# Intel Image Classification The **Intel Image Classification** dataset contains images of natural scenes categorized into six classes: - Buildings - Forest - Glacier - Mountain - Sea - Street --- ## ๐Ÿ“† Content - The dataset contains **~25,000 images** of size **150x150 pixels**. - Images are evenly distributed across **6 categories**: ``` {'buildings' -> 0, 'forest' -> 1, 'glacier' -> 2, 'mountain' -> 3, 'sea' -> 4, 'street' -> 5 } ``` - It is divided into three parts: - **Training set**: ~14,000 images - **Test set**: ~3,000 images - **Prediction set**: ~7,000 images The train, test, and prediction images are stored in separate folders. --- ## ๐Ÿงช Structure ``` data/ โ”œโ”€โ”€ seg_train/ โ”‚ โ”œโ”€โ”€ buildings/ โ”‚ โ”œโ”€โ”€ forest/ โ”‚ โ”œโ”€โ”€ glacier/ โ”‚ โ”œโ”€โ”€ mountain/ โ”‚ โ”œโ”€โ”€ sea/ โ”‚ โ””โ”€โ”€ street/ โ”œโ”€โ”€ seg_test/ โ”‚ โ””โ”€โ”€ ... โ””โ”€โ”€ seg_pred/ โ””โ”€โ”€ ... ``` --- ## ๐Ÿ”— Source & Acknowledgements - Originally published by **Intel** as part of a challenge on **Analytics Vidhya**: [https://datahack.analyticsvidhya.com](https://datahack.analyticsvidhya.com/) - Rehosted on Kaggle: [Intel Image Classification | Kaggle](https://www.kaggle.com/datasets/puneet6060/intel-image-classification) --- ## ๐Ÿ’ป Usage You can load this dataset using Hugging Face's `datasets` library: ```python from datasets import load_dataset dataset = load_dataset("sfarrukhm/intel-image-classification") ```