File size: 5,417 Bytes
dd29e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbd3251
dd29e5c
 
 
 
 
 
 
fbd3251
dd29e5c
 
 
fbd3251
 
dd29e5c
 
 
 
 
 
 
 
 
 
 
 
 
ca0b2b5
dd29e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca0b2b5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
annotations_creators:
  monolingual:
  - no-annotation
  monolingual_raw:
  - found
  parallel:
  - expert-generated
  parallel_raw:
  - expert-generated
language_creators:
- found
languages:
  monolingual:
  - chr
  - en
  monolingual_raw:
  - chr
  parallel:
  - chr
  - en
  parallel_raw:
  - chr
  - en
licenses:
- other-different-license-per-source
multilinguality:
  monolingual:
  - multilingual
  monolingual_raw:
  - monolingual
  parallel:
  - translation
  parallel_raw:
  - translation
size_categories:
  monolingual:
  - 100K<n<1M
  monolingual_raw:
  - 1K<n<10K
  parallel:
  - 10K<n<100K
  parallel_raw:
  - 10K<n<100K
source_datasets:
- original
task_categories:
  monolingual:
  - conditional-text-generation
  monolingual_raw:
  - sequence-modeling
  parallel:
  - conditional-text-generation
  parallel_raw:
  - conditional-text-generation
task_ids:
  monolingual:
  - machine-translation
  monolingual_raw:
  - language-modeling
  parallel:
  - machine-translation
  parallel_raw:
  - machine-translation
paperswithcode_id: chren
---

# Dataset Card for ChrEn

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** [Github repository for ChrEn](https://github.com/ZhangShiyue/ChrEn)
- **Paper:** [ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization](https://arxiv.org/abs/2010.04791)
- **Point of Contact:** [[email protected]]([email protected])

### Dataset Summary

ChrEn is a Cherokee-English parallel dataset to facilitate machine translation research between Cherokee and English.
ChrEn is extremely low-resource contains 14k sentence pairs in total, split in ways that facilitate both in-domain and out-of-domain evaluation.
ChrEn also contains 5k Cherokee monolingual data to enable semi-supervised learning.

### Supported Tasks and Leaderboards

The dataset is intended to use for `machine-translation` between Enlish (`en`) and Cherokee (`chr`).

### Languages

The dataset contains Enlish (`en`) and Cherokee (`chr`) text. The data encompasses both existing dialects of Cherokee: the Overhill dialect, mostly spoken in Oklahoma (OK), and the Middle dialect, mostly used in North Carolina (NC).

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

Many of the source texts were translations of English materials, which means that the Cherokee structures may not be 100% natural in terms of what a speaker might spontaneously produce. Each text was translated by people who speak Cherokee as the first language, which means there is a high probability of grammaticality. These data were originally available in PDF version. We apply the Optical Character Recognition (OCR) via Tesseract OCR engine to extract the Cherokee and English text.

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

The sentences were manually aligned by Dr. Benjamin Frey a proficient second-language speaker of Cherokee, who also fixed the errors introduced by OCR. This process is time-consuming and took several months.

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

The dataset was gathered and annotated by Shiyue Zhang, Benjamin Frey, and Mohit Bansal at UNC Chapel Hill.

### Licensing Information

The copyright of the data belongs to original book/article authors or translators (hence, used for research purpose; and please contact Dr. Benjamin Frey for other copyright questions).

### Citation Information

```
@inproceedings{zhang2020chren,
  title={ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization},
  author={Zhang, Shiyue and Frey, Benjamin and Bansal, Mohit},
  booktitle={EMNLP2020},
  year={2020}
}
```

### Contributions

Thanks to [@yjernite](https://github.com/yjernite), [@lhoestq](https://github.com/lhoestq) for adding this dataset.