|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
MMChat is a large-scale dialogue dataset that contains image-grounded dialogues in Chinese. |
|
Each dialogue in MMChat is associated with one or more images (maximum 9 images per dialogue). |
|
We design various strategies to ensure the quality of the dialogues in MMChat. |
|
""" |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{zheng2022MMChat, |
|
author = {Zheng, Yinhe and Chen, Guanyi and Liu, Xin and Sun, Jian}, |
|
title = {MMChat: Multi-Modal Chat Dataset on Social Media}, |
|
booktitle = {Proceedings of The 13th Language Resources and Evaluation Conference}, |
|
year = {2022}, |
|
publisher = {European Language Resources Association}, |
|
} |
|
|
|
@inproceedings{wang2020chinese, |
|
title = {A Large-Scale Chinese Short-Text Conversation Dataset}, |
|
author = {Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie}, |
|
booktitle = {NLPCC}, |
|
year = {2020}, |
|
url = {https://arxiv.org/abs/2008.03946} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
MMChat is a large-scale dialogue dataset that contains image-grounded dialogues in Chinese. |
|
Each dialogue in MMChat is associated with one or more images (maximum 9 images per dialogue). |
|
We design various strategies to ensure the quality of the dialogues in MMChat. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/silverriver/MMChat" |
|
|
|
_LICENSE = "MIT" |
|
|
|
_URLS = { |
|
"mmchat": ["https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat.tgz"], |
|
"mmchat_hf": ["https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_hf.tgz"], |
|
"mmchat_raw": [ |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/MMChat_split0.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/MMChat_split1.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/MMChat_split2.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/MMChat_split3.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/MMChat_split4.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/MMChat_split5.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/MMChat_split6.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/MMChat_split7.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/MMChat_split8.tgz", |
|
], |
|
"mmchat_lccc_filtered": [ |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/MMChat_lccc_flt_split0.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/MMChat_lccc_flt_split1.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/MMChat_lccc_flt_split2.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/MMChat_lccc_flt_split3.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/MMChat_lccc_flt_split4.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/MMChat_lccc_flt_split5.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/MMChat_lccc_flt_split6.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/MMChat_lccc_flt_split7.tgz", |
|
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/MMChat_lccc_flt_split8.tgz", |
|
], |
|
} |
|
|
|
|
|
class MMChat(datasets.GeneratorBasedBuilder): |
|
"""Multi-Modal Chat Dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="mmchat", version=VERSION, description="The MMChat dataset"), |
|
datasets.BuilderConfig(name="mmchat_hf", version=VERSION, description="Human filtered version of MMChat"), |
|
datasets.BuilderConfig(name="mmchat_raw", version=VERSION, description="Raw dialogues in MMChat"), |
|
datasets.BuilderConfig(name="mmchat_lccc_filtered", version=VERSION, description="LCCC filtered MMChat"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "mmchat" |
|
|
|
def _info(self): |
|
if self.config.name in ["mmchat", "mmchat_raw", "mmchat_lccc_filtered"]: |
|
features = datasets.Features( |
|
{ |
|
"dialog": [datasets.Value("string")], |
|
"weibo_content": datasets.Value("string"), |
|
"imgs": [datasets.Value("string")], |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"dialog": [datasets.Value("string")], |
|
"weibo_content": datasets.Value("string"), |
|
"imgs": [datasets.Value("string")], |
