--- dataset_info: - config_name: metadata features: - name: asin dtype: string - name: title dtype: string - name: description dtype: string - name: brand dtype: string - name: main_cat dtype: string - name: category sequence: 'null' - name: also_buy sequence: string - name: also_view sequence: string - name: imageURL sequence: string - name: imageURLHighRes sequence: string splits: - name: train num_bytes: 21323873 num_examples: 32891 download_size: 9685233 dataset_size: 21323873 - config_name: reviews features: - name: reviewerID dtype: string - name: reviewerName dtype: string - name: overall sequence: int64 - name: reviewTime sequence: timestamp[us] - name: asin sequence: string - name: reviewText sequence: string - name: summary sequence: string splits: - name: train num_bytes: 3055300 num_examples: 1398 download_size: 1191665 dataset_size: 3055300 configs: - config_name: metadata data_files: - split: train path: metadata/train-* - config_name: reviews data_files: - split: train path: reviews/train-* --- # Amazon All Beauty Dataset ## Directory Structure - **metadata**: Contains product information. - **reviews**: Contains user reviews about the products. - **filtered**: - **e5-base-v2_embeddings.jsonl**: Contains "asin" and "embeddings" created with [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2). - **metadata.jsonl**: Contains "asin" and "text", where text is created from the title, description, brand, main category, and category. - **reviews.jsonl**: Contains "reviewerID", "reviewTime", and "asin". Reviews are filtered to include only perfect 5-star ratings with a minimum of 5 ratings. ## Usage ### Download metadata ```python metadata = load_dataset(path="smartcat/Amazon_All_Beauty_2018", name="metadata", split="train") ``` ### Download reviews ```python metadata = load_dataset(path="smartcat/Amazon_All_Beauty_2018", name="reviews", split="train") ``` ### Download filtered files ```python filtered_reviews = load_dataset( path="smartcat/Amazon_All_Beauty_2018", data_files="filtered/reviews.jsonl", split="train", ) ``` **📎 Note:** You can set any file or list of files from the "filtered" directory as the "data_files" argument. ## Citation ### Amazon Reviews 2023 ```bibtex @article{hou2024bridging, title={Bridging language and items for retrieval and recommendation}, author={Hou, Yupeng and Li, Jiacheng and He, Zhankui and Yan, An and Chen, Xiusi and McAuley, Julian}, journal={arXiv preprint arXiv:2403.03952}, year={2024} } ``` ### Amazon Reviews 2018 ```bibtex @inproceedings{ni2019justifying, title={Justifying recommendations using distantly-labeled reviews and fine-grained aspects}, author={Ni, Jianmo and Li, Jiacheng and McAuley, Julian}, booktitle={Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP)}, pages={188--197}, year={2019} } ``` ### Amazon Reviews 2014 ```bibtex @inproceedings{he2016ups, title={Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering}, author={He, Ruining and McAuley, Julian}, booktitle={proceedings of the 25th international conference on world wide web}, pages={507--517}, year={2016} } ``` ```bibtex @inproceedings{mcauley2015image, title={Image-based recommendations on styles and substitutes}, author={McAuley, Julian and Targett, Christopher and Shi, Qinfeng and Van Den Hengel, Anton}, booktitle={Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval}, pages={43--52}, year={2015} } ```