sergioburdisso commited on
Commit
be7ad6c
·
verified ·
1 Parent(s): 8e4ca8e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +232 -15
README.md CHANGED
@@ -4,39 +4,65 @@ multilinguality:
4
  - monolingual
5
  language:
6
  - en
7
- pretty_name: Dialog2Flow dataset
8
  size_categories:
9
  - 1M<n<10M
10
  source_datasets:
11
  - Salesforce/dialogstudio
12
  ---
13
- # Dialog2Flow dataset
14
 
15
  This page hosts the dataset introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://arxiv.org/abs/2410.18481) published in the EMNLP 2024 main conference.
16
- The dataset is composed of 20 task-oriented datasets in which all dialog act names have been standirized.
17
 
18
- ## Utterances/Sentences Dataset
19
 
20
- WIP
21
 
 
 
 
 
22
 
23
- ## Individual Task-Oriented Dialog Datasets
24
 
25
- WIP
 
26
 
27
- ### Stats and Licenses
28
 
29
- | Name | Train | Validation | Test | Total | License |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  |--------------------|--------|------------|-------|--------|-------------------------------------------------------------|
31
  | ABCD | 8034 | 1004 | 1004 | 10042 | MIT License |
32
  | BiTOD | 2952 | 295 | 442 | 3689 | Apache License 2.0 |
33
  | Disambiguation | 8433 | 999 | 1000 | 10432 | MiT License |
34
  | DSTC2-Clean | 1612 | 506 | 1117 | 3235 | GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 |
35
- | FRAMES | 1329 | 0 | 40 | 1369 | GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 |
36
- | GECOR | 676 | 0 | 0 | 676 | CC BY 4.0 |
37
  | HDSA-Dialog | 8438 | 1000 | 1000 | 10438 | MIT License |
38
  | KETOD | 4247 | 545 | 532 | 5324 | MiT License |
39
- | MS-DC | 10000 | 0 | 0 | 10000 | MICROSOFT RESEARCH LICENSE TERMS |
40
  | MulDoGO | 59939 | 1150 | 2319 | 63408 | Community Data License Agreement – Permissive – Version 1.0 |
41
  | MultiWOZ_2.1 | 8434 | 999 | 1000 | 10433 | MiT License |
42
  | MULTIWOZ2_2 | 8437 | 1000 | 1000 | 10437 | Mit License |
@@ -45,12 +71,198 @@ WIP
45
  | SimJointMovie | 384 | 120 | 264 | 768 | No license |
46
  | SimJointRestaurant | 1116 | 349 | 775 | 2240 | No license |
47
  | Taskmaster1 | 6170 | 769 | 769 | 7708 | Attribution 4.0 International (CC BY 4.0) |
48
- | Taskmaster2 | 17304 | 0 | 0 | 17304 | Creative Commons Attribution 4.0 License (CC BY 4.0) |
49
  | Taskmaster3 | 22724 | 17019 | 17903 | 57646 | Creative Commons Attribution 4.0 License (CC BY 4.0) |
50
  | WOZ2_0 | 600 | 200 | 400 | 1200 | Apache License 2.0 |
51
 
52
 
53
- ## Citing & Authors
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
 
56
  ```bibtex
@@ -69,6 +281,11 @@ WIP
69
 
70
  ## License
71
 
72
- Changes performed
 
 
 
 
73
  Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
 
74
  MIT License.
 
4
  - monolingual
5
  language:
6
  - en
7
+ pretty_name: Dialog2Flow Training Corpus
8
  size_categories:
9
  - 1M<n<10M
10
  source_datasets:
11
  - Salesforce/dialogstudio
12
  ---
13
+ # Dialog2Flow Training Corpus
14
 
15
  This page hosts the dataset introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://arxiv.org/abs/2410.18481) published in the EMNLP 2024 main conference.
16
+ Here we are not only making available the dataset but also each one of the 20 (standardized) task-oriented dialogue datasets used to build it.
17
 
18
+ The corpus consists of **3.4 million utterances/sentences annotated with dialog act and slot labels across 52 different domains**. Domain names and dialog act labels were manually standardized across the 20 datasets.
19
 
20
+ ## Load Training Datasets
21
 
22
+ From this corpus, in the paper, 3 datasets were created for training the sentence encoders, one for the single target (D2F_single) training containing the subset with both dialog act and slots annotation; and other two for the joint target (DFD_joint), one containing the subset with dialog acts and another with slots only. To use them, you can use one of the following names, respectively:
23
+ 1. `"dialog-acts+slots"`: (utterance, action label) pairs.
24
+ 1. `"dialog-acts"`: (utterance, dialog act label) pairs.
25
+ 1. `"slots"`: (utterance, slots label) pairs.
26
 
27
+ For instance, below is one example to load the "dialog-acts+slots" dataset:
28
 
29
+ ```python
30
+ from datasets import load_dataset
31
 
32
+ dataset = load_dataset('sergioburdisso/dialog2flow-dataset', 'dialog-acts+slots', trust_remote_code=True)
33
 
