Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
File size: 3,854 Bytes
79d821c
26fe9ac
 
 
 
 
 
 
 
952963b
26fe9ac
 
952963b
 
 
 
26fe9ac
 
 
 
 
 
 
 
 
 
952963b
26fe9ac
952963b
 
26fe9ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79d821c
0a72ba9
 
 
4f869e1
 
 
 
 
 
 
 
 
 
 
0a72ba9
 
 
 
 
4b7fec4
 
 
 
 
4f869e1
 
 
0f08b12
0a56045
9179040
4f869e1
 
 
 
96c88b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
dataset_info:
- config_name: metadata
  features:
  - name: asin
    dtype: string
  - name: title
    dtype: string
  - name: description
    dtype: string
  - name: brand
    dtype: string
  - name: main_cat
    dtype: string
  - name: category
    sequence: 'null'
  - name: also_buy
    sequence: string
  - name: also_view
    sequence: string
  - name: imageURL
    sequence: string
  - name: imageURLHighRes
    sequence: string
  splits:
  - name: train
    num_bytes: 21323873
    num_examples: 32891
  download_size: 9685233
  dataset_size: 21323873
- config_name: reviews
  features:
  - name: reviewerID
    dtype: string
  - name: reviewerName
    dtype: string
  - name: overall
    sequence: int64
  - name: reviewTime
    sequence: timestamp[us]
  - name: asin
    sequence: string
  - name: reviewText
    sequence: string
  - name: summary
    sequence: string
  splits:
  - name: train
    num_bytes: 3055300
    num_examples: 1398
  download_size: 1191665
  dataset_size: 3055300
configs:
- config_name: metadata
  data_files:
  - split: train
    path: metadata/train-*
- config_name: reviews
  data_files:
  - split: train
    path: reviews/train-*
---

# Amazon All Beauty Dataset

## Directory Structure

- **metadata**: Contains product information.

- **reviews**: Contains user reviews about the products.

- **filtered**:
    - **e5-base-v2_embeddings.jsonl**: Contains "asin" and "embeddings" created with [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2).
    - **metadata.jsonl**: Contains "asin" and "text", where text is created from the title, description, brand, main category, and category.
    - **reviews.jsonl**: Contains "reviewerID", "reviewTime", and "asin". Reviews are filtered to include only perfect 5-star ratings with a minimum of 5 ratings.
      
## Usage

### Download metadata
```python
metadata = load_dataset(path="smartcat/Amazon_All_Beauty_2018", name="metadata", split="train")
```

### Download reviews
```python
metadata = load_dataset(path="smartcat/Amazon_All_Beauty_2018", name="reviews", split="train")
```

### Download filtered files
```python
filtered_reviews = load_dataset(
    path="smartcat/Amazon_All_Beauty_2018",
    data_files="filtered/reviews.jsonl",
    split="train",
)
```
**📎 Note:** You can set any file or list of files from the "filtered" directory as the "data_files" argument.

## Citation

### Amazon Reviews 2023
```bibtex
@article{hou2024bridging,
  title={Bridging language and items for retrieval and recommendation},
  author={Hou, Yupeng and Li, Jiacheng and He, Zhankui and Yan, An and Chen, Xiusi and McAuley, Julian},
  journal={arXiv preprint arXiv:2403.03952},
  year={2024}
}
```
### Amazon Reviews 2018
```bibtex
@inproceedings{ni2019justifying,
  title={Justifying recommendations using distantly-labeled reviews and fine-grained aspects},
  author={Ni, Jianmo and Li, Jiacheng and McAuley, Julian},
  booktitle={Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP)},
  pages={188--197},
  year={2019}
}
```

### Amazon Reviews 2014
```bibtex
@inproceedings{he2016ups,
  title={Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering},
  author={He, Ruining and McAuley, Julian},
  booktitle={proceedings of the 25th international conference on world wide web},
  pages={507--517},
  year={2016}
}
```

```bibtex
@inproceedings{mcauley2015image,
  title={Image-based recommendations on styles and substitutes},
  author={McAuley, Julian and Targett, Christopher and Shi, Qinfeng and Van Den Hengel, Anton},
  booktitle={Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval},
  pages={43--52},
  year={2015}
}
```