{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "bbd1b7a1-dbb7-4243-99e0-70a6cd47d573", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bcc2f5482d8342a7915cecf9e7855531", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value='
\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msharpcoder/bjorn_training\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/arrow_dataset.py:4342\u001b[0m, in \u001b[0;36mDataset.push_to_hub\u001b[0;34m(self, repo_id, split, private, token, branch, max_shard_size, shard_size, embed_external_files)\u001b[0m\n\u001b[1;32m 4340\u001b[0m repo_info\u001b[38;5;241m.\u001b[39mdataset_size \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m dataset_nbytes\n\u001b[1;32m 4341\u001b[0m repo_info\u001b[38;5;241m.\u001b[39msize_in_bytes \u001b[38;5;241m=\u001b[39m repo_info\u001b[38;5;241m.\u001b[39mdownload_size \u001b[38;5;241m+\u001b[39m repo_info\u001b[38;5;241m.\u001b[39mdataset_size\n\u001b[0;32m-> 4342\u001b[0m repo_info\u001b[38;5;241m.\u001b[39msplits[split] \u001b[38;5;241m=\u001b[39m SplitInfo(\n\u001b[1;32m 4343\u001b[0m split, num_bytes\u001b[38;5;241m=\u001b[39mdataset_nbytes, num_examples\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m), dataset_name\u001b[38;5;241m=\u001b[39mdataset_name\n\u001b[1;32m 4344\u001b[0m )\n\u001b[1;32m 4345\u001b[0m info_to_dump \u001b[38;5;241m=\u001b[39m repo_info\n\u001b[1;32m 4346\u001b[0m buffer \u001b[38;5;241m=\u001b[39m BytesIO()\n", "File \u001b[0;32m~/.local/lib/python3.10/site-packages/datasets/splits.py:523\u001b[0m, in \u001b[0;36mSplitDict.__setitem__\u001b[0;34m(self, key, value)\u001b[0m\n\u001b[1;32m 521\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot add elem. (key mismatch: \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkey\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m != \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mvalue\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m)\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 522\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m--> 523\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSplit \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkey\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m already present\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 524\u001b[0m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__setitem__\u001b[39m(key, value)\n", "\u001b[0;31mValueError\u001b[0m: Split ['test', 'training'] already present" ] } ], "source": [ "# ds.push_to_hub(\"sharpcoder/bjorn_training\")" ] }, { "cell_type": "code", "execution_count": null, "id": "b070517c-2dfc-4f1b-baed-1748a9d5f088", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" } }, "nbformat": 4, "nbformat_minor": 5 }