34
+ print(dataset)
35
+ ```
36
+ Output:
37
+ ```
38
+ DatasetDict({
39
+ train: Dataset({
40
+ features: ['utterance', 'label'],
41
+ num_rows: 1577184
42
+ })
43
+ validation: Dataset({
44
+ features: ['utterance', 'label'],
45
+ num_rows: 4695
46
+ })
47
+ })
48
+ ```
49
+
50
+ ## Load (Individual) Task-Oriented Dialog Datasets
51
+
52
+ We also provide access to each one of the 20 task-oriented dialogue datasets standardizing annotation and format used to build the corpus. To load each dataset we can simply use its name as given in the following table with information about License and number of dialogues in each dataset:
53
+
54
+
55
+ | Dataset Name | Train | Validation | Test | Total | License |
56
  |--------------------|--------|------------|-------|--------|-------------------------------------------------------------|
57
  | ABCD | 8034 | 1004 | 1004 | 10042 | MIT License |
58
  | BiTOD | 2952 | 295 | 442 | 3689 | Apache License 2.0 |
59
  | Disambiguation | 8433 | 999 | 1000 | 10432 | MiT License |
60
  | DSTC2-Clean | 1612 | 506 | 1117 | 3235 | GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 |
61
+ | FRAMES | 1329 | - | 40 | 1369 | GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 |
62
+ | GECOR | 676 | - | - | 676 | CC BY 4.0 |
63
  | HDSA-Dialog | 8438 | 1000 | 1000 | 10438 | MIT License |
64
  | KETOD | 4247 | 545 | 532 | 5324 | MiT License |
65
+ | MS-DC | 10000 | - | - | 10000 | MICROSOFT RESEARCH LICENSE TERMS |
66
  | MulDoGO | 59939 | 1150 | 2319 | 63408 | Community Data License Agreement – Permissive – Version 1.0 |
67
  | MultiWOZ_2.1 | 8434 | 999 | 1000 | 10433 | MiT License |
68
  | MULTIWOZ2_2 | 8437 | 1000 | 1000 | 10437 | Mit License |
 
71
  | SimJointMovie | 384 | 120 | 264 | 768 | No license |
72
  | SimJointRestaurant | 1116 | 349 | 775 | 2240 | No license |
73
  | Taskmaster1 | 6170 | 769 | 769 | 7708 | Attribution 4.0 International (CC BY 4.0) |
74
+ | Taskmaster2 | 17304 | - | - | 17304 | Creative Commons Attribution 4.0 License (CC BY 4.0) |
75
  | Taskmaster3 | 22724 | 17019 | 17903 | 57646 | Creative Commons Attribution 4.0 License (CC BY 4.0) |
76
  | WOZ2_0 | 600 | 200 | 400 | 1200 | Apache License 2.0 |
77
 
78
 
79
+ For instance, below is one example to load the "WOZ2_0" dataset:
80
+
81
+ ```python
82
+ from datasets import load_dataset
83
+
84
+ dataset = load_dataset('sergioburdisso/dialog2flow-dataset', 'WOZ2_0', trust_remote_code=True)
85
+
86
+ print(dataset)
87
+ ```
88
+ Output:
89
+ ```
90
+ DatasetDict({
91
+ test: Dataset({
92
+ features: ['dialog'],
93
+ num_rows: 400
94
+ })
95
+ train: Dataset({
96
+ features: ['dialog'],
97
+ num_rows: 600
98
+ })
99
+ validation: Dataset({
100
+ features: ['dialog'],
101
+ num_rows: 200
102
+ })
103
+ })
104
+ ```
105
+
106
+ Note that, unlike previous datasets that contained utterance-label pairs, these individual datasets consist of only one feature "dialog" since their a collection of dialogs (not utterances). Each dialog in turn has the JSON structure described in Appendix A of the paper. For instance, let's get the first dialog of the train split:
107
+
108
+ ```python
109
+ print(dataset["train"][0]["dialog"])
110
+ ```
111
+ Output:
112
+ ```json
113
+ [
114
+ {
115
+ "speaker":"user",
116
+ "text":"Are there any eritrean restaurants in town?",
117
+ "domains":[
118
+ "restaurant"
119
+ ],
120
+ "labels":{
121
+ "dialog_acts":{
122
+ "acts":[
123
+ "inform"
124
+ ],
125
+ "main_acts":[
126
+ "inform"
127
+ ],
128
+ "original_acts":[
129
+ "inform"
130
+ ]
131
+ },
132
+ "slots":[
133
+ "food"
134
+ ],
135
+ "intents":"None"
136
+ }
137
+ },
138
+ ...
139
+ {
140
+ "speaker":"system",
141
