File size: 9,640 Bytes
dd29e5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ChrEn: Cherokee-English Machine Translation data"""
import openpyxl # noqa: requires this pandas optional dependency for reading xlsx files
import pandas as pd
import datasets
_CITATION = """\
@inproceedings{zhang2020chren,
title={ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization},
author={Zhang, Shiyue and Frey, Benjamin and Bansal, Mohit},
booktitle={EMNLP2020},
year={2020}
}
"""
_DESCRIPTION = """\
ChrEn is a Cherokee-English parallel dataset to facilitate machine translation research between Cherokee and English.
ChrEn is extremely low-resource contains 14k sentence pairs in total, split in ways that facilitate both in-domain and out-of-domain evaluation.
ChrEn also contains 5k Cherokee monolingual data to enable semi-supervised learning.
"""
_HOMEPAGE = "https://github.com/ZhangShiyue/ChrEn"
_LICENSE = ""
_URLs = {
"monolingual_raw": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/raw/monolingual_data.xlsx",
"parallel_raw": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/raw/parallel_data.xlsx",
"monolingual_chr": "https://raw.githubusercontent.com/ZhangShiyue/ChrEn/main/data/monolingual/chr",
"monolingual_en5000": "https://raw.githubusercontent.com/ZhangShiyue/ChrEn/main/data/monolingual/en5000",
"monolingual_en10000": "https://raw.githubusercontent.com/ZhangShiyue/ChrEn/main/data/monolingual/en10000",
"monolingual_en20000": "https://raw.githubusercontent.com/ZhangShiyue/ChrEn/main/data/monolingual/en20000",
"monolingual_en50000": "https://raw.githubusercontent.com/ZhangShiyue/ChrEn/main/data/monolingual/en50000",
"monolingual_en100000": "https://raw.githubusercontent.com/ZhangShiyue/ChrEn/main/data/monolingual/en100000",
"parallel_train.chr": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/train.chr",
"parallel_train.en": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/train.en",
"parallel_dev.chr": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/dev.chr",
"parallel_dev.en": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/dev.en",
"parallel_out_dev.chr": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/out_dev.chr",
"parallel_out_dev.en": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/out_dev.en",
"parallel_test.chr": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/test.chr",
"parallel_test.en": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/test.en",
"parallel_out_test.chr": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/out_test.chr",
"parallel_out_test.en": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/out_test.en",
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class ChrEn(datasets.GeneratorBasedBuilder):
"""ChrEn: Cherokee-English Machine Translation data."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="monolingual_raw", version=VERSION, description="Monolingual data with metadata"),
datasets.BuilderConfig(name="parallel_raw", version=VERSION, description="Parallel data with metadata"),
datasets.BuilderConfig(name="monolingual", version=VERSION, description="Monolingual data text only"),
datasets.BuilderConfig(
name="parallel", version=VERSION, description="Parallel data text pairs only with default split"
),
]
DEFAULT_CONFIG_NAME = (
"parallel" # It's not mandatory to have a default configuration. Just use one if it make sense.
)
def _info(self):
if (
self.config.name == "monolingual_raw"
): # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"text_sentence": datasets.Value("string"),
"text_title": datasets.Value("string"),
"speaker": datasets.Value("string"),
"date": datasets.Value("int32"),
"type": datasets.Value("string"),
"dialect": datasets.Value("string"),
}
)
elif (
self.config.name == "parallel_raw"
): # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"line_number": datasets.Value("string"), # doesn't always map to a number
"sentence_pair": datasets.Translation(languages=["en", "chr"]),
"text_title": datasets.Value("string"),
"speaker": datasets.Value("string"),
"date": datasets.Value("int32"),
"type": datasets.Value("string"),
"dialect": datasets.Value("string"),
}
)
elif (
self.config.name == "parallel"
): # This is an example to show how to have different features for "first_domain" and "second_domain"
features = datasets.Features(
{
"sentence_pair": datasets.Translation(languages=["en", "chr"]),
}
)
elif (
self.config.name == "monolingual"
): # This is an example to show how to have different features for "first_domain" and "second_domain"
features = datasets.Features(
{
"sentence": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download(_URLs)
if self.config.name in [
"monolingual_raw",
"parallel_raw",
]: # This is the name of the configuration selected in BUILDER_CONFIGS above
return [
datasets.SplitGenerator(
name="full",
gen_kwargs={
"filepaths": data_dir,
"split": "full",
},
)
]
elif self.config.name == "monolingual":
return [
datasets.SplitGenerator(
name=spl,
gen_kwargs={
"filepaths": data_dir,
"split": spl,
},
)
for spl in ["chr", "en5000", "en10000", "en20000", "en50000", "en100000"]
]
else:
return [
datasets.SplitGenerator(
name=spl,
gen_kwargs={
"filepaths": data_dir,
"split": spl,
},
)
for spl in ["train", "dev", "out_dev", "test", "out_test"]
]
def _generate_examples(self, filepaths, split):
if self.config.name == "monolingual_raw":
keys = ["text_sentence", "text_title", "speaker", "date", "type", "dialect"]
with open(filepaths["monolingual_raw"], "rb") as f:
monolingual = pd.read_excel(f, engine="openpyxl")
for id_, row in enumerate(monolingual.itertuples()):
yield id_, dict(zip(keys, row[1:]))
elif self.config.name == "parallel_raw":
keys = ["line_number", "en_sent", "chr_sent", "text_title", "speaker", "date", "type", "dialect"]
with open(filepaths["parallel_raw"], "rb") as f:
parallel = pd.read_excel(f, engine="openpyxl")
for id_, row in enumerate(parallel.itertuples()):
res = dict(zip(keys, row[1:]))
res["sentence_pair"] = {"en": res["en_sent"], "chr": res["chr_sent"]}
res["line_number"] = str(res["line_number"])
del res["en_sent"]
del res["chr_sent"]
yield id_, res
elif self.config.name == "monolingual":
f = open(filepaths[f"monolingual_{split}"], encoding="utf-8")
for id_, line in enumerate(f):
yield id_, {"sentence": line.strip()}
elif self.config.name == "parallel":
fi = open(filepaths[f"parallel_{split}.en"], encoding="utf-8")
fo = open(filepaths[f"parallel_{split}.chr"], encoding="utf-8")
for id_, (line_en, line_chr) in enumerate(zip(fi, fo)):
yield id_, {"sentence_pair": {"en": line_en.strip(), "chr": line_chr.strip()}}
|