Datasets:
File size: 1,572 Bytes
4b6dede ecbbc77 4b6dede |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# coding=utf-8
"""Lexicap: Lex Friedman Podcast Whisper Captions."""
import csv
import datasets
_CITATION = """\
"""
_DESCRIPTION = """\
Lexicap contains the captions for every Lex Friedman Podcast episode. It it created by [Dr. Andrej Karpathy](https://twitter.com/karpathy).
There are 430 caption files available. There are 2 types of files:
- large
- small
Each file name follows the format `episode_{episode_number}_{file_type}.vtt`.
"""
class LexicapConfig(datasets.BuilderConfig):
"""BuilderConfig for Lexicap."""
def __init__(self, **kwargs):
"""Constructs a LexicapConfig.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(LexicapConfig, self).__init__(version=datasets.Version("0.1.0", ""), **kwargs),
class Lexicap(datasets.GeneratorBasedBuilder):
"""Lexicap dataset."""
BUILDER_CONFIGS = [
LexicapConfig( # pylint: disable=g-complex-comprehension
description=(
f"A dataset consisting of captions for every Lex Friedman Podcast episode, generated using OpenAI Whisper. This dataset is created by [Dr. Andrej Karpathy](https://twitter.com/karpathy)."
),
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION
)
def _split_generators(self, dl_manager):
# There is no predefined train/val/test split for this dataset.
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_path": 'vtt'}),
]
|