File size: 7,671 Bytes
69b5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8408a40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b662d9
8408a40
 
 
 
6b662d9
8408a40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
---
dataset_info:
  features:
  - name: main_category
    dtype: string
  - name: title
    dtype: string
  - name: average_rating
    dtype: float64
  - name: rating_number
    dtype: int64
  - name: features
    dtype: string
  - name: description
    dtype: string
  - name: price
    dtype: float64
  - name: images
    list:
    - name: thumb
      dtype: string
    - name: large
      dtype: string
    - name: variant
      dtype: string
    - name: hi_res
      dtype: string
  - name: videos
    list:
    - name: title
      dtype: string
    - name: url
      dtype: string
    - name: user_id
      dtype: string
  - name: store
    dtype: string
  - name: categories
    sequence: string
  - name: parent_asin
    dtype: string
  - name: item_weight
    dtype: string
  - name: brand
    dtype: string
  - name: item_model_number
    dtype: string
  - name: product_dimensions
    dtype: string
  - name: batteries_required
    dtype: string
  - name: color
    dtype: string
  - name: material
    dtype: string
  - name: material_type
    dtype: string
  - name: style
    dtype: string
  - name: number_of_items
    dtype: string
  - name: manufacturer
    dtype: string
  - name: package_dimensions
    dtype: string
  - name: date_first_available
    dtype: int64
  - name: best_sellers_rank
    dtype: string
  - name: age_range_(description)
    dtype: string
  splits:
  - name: train
    num_bytes: 74252952
    num_examples: 22767
  download_size: 33492627
  dataset_size: 74252952
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# Dataset Card for Dataset Name

Original dataset can be found on: https://amazon-reviews-2023.github.io/

## Dataset Details
This dataset is downloaded from the link above, the category Baby Products meta dataset.

### Dataset Description

This dataset is a refined version of the Amazon Baby Products 2023 meta dataset, which originally contained baby product metadata for product that are sold on Amazon. The dataset includes detailed information about products such as their descriptions, ratings, prices, images, and features. The primary focus of this modification was to ensure the completeness of key fields while simplifying the dataset by removing irrelevant or empty columns.
The table below represents the original structure of the dataset.

<table border="1" cellpadding="5" cellspacing="0">
  <tr>
    <th>Field</th>
    <th>Type</th>
    <th>Explanation</th>
  </tr>
  <tr>
    <td>main_category</td>
    <td>str</td>
    <td>Main category (i.e., domain) of the product.</td>
  </tr>
  <tr>
    <td>title</td>
    <td>str</td>
    <td>Name of the product.</td>
  </tr>
  <tr>
    <td>average_rating</td>
    <td>float</td>
    <td>Rating of the product shown on the product page.</td>
  </tr>
  <tr>
    <td>rating_number</td>
    <td>int</td>
    <td>Number of ratings in the product.</td>
  </tr>
  <tr>
    <td>features</td>
    <td>list</td>
    <td>Bullet-point format features of the product.</td>
  </tr>
  <tr>
    <td>description</td>
    <td>list</td>
    <td>Description of the product.</td>
  </tr>
  <tr>
    <td>price</td>
    <td>float</td>
    <td>Price in US dollars (at time of crawling).</td>
  </tr>
  <tr>
    <td>images</td>
    <td>list</td>
    <td>Images of the product. Each image has different sizes (thumb, large, hi_res). The “variant” field shows the position of image.</td>
  </tr>
  <tr>
    <td>videos</td>
    <td>list</td>
    <td>Videos of the product including title and url.</td>
  </tr>
  <tr>
    <td>store</td>
    <td>str</td>
    <td>Store name of the product.</td>
  </tr>
  <tr>
    <td>categories</td>
    <td>list</td>
    <td>Hierarchical categories of the product.</td>
  </tr>
  <tr>
    <td>details</td>
    <td>dict</td>
    <td>Product details, including materials, brand, sizes, etc.</td>
  </tr>
  <tr>
    <td>parent_asin</td>
    <td>str</td>
    <td>Parent ID of the product.</td>
  </tr>
  <tr>
    <td>bought_together</td>
    <td>list</td>
    <td>Recommended bundles from the websites.</td>
  </tr>
</table>


