File size: 3,833 Bytes
cda116a
 
 
 
 
 
 
 
 
 
 
 
 
74f1447
7b4dd76
74f1447
cda116a
74f1447
 
cda116a
 
 
 
 
 
74f1447
 
 
cda116a
 
74f1447
 
cda116a
 
74f1447
cda116a
 
74f1447
 
cda116a
 
74f1447
cda116a
74f1447
 
cda116a
 
 
 
 
 
 
 
 
 
74f1447
cda116a
74f1447
cda116a
 
 
 
 
 
 
 
 
 
74f1447
 
 
 
 
cda116a
 
 
 
 
 
 
74f1447
 
 
cda116a
74f1447
 
 
 
 
 
 
 
 
 
 
 
 
cda116a
 
74f1447
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .annotations_parser import load_yedda_annotations

import datasets


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@misc{tajik-text-segmentation,
title = {Tajik text segmentation dataset},
author={Sobir Bobiev},
year={2023}
}
"""

_DESCRIPTION = """\
This dataset contains tajik texts with sentences annotated. Can be useful for sentence boundary detection, segmenting text and many NLP tasks.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""


class TajikTextSegmentation(datasets.GeneratorBasedBuilder):
    """A dataset of sentence-wise text segmentation in Tajik language."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        features = datasets.Features(
            {
                "file": datasets.Value("string"),
                "text": datasets.Value("string"),
                "annotated_text": datasets.Value("string"),
                "number_of_labels": datasets.Value("int32"),
                "positions":  [[datasets.Value("int32")]],
                "labels":  [datasets.Value("string")]
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "directory_path": './annotations',
                },
            ),
        ]

    def _generate_examples(self, directory_path):
        """This function returns the examples."""
        
        annotations = load_yedda_annotations(directory_path)
        
        for idx, file_annotation in enumerate(annotations):
            file = file_annotation['file']
            text = file_annotation['text']
            annotated_text = file_annotation['annotated_text']
            number_of_labels = len(file_annotation['labels'])
            
            yield idx, {
                "file": file,
                "text": text,
                "annotated_text": annotated_text,
                "positions": file_annotation['positions'],
                "labels": file_annotation['labels'],
                "number_of_labels": number_of_labels,
            }