|
"labels": { |
|
"image_qualified": datasets.Value("bool"), |
|
"dialog_qualified": datasets.Value("bool"), |
|
"dialog_image_related": datasets.Value("bool"), |
|
}, |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[self.config.name] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
if self.config.name == "mmchat": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"dialog_files": [os.path.join(i, "dialog_train.jsonl") for i in data_dir], |
|
"weibo_files": [os.path.join(i, "weibo_train.jsonl") for i in data_dir], |
|
"img_files": [os.path.join(i, "img_url_train.jsonl") for i in data_dir], |
|
"label_files": [], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"dialog_files": [os.path.join(i, "dialog_test.jsonl") for i in data_dir], |
|
"weibo_files": [os.path.join(i, "weibo_test.jsonl") for i in data_dir], |
|
"img_files": [os.path.join(i, "img_url_test.jsonl") for i in data_dir], |
|
"label_files": [], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"dialog_files": [os.path.join(i, "dialog_dev.jsonl") for i in data_dir], |
|
"weibo_files": [os.path.join(i, "weibo_dev.jsonl") for i in data_dir], |
|
"img_files": [os.path.join(i, "img_url_dev.jsonl") for i in data_dir], |
|
"label_files": [], |
|
}, |
|
), |
|
] |
|
elif self.config.name == "mmchat_hf": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"dialog_files": [os.path.join(i, "dialog.jsonl") for i in data_dir], |
|
"weibo_files": [os.path.join(i, "weibo.jsonl") for i in data_dir], |
|
"img_files": [os.path.join(i, "weibo_img_expanded_url.jsonl") for i in data_dir], |
|
"label_files": [os.path.join(i, "human_annotation.jsonl") for i in data_dir], |
|
}, |
|
), |
|
] |
|
elif self.config.name == "mmchat_lccc_filtered": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"dialog_files": [os.path.join(i, "dialog_lccc_flt.jsonl") for i in data_dir], |
|
"weibo_files": [os.path.join(i, "weibo_lccc_flt.jsonl") for i in data_dir], |
|
"img_files": [os.path.join(i, "weibo_img_expanded_url_lccc_flt.jsonl") for i in data_dir], |
|
"label_files": [], |
|
}, |
|
), |
|
] |
|
elif self.config.name == "mmchat_raw": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"dialog_files": [os.path.join(i, "dialog.jsonl") for i in data_dir], |
|
"weibo_files": [os.path.join(i, "weibo.jsonl") for i in data_dir], |
|
"img_files": [os.path.join(i, "weibo_img_expanded_url.jsonl") for i in data_dir], |
|
"label_files": [], |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, dialog_files, weibo_files, img_files, label_files): |
|
id = 0 |
|
assert len(dialog_files) == len(weibo_files) == len(img_files) |
|
if len(label_files) == 0: |
|
label_files = [None] * len(dialog_files) |
|
for dialog_file, weibo_file, img_file, label_file in zip(dialog_files, weibo_files, img_files, label_files): |
|
if label_file is not None: |
|
label_f = open(label_file, encoding="utf-8") |
|
|
|
with open(dialog_file, encoding="utf-8") as dialog_f, open(weibo_file, encoding="utf-8") as weibo_f, open( |
|
img_file, encoding="utf-8" |
|
) as img_f: |
|
while True: |
|
try: |
|
dialog_line = dialog_f.readline().strip() |
|
if len(dialog_line) == 0: |
|
break |
|
dialog = json.loads(dialog_line) |
|
weibo = json.loads(weibo_f.readline()) |
|
if self.config.name == "mmchat": |
|
imgs = img_f.readline().strip().split(";") |
|
else: |
|
imgs = json.loads(img_f.readline())["weibo_img"].split(";") |
|
|
|
if self.config.name == "mmchat_hf": |
|
label = json.loads(label_f.readline()) |
|
|
|
yield id, { |
|
"dialog": dialog, |
|
"weibo_content": weibo, |
|
"imgs": imgs, |
|
"labels": { |
|
"image_qualified": True if label["image_quality"] == "1" else False, |
|
"dialog_qualified": True if label["dialog_quality"] == "1" else False, |
|
"dialog_image_related": True |
|
if label["dialog_image_relativeness"] == "1" |
|
else False, |
|
}, |
|
} |
|
else: |
|
yield id, { |
|
"dialog": dialog, |
|
"weibo_content": weibo, |
|
"imgs": imgs, |
|
} |
|
id += 1 |
|
except EOFError: |
|
break |
|
if label_file is not None: |
|
label_f.close() |
|
|