File size: 4,806 Bytes
4105ae6
4732cbe
 
 
 
4105ae6
 
4732cbe
 
 
 
 
 
 
4105ae6
4732cbe
 
 
 
4105ae6
4732cbe
4105ae6
 
 
4732cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670eddb
4732cbe
 
 
 
 
670eddb
4732cbe
670eddb
4732cbe
 
670eddb
 
4732cbe
 
 
 
 
4105ae6
 
4732cbe
 
 
 
4105ae6
4732cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4105ae6
 
4732cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670eddb
4732cbe
 
670eddb
4732cbe
 
670eddb
4732cbe
 
 
 
 
 
4105ae6
670eddb
4732cbe
670eddb
4732cbe
 
 
 
 
 
 
670eddb
4732cbe
670eddb
4732cbe
 
 
 
 
 
 
670eddb
4732cbe
 
 
 
 
 
 
4105ae6
4732cbe
 
 
 
4105ae6
4732cbe
4105ae6
4732cbe
 
 
 
 
4105ae6
 
4732cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4105ae6
4732cbe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
languages:
- en
licenses:
- cc-by-4-0
- gfdl-1-3-or-later
multilinguality:
- monolingual
size_categories:
- 100M<n<200M
source_datasets:
- https://github.com/shibing624/code-autocomplete
- https://github.com/bharathgs/Awesome-pytorch-list
- https://github.com/akullpp/awesome-java
- https://github.com/fffaraz/awesome-cpp
task_categories:
- sequence-modeling
task_ids:
- language-modeling
---
# Dataset Card for "SourceCode"
## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description
- **Repository:** [code-autocomplete](https://github.com/shibing624/code-autocomplete)
- **Leaderboard:** [leaderboard](https://github.com/shibing624/code-autocomplete) (located on the homepage)
- **Size of downloaded dataset files:** 105 MB
- **Total amount of disk used:** 570 MB

### Dataset Summary

Source code dataset is a collection of Github awesome repos, it contains Python, Java, C++, and other programming languages.
This dataset can be used in different NLP tasks like language modeling and text generation tasks.


```python
PYTHON_CODE_HOME = "https://github.com/bharathgs/Awesome-pytorch-list"
JAVA_CODE_HOME = "https://github.com/akullpp/awesome-java"
CPP_CODE_HOME = "https://github.com/fffaraz/awesome-cpp"
```


### Supported Tasks and Leaderboards
- language modeling 
- code generation tasks:
**Leaderboard:** [code-autocomplete](https://github.com/shibing624/code-autocomplete)

### Languages

- programming languages: Python, Java, C++
- natural language: English

## Dataset Structure
### Data Instances
An example of 'train' looks as follows.
```
This example was too long and was cropped:

{
    "text": """
import json
import argparse


def _parse_args():
    parser = argparse.ArgumentParser(
        description=__doc__,
        formatter_class=argparse.RawTextHelpFormatter,
    )
    parser.add_argument(
        '--model-file',
        required=True,
        help=(
            'A pt file from '
            'https://github.com/pytorch/fairseq/tree/main/examples/hubert'
        )
    )
    return parser.parse_args()
    """
}
```
### Data Fields

The data fields are the same among all splits.
- `text`: a `string` feature.

### Data Splits
#### python

```shell
$ wc -l python/*
   10000 python/test.txt
 5215412 python/train.txt
   10000 python/valid.txt
 5235412 total
```

#### java

```shell
$ wc -l java/*  
  950083 java/test.txt
 2802880 java/train.txt
  940803 java/valid.txt
 4693766 total
```

#### cpp

```shell
$ wc -l cpp/* 
 1060014 cpp/test.txt
 3119241 cpp/train.txt
 1099124 cpp/valid.txt
 5278379 total
```

## Dataset Creation
### Curation Rationale
As code generation dataset, I upload it to huggingface datasets.
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
Citation:

APA:
```latex
Xu, M. code-autocomplete: Code AutoComplete with GPT2 model (Version 0.0.4) [Computer software]. https://github.com/shibing624/code-autocomplete
```

BibTeX:
```latex
@software{Xu_code-autocomplete_Code_AutoComplete,
author = {Xu, Ming},
title = {code-autocomplete: Code AutoComplete with GPT2 model},
url = {https://github.com/shibing624/code-autocomplete},
version = {0.0.4}
}
```

### Annotations
#### Annotation process
#### Who are the annotators?
nobody
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
This dataset was developed as a benchmark for evaluating code generation model.
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators

Github awesome programing code repos.

### Licensing Information

For research use only.

### Contributions
Thanks to [@shibing624](https://github.com/shibing624) add this dataset.