text
stringlengths 0
2.2M
|
---|
TORCH_CHECK(stride.empty() || stride.size() == 1 || stride.size() == 2,
|
"avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints");
|
const int64_t dH = stride.empty() ? kH : stride[0];
|
const int64_t dW = stride.empty() ? kW : stride.size() == 1 ? dH : stride[1];
|
TORCH_CHECK(padding.size() == 1 || padding.size() == 2,
|
"avg_pool2d: padding must either be a single int, or a tuple of two ints");
|
const int64_t padH = padding[0];
|
const int64_t padW = padding.size() == 1 ? padH : padding[1];
|
TORCH_CHECK(!divisor_override.has_value() || divisor_override.value() != 0,
|
"divisor must be not zero");
|
const int64_t nbatch = input.ndimension() == 4 ? input.size(-4) : 1;
|
const int64_t nInputPlane = input.size(-3);
|
const int64_t inputHeight = input.size(-2);
|
const int64_t inputWidth = input.size(-1);
|
const int64_t outputHeight = pooling_output_shape<int64_t>(
|
inputHeight, kH, padH, dH, 1, ceil_mode);
|
const int64_t outputWidth =
|
pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, 1, ceil_mode);
|
auto memory_format = input.suggest_memory_format();
|
pool2d_shape_check(
|
input,
|
kH,
|
kW,
|
dH,
|
dW,
|
padH,
|
padW,
|
1,
|
1,
|
nInputPlane,
|
inputHeight,
|
inputWidth,
|
outputHeight,
|
outputWidth,
|
memory_format);
|
/* resize output */
|
if (input.ndimension() == 3) {
|
set_output(
|
0,
|
{nInputPlane,
|
outputHeight,
|
outputWidth},
|
input.options());
|
}
|
else {
|
set_output(
|
0,
|
{nbatch,
|
nInputPlane,
|
outputHeight,
|
outputWidth},
|
input.options().memory_format(memory_format));
|
}
|
return TORCH_PRECOMPUTE_STRUCT(avg_pool2d)().set_kH(kH).set_kW(kW).set_dH(dH).set_dW(dW).set_padH(padH).set_padW(padW);
|
}
|
TORCH_META_FUNC(avg_pool2d_backward) (
|
const Tensor& gradOutput_,
|
const Tensor& input,
|
IntArrayRef kernel_size,
|
IntArrayRef stride,
|
IntArrayRef padding,
|
bool ceil_mode,
|
bool count_include_pad,
|
c10::optional<int64_t> divisor_override
|
) {
|
// #20866, #22032: Guarantee this for the official C++ API?
|
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 2,
|
"avg_pool2d: kernel_size must either be a single int, or a tuple of two ints");
|
const int kH = safe_downcast<int, int64_t>(kernel_size[0]);
|
const int kW = kernel_size.size() == 1 ? kH : safe_downcast<int, int64_t>(kernel_size[1]);
|
TORCH_CHECK(stride.empty() || stride.size() == 1 || stride.size() == 2,
|
"avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints");
|
const int dH = stride.empty() ? kH : safe_downcast<int, int64_t>(stride[0]);
|
const int dW = stride.empty() ? kW :
|
stride.size() == 1 ? dH : safe_downcast<int, int64_t>(stride[1]);
|
TORCH_CHECK(padding.size() == 1 || padding.size() == 2,
|
"avg_pool2d: padding must either be a single int, or a tuple of two ints");
|
const int padH = safe_downcast<int, int64_t>(padding[0]);
|
const int padW = padding.size() == 1 ? padH : safe_downcast<int, int64_t>(padding[1]);
|
TORCH_CHECK(!divisor_override.has_value() || divisor_override.value() != 0, "divisor must be not zero");
|
/* sizes */
|
const int64_t nbatch = input.ndimension() == 4 ? input.size(-4) : 1;
|
const int64_t nInputPlane = input.size(-3); // number of channels (or colors)
|
const int64_t inputHeight = input.size(-2);
|
const int64_t inputWidth = input.size(-1);
|
const int64_t outputWidth = pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, 1, ceil_mode);
|
const int64_t outputHeight = pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, 1, ceil_mode);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.