Josh Cole commited on
Commit
ee02bc0
·
1 Parent(s): 60ab637
Generator.ipynb ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 36,
6
+ "id": "bbd1b7a1-dbb7-4243-99e0-70a6cd47d573",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "data": {
11
+ "application/vnd.jupyter.widget-view+json": {
12
+ "model_id": "bc0613fcb64f4a5e8cd4ad69698f7715",
13
+ "version_major": 2,
14
+ "version_minor": 0
15
+ },
16
+ "text/plain": [
17
+ "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
18
+ ]
19
+ },
20
+ "metadata": {},
21
+ "output_type": "display_data"
22
+ }
23
+ ],
24
+ "source": [
25
+ "from huggingface_hub import notebook_login\n",
26
+ "notebook_login()"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": 93,
32
+ "id": "306958c8-4603-4b9b-b941-6a824777164d",
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "import librosa\n",
37
+ "import math\n",
38
+ "import pyarrow as pa\n",
39
+ "import pandas as pd\n",
40
+ "from datasets import load_dataset_builder, SplitGenerator, Split, Dataset, table"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type": "code",
45
+ "execution_count": 131,
46
+ "id": "4ac69d3b-38c6-49af-aefe-63755bf3f0e9",
47
+ "metadata": {},
48
+ "outputs": [],
49
+ "source": [
50
+ "SAMPLE_RATE = 16_000\n",
51
+ "MAX_LENGTH_IN_SECONDS = 20.0\n",
52
+ "\n",
53
+ "def add_audio(file, words):\n",
54
+ " audio, _ = librosa.load(file, sr=SAMPLE_RATE)\n",
55
+ " return {\n",
56
+ " \"audio\": audio,\n",
57
+ " }"
58
+ ]
59
+ },
60
+ {
61
+ "cell_type": "code",
62
+ "execution_count": 162,
63
+ "id": "9192b631-388f-4306-b975-9ba770b9dc4d",
64
+ "metadata": {},
65
+ "outputs": [],
66
+ "source": [
67
+ "audio, _ = librosa.load('clips/1.wav', sr=SAMPLE_RATE)\n",
68
+ " \n",
69
+ "df = pd.DataFrame({\n",
70
+ " 'audio': audio,\n",
71
+ "})\n",
72
+ "tbl = table.InMemoryTable(\n",
73
+ " pa.Table.from_pandas(df)\n",
74
+ ")\n",
75
+ "ds = Dataset(tbl)"
76
+ ]
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": 163,
81
+ "id": "eb7979e4-c00a-4657-a1d4-b2bffd894363",
82
+ "metadata": {},
83
+ "outputs": [
84
+ {
85
+ "ename": "TypeError",
86
+ "evalue": "Couldn't cast array of type\nlist<item: float>\nto\nfloat",
87
+ "output_type": "error",
88
+ "traceback": [
89
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
90
+ "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
91
+ "Input \u001b[0;32mIn [163]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43madd_item\u001b[49m\u001b[43m(\u001b[49m\u001b[43madd_audio\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mclips/1.wav\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mbjorn\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
92
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py:518\u001b[0m, in \u001b[0;36mtransmit_format.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 511\u001b[0m self_format \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 512\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtype\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_type,\n\u001b[1;32m 513\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mformat_kwargs\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_kwargs,\n\u001b[1;32m 514\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcolumns\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_columns,\n\u001b[1;32m 515\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moutput_all_columns\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_output_all_columns,\n\u001b[1;32m 516\u001b[0m }\n\u001b[1;32m 517\u001b[0m \u001b[38;5;66;03m# apply actual function\u001b[39;00m\n\u001b[0;32m--> 518\u001b[0m out: Union[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDatasetDict\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 519\u001b[0m datasets: List[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(out\u001b[38;5;241m.\u001b[39mvalues()) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(out, \u001b[38;5;28mdict\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m [out]\n\u001b[1;32m 520\u001b[0m \u001b[38;5;66;03m# re-apply format to the output\u001b[39;00m\n",
93
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/fingerprint.py:458\u001b[0m, in \u001b[0;36mfingerprint_transform.<locals>._fingerprint.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 452\u001b[0m kwargs[fingerprint_name] \u001b[38;5;241m=\u001b[39m update_fingerprint(\n\u001b[1;32m 453\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_fingerprint, transform, kwargs_for_fingerprint\n\u001b[1;32m 454\u001b[0m )\n\u001b[1;32m 456\u001b[0m \u001b[38;5;66;03m# Call actual function\u001b[39;00m\n\u001b[0;32m--> 458\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 460\u001b[0m \u001b[38;5;66;03m# Update fingerprint of in-place transforms + update in-place history of transforms\u001b[39;00m\n\u001b[1;32m 462\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inplace: \u001b[38;5;66;03m# update after calling func so that the fingerprint doesn't change if the function fails\u001b[39;00m\n",
