# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .annotations_parser import load_yedda_annotations import datasets # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @misc{tajik-text-segmentation, title = {Tajik text segmentation dataset}, author={Sobir Bobiev}, year={2023} } """ _DESCRIPTION = """\ This dataset contains tajik texts with sentences annotated. Can be useful for sentence boundary detection, segmenting text and many NLP tasks. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" class TajikTextSegmentation(datasets.GeneratorBasedBuilder): """A dataset of sentence-wise text segmentation in Tajik language.""" VERSION = datasets.Version("1.1.0") def _info(self): features = datasets.Features( { "file": datasets.Value("string"), "text": datasets.Value("string"), "annotated_text": datasets.Value("string"), "number_of_labels": datasets.Value("int32"), "positions": [[datasets.Value("int32")]], "labels": [datasets.Value("string")] } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "directory_path": './annotations', }, ), ] def _generate_examples(self, directory_path): """This function returns the examples.""" annotations = load_yedda_annotations(directory_path) for idx, file_annotation in enumerate(annotations): file = file_annotation['file'] text = file_annotation['text'] annotated_text = file_annotation['annotated_text'] number_of_labels = len(file_annotation['labels']) yield idx, { "file": file, "text": text, "annotated_text": annotated_text, "positions": file_annotation['positions'], "labels": file_annotation['labels'], "number_of_labels": number_of_labels, }