Upload 2 files
Browse files- milvus.ipynb +335 -0
- standalone.bat +145 -0
milvus.ipynb
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Test"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"from pymilvus import connections, db\n",
|
17 |
+
"\n",
|
18 |
+
"conn = connections.connect(host=\"127.0.0.1\", port=19530)\n",
|
19 |
+
"\n",
|
20 |
+
"database = db.create_database(\"my_database\")\n"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 2,
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"data": {
|
30 |
+
"text/plain": [
|
31 |
+
"['default', 'my_database']"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"execution_count": 2,
|
35 |
+
"metadata": {},
|
36 |
+
"output_type": "execute_result"
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"db.list_database()"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": 3,
|
46 |
+
"metadata": {},
|
47 |
+
"outputs": [
|
48 |
+
{
|
49 |
+
"data": {
|
50 |
+
"text/plain": [
|
51 |
+
"{'auto_id': False, 'description': '', 'fields': [{'name': 'my_id', 'description': '', 'type': <DataType.INT64: 5>, 'is_primary': True, 'auto_id': False}, {'name': 'my_vector', 'description': '', 'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 5}}, {'name': 'my_varchar', 'description': '', 'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 512}}], 'enable_dynamic_field': True}"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
"execution_count": 3,
|
55 |
+
"metadata": {},
|
56 |
+
"output_type": "execute_result"
|
57 |
+
}
|
58 |
+
],
|
59 |
+
"source": [
|
60 |
+
"from pymilvus import MilvusClient, DataType\n",
|
61 |
+
"\n",
|
62 |
+
"client = MilvusClient(\n",
|
63 |
+
" uri=\"http://localhost:19530\",\n",
|
64 |
+
" token=\"root:Milvus\"\n",
|
65 |
+
")\n",
|
66 |
+
"\n",
|
67 |
+
"schema = MilvusClient.create_schema(\n",
|
68 |
+
" auto_id=False,\n",
|
69 |
+
" enable_dynamic_field=True,\n",
|
70 |
+
")\n",
|
71 |
+
"\n",
|
72 |
+
"schema.add_field(field_name=\"my_id\", datatype=DataType.INT64, is_primary=True)\n",
|
73 |
+
"schema.add_field(field_name=\"my_vector\", datatype=DataType.FLOAT_VECTOR, dim=5)\n",
|
74 |
+
"schema.add_field(field_name=\"my_varchar\", datatype=DataType.VARCHAR, max_length=512)\n",
|
75 |
+
"\n"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 4,
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"index_params = client.prepare_index_params()\n",
|
85 |
+
"index_params.add_index(\n",
|
86 |
+
" field_name=\"my_vector\", \n",
|
87 |
+
" index_type=\"AUTOINDEX\",\n",
|
88 |
+
" metric_type=\"COSINE\"\n",
|
89 |
+
")"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": null,
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [
|
97 |
+
{
|
98 |
+
"name": "stdout",
|
99 |
+
"output_type": "stream",
|
100 |
+
"text": [
|
101 |
+
"{'state': <LoadState: Loaded>}\n"
|
102 |
+
]
|
103 |
+
}
|
104 |
+
],
|
105 |
+
"source": [
|
106 |
+
"client.create_collection(\n",
|
107 |
+
" collection_name=\"customized_setup_1\",\n",
|
108 |
+
" schema=schema,\n",
|
109 |
+
" index_params=index_params\n",
|
110 |
+
")\n",
|
111 |
+
"\n"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 8,
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [
|
119 |
+
{
|
120 |
+
"name": "stdout",
|
121 |
+
"output_type": "stream",
|
122 |
+
"text": [
|
123 |
+
"{'collection_name': 'customized_setup_1', 'auto_id': False, 'num_shards': 1, 'description': '', 'fields': [{'field_id': 100, 'name': 'my_id', 'description': '', 'type': <DataType.INT64: 5>, 'params': {}, 'is_primary': True}, {'field_id': 101, 'name': 'my_vector', 'description': '', 'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 5}}, {'field_id': 102, 'name': 'my_varchar', 'description': '', 'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 512}}], 'functions': [], 'aliases': [], 'collection_id': 456238279677978972, 'consistency_level': 2, 'properties': {}, 'num_partitions': 1, 'enable_dynamic_field': True}\n"