94
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py:4624\u001b[0m, in \u001b[0;36mDataset.add_item\u001b[0;34m(self, item, new_fingerprint)\u001b[0m\n\u001b[1;32m 4619\u001b[0m dset_features, item_features \u001b[38;5;241m=\u001b[39m _align_features([\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfeatures, Features\u001b[38;5;241m.\u001b[39mfrom_arrow_schema(item_table\u001b[38;5;241m.\u001b[39mschema)])\n\u001b[1;32m 4620\u001b[0m \u001b[38;5;66;03m# Cast to align the schemas of the tables and concatenate the tables\u001b[39;00m\n\u001b[1;32m 4621\u001b[0m table \u001b[38;5;241m=\u001b[39m concat_tables(\n\u001b[1;32m 4622\u001b[0m [\n\u001b[1;32m 4623\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_data\u001b[38;5;241m.\u001b[39mcast(dset_features\u001b[38;5;241m.\u001b[39marrow_schema) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfeatures \u001b[38;5;241m!=\u001b[39m dset_features \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_data,\n\u001b[0;32m-> 4624\u001b[0m \u001b[43mitem_table\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mitem_features\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43marrow_schema\u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 4625\u001b[0m ]\n\u001b[1;32m 4626\u001b[0m )\n\u001b[1;32m 4627\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_indices \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 4628\u001b[0m indices_table \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
95
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:834\u001b[0m, in \u001b[0;36mInMemoryTable.cast\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 821\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcast\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 822\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 823\u001b[0m \u001b[38;5;124;03m Cast table values to another schema\u001b[39;00m\n\u001b[1;32m 824\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 832\u001b[0m \u001b[38;5;124;03m :class:`datasets.table.Table`:\u001b[39;00m\n\u001b[1;32m 833\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 834\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m InMemoryTable(\u001b[43mtable_cast\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtable\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m)\n",
96
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1897\u001b[0m, in \u001b[0;36mtable_cast\u001b[0;34m(table, schema)\u001b[0m\n\u001b[1;32m 1885\u001b[0m \u001b[38;5;124;03m\"\"\"Improved version of pa.Table.cast.\u001b[39;00m\n\u001b[1;32m 1886\u001b[0m \n\u001b[1;32m 1887\u001b[0m \u001b[38;5;124;03mIt supports casting to feature types stored in the schema metadata.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1894\u001b[0m \u001b[38;5;124;03m table (:obj:`pyarrow.Table`): the casted table\u001b[39;00m\n\u001b[1;32m 1895\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 1896\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m table\u001b[38;5;241m.\u001b[39mschema \u001b[38;5;241m!=\u001b[39m schema:\n\u001b[0;32m-> 1897\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mcast_table_to_schema\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtable\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mschema\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1898\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m table\u001b[38;5;241m.\u001b[39mschema\u001b[38;5;241m.\u001b[39mmetadata \u001b[38;5;241m!=\u001b[39m schema\u001b[38;5;241m.\u001b[39mmetadata:\n\u001b[1;32m 1899\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m table\u001b[38;5;241m.\u001b[39mreplace_schema_metadata(schema\u001b[38;5;241m.\u001b[39mmetadata)\n",
97
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1880\u001b[0m, in \u001b[0;36mcast_table_to_schema\u001b[0;34m(table, schema)\u001b[0m\n\u001b[1;32m 1878\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28msorted\u001b[39m(table\u001b[38;5;241m.\u001b[39mcolumn_names) \u001b[38;5;241m!=\u001b[39m \u001b[38;5;28msorted\u001b[39m(features):\n\u001b[1;32m 1879\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt cast\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mtable\u001b[38;5;241m.\u001b[39mschema\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mto\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mfeatures\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mbecause column names don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt match\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1880\u001b[0m arrays \u001b[38;5;241m=\u001b[39m [cast_array_to_feature(table[name], feature) \u001b[38;5;28;01mfor\u001b[39;00m name, feature \u001b[38;5;129;01min\u001b[39;00m features\u001b[38;5;241m.\u001b[39mitems()]\n\u001b[1;32m 1881\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pa\u001b[38;5;241m.\u001b[39mTable\u001b[38;5;241m.\u001b[39mfrom_arrays(arrays, schema\u001b[38;5;241m=\u001b[39mschema)\n",
