File size: 7,671 Bytes
69b5cdf 8408a40 6b662d9 8408a40 6b662d9 8408a40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
---
dataset_info:
features:
- name: main_category
dtype: string
- name: title
dtype: string
- name: average_rating
dtype: float64
- name: rating_number
dtype: int64
- name: features
dtype: string
- name: description
dtype: string
- name: price
dtype: float64
- name: images
list:
- name: thumb
dtype: string
- name: large
dtype: string
- name: variant
dtype: string
- name: hi_res
dtype: string
- name: videos
list:
- name: title
dtype: string
- name: url
dtype: string
- name: user_id
dtype: string
- name: store
dtype: string
- name: categories
sequence: string
- name: parent_asin
dtype: string
- name: item_weight
dtype: string
- name: brand
dtype: string
- name: item_model_number
dtype: string
- name: product_dimensions
dtype: string
- name: batteries_required
dtype: string
- name: color
dtype: string
- name: material
dtype: string
- name: material_type
dtype: string
- name: style
dtype: string
- name: number_of_items
dtype: string
- name: manufacturer
dtype: string
- name: package_dimensions
dtype: string
- name: date_first_available
dtype: int64
- name: best_sellers_rank
dtype: string
- name: age_range_(description)
dtype: string
splits:
- name: train
num_bytes: 74252952
num_examples: 22767
download_size: 33492627
dataset_size: 74252952
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for Dataset Name
Original dataset can be found on: https://amazon-reviews-2023.github.io/
## Dataset Details
This dataset is downloaded from the link above, the category Baby Products meta dataset.
### Dataset Description
This dataset is a refined version of the Amazon Baby Products 2023 meta dataset, which originally contained baby product metadata for product that are sold on Amazon. The dataset includes detailed information about products such as their descriptions, ratings, prices, images, and features. The primary focus of this modification was to ensure the completeness of key fields while simplifying the dataset by removing irrelevant or empty columns.
The table below represents the original structure of the dataset.
<table border="1" cellpadding="5" cellspacing="0">
<tr>
<th>Field</th>
<th>Type</th>
<th>Explanation</th>
</tr>
<tr>
<td>main_category</td>
<td>str</td>
<td>Main category (i.e., domain) of the product.</td>
</tr>
<tr>
<td>title</td>
<td>str</td>
<td>Name of the product.</td>
</tr>
<tr>
<td>average_rating</td>
<td>float</td>
<td>Rating of the product shown on the product page.</td>
</tr>
<tr>
<td>rating_number</td>
<td>int</td>
<td>Number of ratings in the product.</td>
</tr>
<tr>
<td>features</td>
<td>list</td>
<td>Bullet-point format features of the product.</td>
</tr>
<tr>
<td>description</td>
<td>list</td>
<td>Description of the product.</td>
</tr>
<tr>
<td>price</td>
<td>float</td>
<td>Price in US dollars (at time of crawling).</td>
</tr>
<tr>
<td>images</td>
<td>list</td>
<td>Images of the product. Each image has different sizes (thumb, large, hi_res). The “variant” field shows the position of image.</td>
</tr>
<tr>
<td>videos</td>
<td>list</td>
<td>Videos of the product including title and url.</td>
</tr>
<tr>
<td>store</td>
<td>str</td>
<td>Store name of the product.</td>
</tr>
<tr>
<td>categories</td>
<td>list</td>
<td>Hierarchical categories of the product.</td>
</tr>
<tr>
<td>details</td>
<td>dict</td>
<td>Product details, including materials, brand, sizes, etc.</td>
</tr>
<tr>
<td>parent_asin</td>
<td>str</td>
<td>Parent ID of the product.</td>
</tr>
<tr>
<td>bought_together</td>
<td>list</td>
<td>Recommended bundles from the websites.</td>
</tr>
</table>
### Modifications made
<ul>
<li>Products without a description, title, images or details were removed.</li>
<li>Lists in features and description are transformed into strings concatinated with a newline</li>
<li>For the details column, only the top 16 most frequent detail types were kept. The details column was then split into these new 16 columns based on the detail types kept.</li>
<li>Products with date first available before the year 2015 are dropped.</li>
<li>Products with is_discontinued_by_manufacturer set to 'true' or 'yes' are dropped. Then that column was dropped.</li>
<li>Column bought_together is dropped due to missing values.</li>
</ul>
### Dataset Size
<ul>
<li>Total entries: 22,767</li>
<li>Total columns: 27</li>
</ul>
### Final Structure
<table border="1" cellpadding="5" cellspacing="0">
<tr>
<th>Field</th>
<th>Type</th>
<th>Explanation</th>
</tr>
<tr>
<td>main_category</td>
<td>str</td>
<td>Main category</td>
</tr>
<tr>
<td>title</td>
<td>str</td>
<td>Name of the product</td>
</tr>
<tr>
<td>average_rating</td>
<td>float</td>
<td>Rating of the product shown on the product page.</td>
</tr>
<tr>
<td>rating_number</td>
<td>int</td>
<td>Number of ratings in the product.</td>
</tr>
<tr>
<td>features</td>
<td>list</td>
<td>Bullet-point format features of the product.</td>
</tr>
<tr>
<td>description</td>
<td>list</td>
<td>Description of the product.</td>
</tr>
<tr>
<td>price</td>
<td>float</td>
<td>Price in US dollars (at time of crawling).</td>
</tr>
<tr>
<td>images</td>
<td>list</td>
<td>Images of the product. Each image has different sizes (thumb, large, hi_res). The “variant” field shows the position of image.</td>
</tr>
<tr>
<td>videos</td>
<td>list</td>
<td>Videos of the product including title and url.</td>
</tr>
<tr>
<td>store</td>
<td>str</td>
<td>Store name of the product.</td>
</tr>
<tr>
<td>details</td>
<td>dict</td>
<td>Product details, including materials, brand, sizes, etc.</td>
</tr>
<tr>
<td>parent_asin</td>
<td>str</td>
<td>Parent ID of the product.</td>
</tr>
<tr>
<td>item_weight</td>
<td>str</td>
<td>Weight of the item</td>
</tr>
<tr>
<td>brand</td>
<td>str</td>
<td>Brand name</td>
</tr>
<tr>
<td>item_model_number</td>
<td>str</td>
<td>Model number of the item</td>
</tr>
<tr>
<td>product_dimensions</td>
<td>str</td>
<td>Dimensions of the product</td>
</tr>
<tr>
<td>batteries_required</td>
<td>str</td>
<td>Baterries required</td>
</tr>
<tr>
<td>color</td>
<td>str</td>
<td>Color</td>
</tr>
<tr>
<td>material</td>
<td>str</td>
<td>Material</td>
</tr>
<tr>
<td>material_type</td>
<td>str</td>
<td>Material</td>
</tr>
<tr>
<td>style</td>
<td>str</td>
<td>Style</td>
</tr>
<tr>
<td>number_of_items</td>
<td>str</td>
<td>Number of items</td>
</tr>
<tr>
<td>manufacturer</td>
<td>str</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>package_dimensions</td>
<td>str</td>
<td>Package dimensions</td>
</tr>
<tr>
<td>date_first_available</td>
<td>int64</td>
<td>Date product was first time available</td>
</tr>
<tr>
<td>best_sellers_rank</td>
<td>str</td>
<td>Best seller rank</td>
</tr>
<tr>
<td>age_range_(description)</td>
<td>str</td>
<td>Age range</td>
</tr>
</table>
|