import csv import json import os import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {A great new dataset}, author={huggingface, Inc. }, year={2020} } """ # You can copy an official description _DESCRIPTION = """\ This new dataset is designed to solve this great NLP task and is crafted with a lot of care. """ _HOMEPAGE = "" _LICENSE = "" _URLS = { "train": "train_split.csv", "test": "test_split.csv", "val": "val_split.csv", } class CefrDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") def _info(self): features = datasets.Features( { "prompt": datasets.Value("string"), "label": datasets.Value("string") } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": "train_split.csv", "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": "test_split.csv", "split": "test" }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": "val_split.csv", "split": "val", }, ), ]