98
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1880\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1878\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28msorted\u001b[39m(table\u001b[38;5;241m.\u001b[39mcolumn_names) \u001b[38;5;241m!=\u001b[39m \u001b[38;5;28msorted\u001b[39m(features):\n\u001b[1;32m 1879\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt cast\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mtable\u001b[38;5;241m.\u001b[39mschema\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mto\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mfeatures\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mbecause column names don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt match\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1880\u001b[0m arrays \u001b[38;5;241m=\u001b[39m [\u001b[43mcast_array_to_feature\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtable\u001b[49m\u001b[43m[\u001b[49m\u001b[43mname\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfeature\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m name, feature \u001b[38;5;129;01min\u001b[39;00m features\u001b[38;5;241m.\u001b[39mitems()]\n\u001b[1;32m 1881\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pa\u001b[38;5;241m.\u001b[39mTable\u001b[38;5;241m.\u001b[39mfrom_arrays(arrays, schema\u001b[38;5;241m=\u001b[39mschema)\n",
99
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1673\u001b[0m, in \u001b[0;36m_wrap_for_chunked_arrays.<locals>.wrapper\u001b[0;34m(array, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1671\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(array, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 1672\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(array, pa\u001b[38;5;241m.\u001b[39mChunkedArray):\n\u001b[0;32m-> 1673\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pa\u001b[38;5;241m.\u001b[39mchunked_array([func(chunk, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m array\u001b[38;5;241m.\u001b[39mchunks])\n\u001b[1;32m 1674\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1675\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(array, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
100
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1673\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1671\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(array, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 1672\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(array, pa\u001b[38;5;241m.\u001b[39mChunkedArray):\n\u001b[0;32m-> 1673\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pa\u001b[38;5;241m.\u001b[39mchunked_array([\u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mchunk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m array\u001b[38;5;241m.\u001b[39mchunks])\n\u001b[1;32m 1674\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1675\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(array, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
101
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1845\u001b[0m, in \u001b[0;36mcast_array_to_feature\u001b[0;34m(array, feature, allow_number_to_str)\u001b[0m\n\u001b[1;32m 1843\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m array_cast(array, get_nested_type(feature), allow_number_to_str\u001b[38;5;241m=\u001b[39mallow_number_to_str)\n\u001b[1;32m 1844\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(feature, (Sequence, \u001b[38;5;28mdict\u001b[39m, \u001b[38;5;28mlist\u001b[39m, \u001b[38;5;28mtuple\u001b[39m)):\n\u001b[0;32m-> 1845\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43marray_cast\u001b[49m\u001b[43m(\u001b[49m\u001b[43marray\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfeature\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mallow_number_to_str\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallow_number_to_str\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1846\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt cast array of type\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00marray\u001b[38;5;241m.\u001b[39mtype\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mto\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mfeature\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