### Modifications made
<ul>
<li>Products without a description, title, images or details were removed.</li>
<li>Lists in features and description are transformed into strings concatinated with a newline</li>
<li>For the details column, only the top 16 most frequent detail types were kept. The details column was then split into these new 16 columns based on the detail types kept.</li>
<li>Products with date first available before the year 2015 are dropped.</li>
<li>Products with is_discontinued_by_manufacturer set to 'true' or 'yes' are dropped. Then that column was dropped.</li>
<li>Column bought_together is dropped due to missing values.</li>
</ul>

### Dataset Size
<ul>
<li>Total entries: 22,767</li>
<li>Total columns: 27</li>
</ul>

### Final Structure
<table border="1" cellpadding="5" cellspacing="0">
  <tr>
    <th>Field</th>
    <th>Type</th>
    <th>Explanation</th>
  </tr>
  <tr>
    <td>main_category</td>
    <td>str</td>
    <td>Main category</td>
  </tr>
  <tr>
    <td>title</td>
    <td>str</td>
    <td>Name of the product</td>
  </tr>
    <tr>
    <td>average_rating</td>
    <td>float</td>
    <td>Rating of the product shown on the product page.</td>
  </tr>
  <tr>
    <td>rating_number</td>
    <td>int</td>
    <td>Number of ratings in the product.</td>
  </tr>
  <tr>
    <td>features</td>
    <td>list</td>
    <td>Bullet-point format features of the product.</td>
  </tr>
  <tr>
    <td>description</td>
    <td>list</td>
    <td>Description of the product.</td>
  </tr>
  <tr>
    <td>price</td>
    <td>float</td>
    <td>Price in US dollars (at time of crawling).</td>
  </tr>
  <tr>
    <td>images</td>
    <td>list</td>
    <td>Images of the product. Each image has different sizes (thumb, large, hi_res). The “variant” field shows the position of image.</td>
  </tr>
  <tr>
    <td>videos</td>
    <td>list</td>
    <td>Videos of the product including title and url.</td>
  </tr>
  <tr>
    <td>store</td>
    <td>str</td>
    <td>Store name of the product.</td>
  </tr>
  <tr>
    <td>details</td>
    <td>dict</td>
    <td>Product details, including materials, brand, sizes, etc.</td>
  </tr>
  <tr>
    <td>parent_asin</td>
    <td>str</td>
    <td>Parent ID of the product.</td>
  </tr>
  <tr>
    <td>item_weight</td>
    <td>str</td>
    <td>Weight of the item</td>
  </tr>
  <tr>
    <td>brand</td>
    <td>str</td>
    <td>Brand name</td>
  </tr>
  <tr>
    <td>item_model_number</td>
    <td>str</td>
    <td>Model number of the item</td>
  </tr>
  <tr>
    <td>product_dimensions</td>
    <td>str</td>
    <td>Dimensions of the product</td>
  </tr>
  <tr>
    <td>batteries_required</td>
    <td>str</td>
    <td>Baterries required</td>
  </tr>
  <tr>
    <td>color</td>
    <td>str</td>
    <td>Color</td>
  </tr>
  <tr>
    <td>material</td>
    <td>str</td>
    <td>Material</td>
  </tr>
  <tr>
    <td>material_type</td>
    <td>str</td>
    <td>Material</td>
  </tr>
  <tr>
    <td>style</td>
    <td>str</td>
    <td>Style</td>
  </tr>
  <tr>
    <td>number_of_items</td>
    <td>str</td>
    <td>Number of items</td>
  </tr>
  <tr>
    <td>manufacturer</td>
    <td>str</td>
    <td>Manufacturer</td>
  </tr>
  <tr>
    <td>package_dimensions</td>
    <td>str</td>
    <td>Package dimensions</td>
  </tr>
  <tr>
    <td>date_first_available</td>
    <td>int64</td>
    <td>Date product was first time available</td>
  </tr>
  <tr>
    <td>best_sellers_rank</td>
    <td>str</td>
    <td>Best seller rank</td>
  </tr>
  <tr>
    <td>age_range_(description)</td>
    <td>str</td>
    <td>Age range</td>
  </tr>
</table>