Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K - 1M
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,76 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
language_creators:
|
8 |
+
- crowdsourced
|
9 |
+
license: []
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
paperswithcode_id: imagenet
|
13 |
+
pretty_name: Tiny-ImageNet
|
14 |
+
size_categories:
|
15 |
+
- 100K<n<1M
|
16 |
+
source_datasets:
|
17 |
+
- extended|imagenet-1k
|
18 |
+
task_categories:
|
19 |
+
- image-classification
|
20 |
+
task_ids:
|
21 |
+
- multi-class-image-classification
|
22 |
+
---
|
23 |
+
|
24 |
+
# Dataset Card for tiny-imagenet-200-clean
|
25 |
+
|
26 |
+
## Dataset Description
|
27 |
+
|
28 |
+
- **Homepage:** https://www.kaggle.com/c/tiny-imagenet
|
29 |
+
- **Repository:** [Needs More Information]
|
30 |
+
- **Paper:** http://cs231n.stanford.edu/reports/2017/pdfs/930.pdf
|
31 |
+
- **Leaderboard:** https://paperswithcode.com/sota/image-classification-on-tiny-imagenet-1
|
32 |
+
|
33 |
+
### Dataset Summary
|
34 |
+
|
35 |
+
The original Tiny ImageNet contained 100000 images of 200 classes (500 for each class) downsized to 64×64 colored images. Each class has 500 training images, 50 validation images, and 50 test images.
|
36 |
+
This cleaned version removed grey scale images and only kept RGB images.
|
37 |
+
|
38 |
+
### Languages
|
39 |
+
|
40 |
+
The class labels in the dataset are in English.
|
41 |
+
|
42 |
+
## Dataset Structure
|
43 |
+
|
44 |
+
### Data Instances
|
45 |
+
|
46 |
+
```json
|
47 |
+
{
|
48 |
+
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=64x64 at 0x1A800E8E190,
|
49 |
+
'label': 15
|
50 |
+
}
|
51 |
+
```
|
52 |
+
|
53 |
+
### Data Fields
|
54 |
+
|
55 |
+
- image: A PIL.Image.Image object containing the image. Note that when accessing the image column: dataset[0]["image"] the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["image"] should always be preferred over dataset["image"][0].
|
56 |
+
- label: an int classification label. -1 for test set as the labels are missing. Check `classes.py` for the map of numbers & labels.
|
57 |
+
|
58 |
+
### Data Splits
|
59 |
+
|
60 |
+
| | Train | Validation | Test |
|
61 |
+
| ------------ | ------ | ----- |-----------|
|
62 |
+
| # of samples | 98179 | 4909 | 4923 |
|
63 |
+
|
64 |
+
## Usage
|
65 |
+
|
66 |
+
### Example
|
67 |
+
|
68 |
+
#### Load Dataset
|
69 |
+
```python
|
70 |
+
def example_usage():
|
71 |
+
tiny_imagenet = load_dataset('slegroux/tiny-imagenet-200-clean', split='train')
|
72 |
+
print(tiny_imagenet[0])
|
73 |
+
|
74 |
+
if __name__ == '__main__':
|
75 |
+
example_usage()
|
76 |
+
```
|