File size: 3,366 Bytes
504e3ee
877c537
82148ce
504e3ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d06a7a
504e3ee
9d06a7a
 
 
504e3ee
 
 
 
 
 
 
 
7bd1463
504e3ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82148ce
 
1d8fd65
504e3ee
 
 
 
 
1d8fd65
504e3ee
 
 
 
 
 
 
1d8fd65
504e3ee
 
 
 
 
 
 
1d8fd65
9d06a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e56b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import datasets
import csv
import os

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
_HOMEPAGE = ""
_LICENSE = ""


_URL = "https://huggingface.co/datasets/sebastiaan/test-cefr/resolve/main/"
_URLS = {
      "train": _URL + "train_dataset.csv",
      "test": _URL + "test_dataset.csv",
      "val": _URL + "val_dataset.csv",
  }


class CefrDataset(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        features = datasets.Features(
              {
                  "prompt": datasets.Value("string"),
                  "label": datasets.Value("string")
              }
          )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        my_urls = _URLS
        data_dir = dl_manager.download_and_extract(my_urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["test"],
                    "split": "test"
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["val"],
                    "split": "val",
                },
            ),
        ]

    def _generate_examples(
        self, filepath, split
    ):
        """ Yields examples as (key, example) tuples. """

        with open(filepath, encoding="utf-8") as csv_file:
            csv_reader = csv.reader(
                csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
            )
            next(csv_reader, None)
            for id_, row in enumerate(csv_reader):
                (prompt, label) = row
                yield id_, {
                    "prompt": prompt,
                    "label": label
                }