File size: 8,828 Bytes
db6eb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
---
language:
- en
license: cc-by-4.0

tags:
- computer-vision
- object-detection
- ms-coco

datasets:
- stuff-thing
- stuff-only

metrics:
- accuracy
- iou
---

# Dataset Card for COCO-Stuff

[![CI](https://github.com/shunk031/huggingface-datasets_cocostuff/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_cocostuff/actions/workflows/ci.yaml)

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Dataset Preprocessing](#dataset-preprocessing)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- Homepage: https://github.com/nightrome/cocostuff
- Repository: https://github.com/nightrome/cocostuff
- Paper (preprint): https://arxiv.org/abs/1612.03716
- Paper (CVPR2018): https://openaccess.thecvf.com/content_cvpr_2018/html/Caesar_COCO-Stuff_Thing_and_CVPR_2018_paper.html

### Dataset Summary

COCO-Stuff is the largest existing dataset with dense stuff and thing annotations. 

From the paper:

> Semantic classes can be either things (objects with a well-defined shape, e.g. car, person) or stuff (amorphous background regions, e.g. grass, sky). While lots of classification and detection works focus on thing classes, less attention has been given to stuff classes. Nonetheless, stuff classes are important as they allow to explain important aspects of an image, including (1) scene type; (2) which thing classes are likely to be present and their location (through contextual reasoning); (3) physical attributes, material types and geometric properties of the scene. To understand stuff and things in context we introduce COCO-Stuff, which augments all 164K images of the COCO 2017 dataset with pixel-wise annotations for 91 stuff classes. We introduce an efficient stuff annotation protocol based on superpixels, which leverages the original thing annotations. We quantify the speed versus quality trade-off of our protocol and explore the relation between annotation time and boundary complexity. Furthermore, we use COCO-Stuff to analyze: (a) the importance of stuff and thing classes in terms of their surface cover and how frequently they are mentioned in image captions; (b) the spatial relations between stuff and things, highlighting the rich contextual relations that make our dataset unique; (c) the performance of a modern semantic segmentation method on stuff and thing classes, and whether stuff is easier to segment than things.

### Dataset Preprocessing

### Supported Tasks and Leaderboards

### Languages

All of annotations use English as primary language.

## Dataset Structure

### Data Instances

When loading a specific configuration, users has to append a version dependent suffix:

```python
from datasets import load_dataset
load_dataset("shunk031/cocostuff", "stuff-things")
```

#### stuff-things

An example of looks as follows.

```json
{
    'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x7FCA033C9C40>,
    'image_filename': '000000000009.jpg',
    'image_id': '9',
    'width': 640
    'height': 480,
    'objects': [
        {
            'object_id': '121',
            'x': 0,
            'y': 11,
            'w': 640,
            'h': 469,
            'name': 'food-other'
        },
        {
            'object_id': '143',
            'x': 0,
            'y': 0
            'w': 640,
            'h': 480,
            'name': 'plastic'
        },
        {
            'object_id': '165',
            'x': 0,
            'y': 0,
            'w': 319,
            'h': 118,
            'name': 'table'
        },
        {
            'object_id': '183',
            'x': 0,
            'y': 2,
            'w': 631,
            'h': 472,
            'name': 'unknown-183'
        }
    ],
    'stuff_map': <PIL.PngImagePlugin.PngImageFile image mode=L size=640x480 at 0x7FCA0222D880>,
 }
```

#### stuff-only

An example of looks as follows.

```json
{
    'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x7FCA033C9C40>,
    'image_filename': '000000000009.jpg',
    'image_id': '9',
    'width': 640
    'height': 480,
    'objects': [
        {
            'object_id': '121',
            'x': 0,
            'y': 11,
            'w': 640,
            'h': 469,
            'name': 'food-other'
        },
        {
            'object_id': '143',
            'x': 0,
            'y': 0
            'w': 640,
            'h': 480,
            'name': 'plastic'
        },
        {
            'object_id': '165',
            'x': 0,
            'y': 0,
            'w': 319,
            'h': 118,
            'name': 'table'
        },
        {
            'object_id': '183',
            'x': 0,
            'y': 2,
            'w': 631,
            'h': 472,
            'name': 'unknown-183'
        }
    ]
 }
```

### Data Fields

#### stuff-things

- `image`: A `PIL.Image.Image` object containing the image.
- `image_id`: Unique numeric ID of the image.
- `image_filename`: File name of the image.
- `width`: Image width.
- `height`: Image height.
- `stuff_map`: A `PIL.Image.Image` object containing the Stuff + thing PNG-style annotations
- `objects`: Holds a list of `Object` data classes:
    - `object_id`: Unique numeric ID of the object.
    - `x`: x coordinate of bounding box's top left corner.
    - `y`: y coordinate of bounding box's top left corner.
    - `w`: Bounding box width.
    - `h`: Bounding box height.
    - `name`: object name

#### stuff-only

- `image`: A `PIL.Image.Image` object containing the image.
- `image_id`: Unique numeric ID of the image.
- `image_filename`: File name of the image.
- `width`: Image width.
- `height`: Image height.
- `objects`: Holds a list of `Object` data classes:
    - `object_id`: Unique numeric ID of the object.
    - `x`: x coordinate of bounding box's top left corner.
    - `y`: y coordinate of bounding box's top left corner.
    - `w`: Bounding box width.
    - `h`: Bounding box height.
    - `name`: object name

### Data Splits

| name        | train   | validation |
|-------------|--------:|-----------:|
| stuff-thing | 118,280 | 5,000      |
| stuff-only  | 118,280 | 5,000      |

## Dataset Creation

### Curation Rationale

### Source Data

#### Initial Data Collection and Normalization

#### Who are the source language producers?

### Annotations

#### Annotation process

#### Who are the annotators?

From the paper:

> COCO-Stuff contains 172 classes: 80 thing, 91 stuff, and 1 class unlabeled. The 80 thing classes are the same as in COCO [35]. The 91 stuff classes are curated by an expert annotator. The class unlabeled is used in two situations: if a label does not belong to any of the 171 predefined classes, or if the annotator cannot infer the label of a pixel.

### Personal and Sensitive Information

## Considerations for Using the Data

### Social Impact of Dataset

### Discussion of Biases

### Other Known Limitations

## Additional Information

### Dataset Curators

### Licensing Information

COCO-Stuff is a derivative work of the COCO dataset. The authors of COCO do not in any form endorse this work. Different licenses apply:
- COCO images: [Flickr Terms of use](http://cocodataset.org/#termsofuse) 
- COCO annotations: [Creative Commons Attribution 4.0 License](http://cocodataset.org/#termsofuse)
- COCO-Stuff annotations & code: [Creative Commons Attribution 4.0 License](http://cocodataset.org/#termsofuse)

### Citation Information

```bibtex
@INPROCEEDINGS{caesar2018cvpr,
  title={COCO-Stuff: Thing and stuff classes in context},
  author={Caesar, Holger and Uijlings, Jasper and Ferrari, Vittorio},
  booktitle={Computer vision and pattern recognition (CVPR), 2018 IEEE conference on},
  organization={IEEE},
  year={2018}
}
```

### Contributions

Thanks to [@nightrome](https://github.com/nightrome) for publishing the COCO-Stuff dataset.