+ "text":"There is a wide variety of Chinese restaurants, do you have an area preference or a price preference to narrow it down?",
142
+ "domains":[
143
+ "restaurant"
144
+ ],
145
+ "labels":{
146
+ "dialog_acts":{
147
+ "acts":[
148
+ "request"
149
+ ],
150
+ "main_acts":[
151
+ "request"
152
+ ],
153
+ "original_acts":[
154
+ "request"
155
+ ]
156
+ },
157
+ "slots":[
158
+ "area"
159
+ ],
160
+ "intents":"None"
161
+ }
162
+ },
163
+ ...
164
+ ]
165
+ ```
166
+
167
+ ## Corpus Details
168
+
169
+
170
+ ### Stats
171
+
172
+ - **Utterances:** 3.4M
173
+ - **Domains:** 52
174
+ - **Dialogs:** 369,174
175
+ - **Labels:**
176
+ - **Dialog acts:** 18
177
+ - **Slots:** 524
178
+ - **Actions (dialog act + slots):** 3,982
179
+
180
+ ### Full List of Dialog Acts
181
+
182
+ List of the final 18 dialog act labels along with their proportion in the corpus:
183
+
184
+ `inform` (64.66%) ·
185
+ `request` (12.62%) ·
186
+ `offer` (6.62%) ·
187
+ `inform_success` (3.07%) ·
188
+ `good_bye` (2.67%) ·
189
+ `agreement` (2.45%) ·
190
+ `thank_you` (2.25%) ·
191
+ `confirm` (2.10%) ·
192
+ `disagreement` (1.60%) ·
193
+ `request_more` (1.06%) ·
194
+ `request_alternative` (0.90%) ·
195
+ `recommendation` (0.70%) ·
196
+ `inform_failure` (0.64%) ·
197
+ `greeting` (0.31%) ·
198
+ `confirm_answer` (0.18%) ·
199
+ `confirm_question` (0.17%) ·
200
+ `request_update` (0.02%) ·
201
+ `request_compare` (0.01%)
202
+
203
+ ### Full List of Domains
204
+
205
+ List of the final 52 domain names along with their proportion in the corpus:
206
+
207
+ `movie` (32.98%) ·
208
+ `restaurant` (13.48%) ·
209
+ `hotel` (10.15%) ·
210
+ `train` (4.52%) ·
211
+ `flight` (4.30%) ·
212
+ `event` (3.56%) ·
213
+ `attraction` (3.50%) ·
214
+ `service` (2.44%) ·
215
+ `bus` (2.28%) ·
216
+ `taxi` (2.21%) ·
217
+ `rentalcars` (2.20%) ·
218
+ `travel` (2.16%) ·
219
+ `music` (1.81%) ·
220
+ `medium` (1.66%) ·
221
+ `ridesharing` (1.30%) ·
222
+ `booking` (1.21%) ·
223
+ `home` (1.01%) ·
224
+ `finance` (0.79%) ·
225
+ `airline` (0.69%) ·
226
+ `calendar` (0.69%) ·
227
+ `fastfood` (0.68%) ·
228
+ `insurance` (0.61%) ·
229
+ `weather` (0.58%) ·
230
+ `bank` (0.47%) ·
231
+ `hkmtr` (0.36%) ·
232
+ `mlb` (0.35%) ·
233
+ `ml` (0.31%) ·
234
+ `food` (0.30%) ·
235
+ `epl` (0.30%) ·
236
+ `pizza` (0.25%) ·
237
+ `coffee` (0.24%) ·
238
+ `uber` (0.24%) ·
239
+ `software` (0.23%) ·
240
+ `auto` (0.21%) ·
241
+ `nba` (0.20%) ·
242
+ `product_defect` (0.17%) ·
243
+ `shipping_issue` (0.16%) ·
244
+ `alarm` (0.13%) ·
245
+ `order_issue` (0.13%) ·
246
+ `messaging` (0.13%) ·
247
+ `hospital` (0.11%) ·
248
+ `subscription_inquiry` (0.11%) ·
249
+ `account_access` (0.11%) ·
250
+ `payment` (0.10%) ·
251
+ `purchase_dispute` (0.10%) ·
252
+ `nfl` (0.09%) ·
253
+ `chat` (0.08%) ·
254
+ `police` (0.07%) ·
255
+ `single_item_query` (0.06%) ·
256
+ `storewide_query` (0.06%) ·
257
+ `troubleshoot_site` (0.06%) ·
258
+ `manage_account` (0.06%)
259
+
260
+
261
+ More details about the corpus can be found in Section 4 and Appendix A of the original paper.
262
+
263
+
264
+
265
+ ## Citation
266
 
267
 
268
  ```bibtex
 
281
 
282
  ## License
283
 
284
+ Individual datasets were originally loaded from [DialogStudio](https://huggingface.co/datasets/Salesforce/dialogstudio) and therefore, this project follows [their licensing structure](https://huggingface.co/datasets/Salesforce/dialogstudio/blob/main/README.md#license).
285
+ For detailed licensing information, please refer to the specific licenses accompanying the datasets provided in the table above.
286
+
287
+ All extra content purely authored by us is released under the MIT license:
288
+
289
  Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
290
+
291
  MIT License.