width - target_width) / 2 |
|
top = (resized_height - target_height) / 2 |
|
right = (resized_width + target_width) / 2 |
|
bottom = (resized_height + target_height) / 2 |
|
cropped_image = resized_image.crop((left, top, right, bottom)) |
|
return np.array(cropped_image) |
|
|
|
|
|
def resize_without_crop(image, target_width, target_height): |
|
pil_image = Image.fromarray(image) |
|
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) |
|
return np.array(resized_image) |
|
|
|
|
|
def remove_alpha_threshold(image, alpha_threshold=160): |
|
|
|
mask = image[:, :, 3] < alpha_threshold |
|
image[mask] = [0, 0, 0, 0] |
|
return image |
|
|
|
|
|
@torch.inference_mode() |
|
def process( |
|
input_fg, |
|
prompt, |
|
image_width, |
|
image_height, |
|
num_samples, |
|
seed, |
|
steps, |
|
a_prompt, |
|
n_prompt, |
|
cfg, |
|
highres_scale, |
|
highres_denoise, |
|
lowres_denoise, |
|
bg_source, |
|
): |
|
bg_source = BGSource(bg_source) |
|
input_bg = None |
|
|
|
if bg_source == BGSource.NONE: |
|
pass |
|
elif bg_source == BGSource.LEFT: |
|
gradient = np.linspace(255, 0, image_width) |
|
image = np.tile(gradient, (image_height, 1)) |
|
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) |
|
elif bg_source == BGSource.RIGHT: |
|
gradient = np.linspace(0, 255, image_width) |
|
image = np.tile(gradient, (image_height, 1)) |
|
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) |
|
elif bg_source == BGSource.TOP: |
|
gradient = np.linspace(255, 0, image_height)[:, None] |
|
image = np.tile(gradient, (1, image_width)) |
|
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) |
|
elif bg_source == BGSource.BOTTOM: |
|
gradient = np.linspace(0, 255, image_height)[:, None] |
|
image = np.tile(gradient, (1, image_width)) |
|
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) |
|
else: |
|
raise "Wrong initial latent!" |
|
|
|
rng = torch.Generator(device=device).manual_seed(int(seed)) |
|
|
|
fg = resize_and_center_crop(input_fg, image_width, image_height) |
|
|
|
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype) |
|
concat_conds = ( |
|
vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor |
|
) |
|
|
|
conds, unconds = encode_prompt_pair( |
|
positive_prompt=prompt + ", " + a_prompt, negative_prompt=n_prompt |
|
) |
|
|
|
if input_bg is None: |
|
latents = ( |
|
t2i_pipe( |
|
prompt_embeds=conds, |
|
negative_prompt_embeds=unconds, |
|
width=image_width, |
|
height=image_height, |
|
num_inference_steps=steps, |
|
num_images_per_prompt=num_samples, |
|
generator=rng, |
|
output_type="latent", |
|
guidance_scale=cfg, |
|
cross_attention_kwargs={"concat_conds": concat_conds}, |
|
).images.to(vae.dtype) |
|
/ vae.config.scaling_factor |
|
) |
|
else: |
|
bg = resize_and_center_crop(input_bg, image_width, image_height) |
|
bg_latent = numpy2pytorch([bg]).to(device=vae.device, dtype=vae.dtype) |
|
bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor |
|
latents = ( |
|
i2i_pipe( |
|
image=bg_latent, |
|
strength=lowres_denoise, |
|
prompt_embeds=conds, |
|
negative_prompt_embeds=unconds, |
|
width=image_width, |
|
height=image_height, |
|
num_inference_steps=int(round(steps / lowres_denoise)), |
|
num_images_per_prompt=num_samples, |
|
generator=rng, |
|
output_type="latent", |
|
guidance_scale=cfg, |
|
cross_attention_kwargs={"concat_conds": concat_conds}, |
|
).images.to(vae.dtype) |
|
/ vae.config.scaling_factor |
|
) |
|
|
|
pixels = vae.decode(latents).sample |
|
pixels = pytorch2numpy(pixels) |
|
pixels = [ |
|
resize_without_crop( |
|
image=p, |
|
target_width=int(round(image_width * highres_scale / 64.0) * 64), |
|
target_height=int(round(image_height * highres_scale / 64.0) * 64), |
|
) |
|
for p in pixels |
|
] |
|
|
|
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype) |
|
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor |
|
latents = latents.to(device=unet.device, dtype=unet.dtype) |
|
|
|
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8 |
|
|
|
fg = resize_and_center_crop(input_fg, image_width, image_height) |
|
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype) |
|
concat_conds = ( |
|
vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor |
|
) |
|
|
|
latents = ( |
|
i2i_pipe( |
|
image=latents, |
|
strength=highres_denoise, |
|
prompt_embeds=conds, |
|
negative_prompt_embeds=unconds, |
|
width=image_width, |
|
height=image_height, |
|
num_inference_steps=int(round(steps / highres_denoise)), |
|
num_images_per_prompt=num_samples, |
|
generator=rng, |
|
output_type="latent", |
|
guidance_scale=cfg, |
|
cross_attention_kwargs={"concat_conds": concat_conds}, |
|
).images.to(vae.dtype) |
|
/ vae.config.scaling_factor |
|
) |
|
|
|
pixels = vae.decode(latents).sample |
|
|
|
return pytorch2numpy(pixels) |
|
|
|
|
|
def augment(image): |
|
|
|
original = image.copy() |
|
|
|
image_height, image_width, _ = original.shape |
|
|
|
if random.choice([True, False]): |
|
target_height, target_width = 640 * 2, 512 * 2 |
|
else: |
|
target_height, target_width = 512 * 2, 640 * 2 |
|
|
|
left_right_padding = ( |
|
max(target_width, image_width) - min(target_width, image_width) |
|
) // 2 |
|
|
|
original = cv2.copyMakeBorder( |
|
original, |
|
top=max(target_height, image_height) - min(target_height, image_height), |
|
bottom=0, |
|
left=left_right_padding, |
|
right=left_right_padding, |
|
borderType=cv2.BORDER_CONSTANT, |
|
value=(0, 0, 0), |
|
) |
|
|
|
transform = A.Compose( |
|
[ |
|
A.HorizontalFlip(p=0.5), |
|
A.ShiftScaleRotate( |
|
shift_limit_x=(-0.2, 0.2), |
|
shift_limit_y=(0.0, 0.2), |
|
scale_limit=(0, 0), |
|
rotate_limit=(-2, 2), |
|
border_mode=cv2.BORDER_CONSTANT, |
|
p=0.5, |
|
), |
|
] |
|
) |
|
|
|
return transform(image=original)["image"] |
|
|
|
|
|
class BGSource(Enum): |
|
NONE = "None" |
|
LEFT = "Left Light" |
|
RIGHT = "Right Light" |
|
TOP = "Top Light" |
|
BOTTOM = "Bottom Light" |
|
|
|
|
|
input_dir = "/mnt/g/My Drive/humans/humans/" |
|
output_dir = "dataset" |
|
ground_truth_dir = os.path.join(output_dir, "gr") |
|
image_dir = os.path.join(output_dir, "im") |
|
|
|
prompts = [ |
|
"sunshine, cafe, chilled", |
|
"exhibition, paintings", |
|
"beach", |
|
"winter, snow" "forrest, cloudy", |
|
"party, people", |
|
"cozy living room, sofa, shelf", |
|
"mountains", |
|
"nature, landscape", |
|
"city centre, busy", |
|
"neighbourhood, street, cars", |
|
"bright sun from behind, sunset, dark", |
|
"appartment, soft light", |
|
"garden", |
|
"school", |
|
"art exhibition with paintings in background", |
|
] |
|
|
|
os.makedirs(ground_truth_dir, exist_ok=True) |
|
os.makedirs(image_dir, exist_ok=True) |
|
|
|
all_images = os.listdir(input_dir) |
|
random.shuffle(all_images) |
|
|
|
for filename in all_images: |
|
if filename.lower().endswith( |
|
(".png", ".jpg", ".jpeg") |
|
): |
|
|
|
letters = string.ascii_lowercase |
|
random_string = "".join(random.choice(letters) for i in range(13)) |
|
random_filename = f"{random_string}_{filename}" |
|
|
|
image_path = os.path.join(input_dir, filename) |
|
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGBA) |
|
mask = image[:, :, 3] < 100 |
|
image[mask] = [0, 0, 0, 0] |
|
|
|
image = cv2.GaussianBlur(image, (5, 5), 0) |
|
image = np.array(image) |
|
|
|
image_augmented = augment(image) |
|
Image.fromarray(image_augmented).getchannel("A").save( |
|
os.path.join(ground_truth_dir, random_filename) |
|
) |
|
|
|
image_augmented = image_augmented[:, :, :3] |
|
|
|
|
|
image_augmented = image_augmented[::2, ::2] |
|
image_height, image_width, _ = image_augmented.shape |
|
|
|
num_samples = 1 |
|
seed = random.randint(1, 123456789012345678901234567890) |
|
steps = 25 |
|
constant_prompt = "details, high quality" |
|
prompt = random.choice(prompts) |
|
n_prompt = "bad quality, blurry" |
|
cfg = 2.0 |
|
highres_scale = 2.0 |
|
highres_denoise = 0.7 |
|
lowres_denoise = 0.5 |
|
bg_source = BGSource.NONE |
|
|
|
results = process( |
|
image_augmented, |
|
constant_prompt, |
|
image_width, |
|
image_height, |
|
num_samples, |
|
seed, |
|
steps, |
|
prompt, |
|
n_prompt, |
|
cfg, |
|
highres_scale, |
|
highres_denoise, |
|
lowres_denoise, |
|
bg_source, |
|
) |
|
result_image = Image.fromarray(results[0]) |
|
result_image.save(os.path.join(image_dir, random_filename)) |
|
|