Datasets:
File size: 2,683 Bytes
22cb23f 44bb99f 22cb23f e869942 a0e9bba e869942 44bb99f 638e955 44bb99f e869942 44bb99f 14c08a1 44bb99f a2bd570 44bb99f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: cc-by-4.0
task_categories:
- image-classification
- image-to-video
language:
- en
tags:
- self-supervised learning
- representation learning
pretty_name: Walking_Tours
size_categories:
- n<1K
---
<p align="center"style="font-size:32px;">
<strong>Walking Tours Dataset</strong>
</p>
<p align="center">
<img src="gifs/Wt_img.jpg" alt="Alt Text" width="80%" />
</p>
## Overview
The Walking Tours dataset is a unique collection of long-duration egocentric videos captured in urban environments from cities in Europe and Asia. It consists of 10 high-resolution videos, each showcasing a person walking through a different environment, ranging from city centers to parks to residential areas, under different lighting conditions. A video from a Wildlife safari is also included to diversify the dataset with natural environments. The dataset is completely unlabeled and uncurated, making it suitable for self-supervised pretraining.
## Cities Covered
The dataset encompasses walks through the following cities:
- Amsterdam
- Bangkok
- Chiang Mai
- Istanbul
- Kuala Lumpur
- Singapore
- Stockholm
- Venice
- Zurich
## Video Specifications
- **Resolution:** 4K (3840 × 2160 pixels)
- **Frame Rate:** 60 frames-per-second
- **License:** Creative Commons License (CC-BY)
## Duration
The videos vary in duration, offering a diverse range of content:
- Minimum Duration: 59 minutes (Wildlife safari)
- Maximum Duration: 2 hours 55 minutes (Bangkok)
- Average Duration: 1 hour 38 minutes
## Download the Dataset
The complete list of WTour videos are available in ```WTour.txt```, comprising the YouTube link and the corresponding city.
To download the dataset, we first install **pytube**
```
pip install pytube
```
then, we run
```
python download_WTours.py --output_folder <path_to_folder>
```
In order to comply with [GDPR](https://gdpr.eu/what-is-gdpr/), we also try to blur out all faces and license plates appearing in the video using [Deface](https://github.com/ORB-HD/deface)
To do this for all videos in WTour dataset:
```
python3 -m pip install deface
```
Then run Deface on all videos using the bash script:
```
chmod a+x gdpr_blur_faces.sh
./gdpr_blur_faces.sh
```
## Citation
If you find this work useful and use it on your own research, please cite our paper:
```
@inproceedings{venkataramanan2023imagenet,
title={Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video},
author={Venkataramanan, Shashanka and Rizve, Mamshad Nayeem and Carreira, Jo{\~a}o and Asano, Yuki M and Avrithis, Yannis},
booktitle={International Conference on Learning Representations},
year={2024}
}
```
--- |