102
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1675\u001b[0m, in \u001b[0;36m_wrap_for_chunked_arrays.<locals>.wrapper\u001b[0;34m(array, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1673\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pa\u001b[38;5;241m.\u001b[39mchunked_array([func(chunk, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m array\u001b[38;5;241m.\u001b[39mchunks])\n\u001b[1;32m 1674\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1675\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43marray\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
103
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/table.py:1755\u001b[0m, in \u001b[0;36marray_cast\u001b[0;34m(array, pa_type, allow_number_to_str)\u001b[0m\n\u001b[1;32m 1753\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt cast array of type \u001b[39m\u001b[38;5;132;01m{\u001b[39;00marray\u001b[38;5;241m.\u001b[39mtype\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m to \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpa_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1754\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m array\u001b[38;5;241m.\u001b[39mcast(pa_type)\n\u001b[0;32m-> 1755\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt cast array of type\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00marray\u001b[38;5;241m.\u001b[39mtype\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mto\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mpa_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
104
+ "\u001b[0;31mTypeError\u001b[0m: Couldn't cast array of type\nlist<item: float>\nto\nfloat"
105
+ ]
106
+ }
107
+ ],
108
+ "source": [
109
+ "ds.add_item(add_audio('clips/1.wav', 'bjorn'))"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": null,
115
+ "id": "bac1a601-a7a1-434e-917d-0e372684f56b",
116
+ "metadata": {},
117
+ "outputs": [],
118
+ "source": []
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": null,
123
+ "id": "b070517c-2dfc-4f1b-baed-1748a9d5f088",
124
+ "metadata": {},
125
+ "outputs": [],
126
+ "source": []
127
+ }
128
+ ],
129
+ "metadata": {
130
+ "kernelspec": {
131
+ "display_name": "Python 3 (ipykernel)",
132
+ "language": "python",
133
+ "name": "python3"
134
+ },
135
+ "language_info": {
136
+ "codemirror_mode": {
137
+ "name": "ipython",
138
+ "version": 3
139
+ },
140
+ "file_extension": ".py",
141
+ "mimetype": "text/x-python",
142
+ "name": "python",
143
+ "nbconvert_exporter": "python",
144
+ "pygments_lexer": "ipython3",
145
+ "version": "3.10.4"
146
+ }
147
+ },
148
+ "nbformat": 4,
149
+ "nbformat_minor": 5
150
+ }
README.md DELETED
File without changes
clips/1.mp3 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1d3ffb2f3470e9da035f752507be83a2b93d85a29e384daf1eac99d09a3844fb
3
- size 38610
 
 
 
 
clips/1.wav CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8d69f99d3e3db9664b6d5454ed57d4ab9eb2a48395a5303200671ccd971fcd2d
3
  size 279144
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:410b562cc93b4093b3df7cffd1b04f72fef8667b14d9e10052bf432fbd5e1eaa
3
  size 279144
1.wav → output/dataset.arrow RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8d69f99d3e3db9664b6d5454ed57d4ab9eb2a48395a5303200671ccd971fcd2d
3
- size 279144
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4f04ab2df5a7149d88530b5620ac60fc1a7f12e48e51b2abcfe5e8528d808b5
3
+ size 102032
output/dataset_info.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": null,
3
+ "citation": "",
4
+ "config_name": null,
5
+ "dataset_size": null,
6
+ "description": "",
7
+ "download_checksums": null,
8
+ "download_size": null,
9
+ "features": {
10
+ "audio": {
11
+ "feature": {
12
+ "dtype": "float32",
13
+ "id": null,
14
+ "_type": "Value"
15
+ },
16
+ "length": -1,
17
+ "id": null,
18
+ "_type": "Sequence"
19
+ },
20
+ "text": {
21
+ "dtype": "string",
22
+ "id": null,
23
+ "_type": "Value"
24
+ }
25
+ },
26
+ "homepage": "",
27
+ "license": "",
28
+ "post_processed": null,
29
+ "post_processing_size": null,
30
+ "size_in_bytes": null,
31
+ "splits": null,
32
+ "supervised_keys": null,
33
+ "task_templates": null,
34
+ "version": null
35
+ }
output/state.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "dataset.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "1f18e2ce0da18f10",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_indexes": {},
12
+ "_output_all_columns": false,
13
+ "_split": null
14
+ }
test.tsv DELETED
@@ -1,2 +0,0 @@
1
- client_id path sentence up_votes down_votes age gender accent locale segment
2
- 8d69f99d3e3db9664b6d5454ed57d4ab9eb2a48395a5303200671ccd971fcd2d 1.wav bjorn. 1 0 32 male en en_US