|
124 |
+
]
|
125 |
+
}
|
126 |
+
],
|
127 |
+
"source": [
|
128 |
+
"res = client.describe_collection(\n",
|
129 |
+
" collection_name=\"customized_setup_1\"\n",
|
130 |
+
")\n",
|
131 |
+
"\n",
|
132 |
+
"print(res)"
|
133 |
+
]
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"cell_type": "code",
|
137 |
+
"execution_count": 13,
|
138 |
+
"metadata": {},
|
139 |
+
"outputs": [],
|
140 |
+
"source": [
|
141 |
+
"client.release_collection(\n",
|
142 |
+
" collection_name=\"customized_setup_1\"\n",
|
143 |
+
")"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": 14,
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [],
|
151 |
+
"source": [
|
152 |
+
"client.load_collection(\\\n",
|
153 |
+
" collection_name=\"customized_setup_1\",\n",
|
154 |
+
" # highlight-next-line\n",
|
155 |
+
" load_fields=[\"my_id\", \"my_vector\"], # Load only the specified fields\n",
|
156 |
+
" skip_load_dynamic_field=True # Skip loading the dynamic field\n",
|
157 |
+
")"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "code",
|
162 |
+
"execution_count": null,
|
163 |
+
"metadata": {},
|
164 |
+
"outputs": [],
|
165 |
+
"source": []
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"cell_type": "markdown",
|
169 |
+
"metadata": {},
|
170 |
+
"source": [
|
171 |
+
"# Tạo db với vector nhị phân"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "code",
|
176 |
+
"execution_count": 15,
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [
|
179 |
+
{
|
180 |
+
"data": {
|
181 |
+
"text/plain": [
|
182 |
+
"{'auto_id': True, 'description': '', 'fields': [{'name': 'pk', 'description': '', 'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 100}, 'is_primary': True, 'auto_id': False}, {'name': 'ingredients', 'description': '', 'type': <DataType.BINARY_VECTOR: 100>, 'params': {'dim': 128}}, {'name': 'recipes', 'description': '', 'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 1000}}], 'enable_dynamic_field': False}"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
"execution_count": 15,
|
186 |
+
"metadata": {},
|
187 |
+
"output_type": "execute_result"
|
188 |
+
}
|
189 |
+
],
|
190 |
+
"source": [
|
191 |
+
"schema = client.create_schema(\n",
|
192 |
+
" auto_id=True,\n",
|
193 |
+
" enable_dynamic_fields=True,\n",
|
194 |
+
")\n",
|
195 |
+
"\n",
|
196 |
+
"schema.add_field(field_name=\"pk\", datatype=DataType.VARCHAR, is_primary=True, max_length=100)\n",
|
197 |
+
"schema.add_field(field_name=\"ingredients\", datatype=DataType.BINARY_VECTOR, dim=128)\n",
|
198 |
+
"schema.add_field(field_name=\"recipes\", datatype=DataType.VARCHAR, max_length=1000)"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"execution_count": 16,
|
204 |
+
"metadata": {},
|
205 |
+
"outputs": [],
|
206 |
+
"source": [
|
207 |
+
"index_params = client.prepare_index_params()\n",
|
208 |
+
"\n",
|
209 |
+
"index_params.add_index(\n",
|
210 |
+
" field_name=\"ingredients\",\n",
|
211 |
+
" index_name=\"ingredients_index\",\n",
|
212 |
+
" index_type=\"BIN_IVF_FLAT\",\n",
|
213 |
+
" metric_type=\"HAMMING\",\n",
|
214 |
+
" params={\"nlist\": 128}\n",
|
215 |
+
")"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": 17,
|
221 |
+
"metadata": {},
|
222 |
+
"outputs": [],
|
223 |
+
"source": [
|
224 |
+
"client.create_collection(\n",
|
225 |
+
" collection_name=\"cookbook_db\",\n",
|
226 |
+
" schema=schema,\n",
|
227 |
+
" index_params=index_params\n",
|
228 |
+
")"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "code",
|
233 |
+
"execution_count": null,
|
234 |
+
"metadata": {},
|
235 |
+
"outputs": [],
|
236 |
+
"source": [
|
237 |
+
"def convert_bool_list_to_bytes(bool_list):\n",
|
238 |
+
" if len(bool_list) % 8 != 0:\n",
|
239 |
+
" raise ValueError(\"The length of a boolean list must be a multiple of 8\")\n",
|
240 |
+
"\n",
|
241 |
+
" byte_array = bytearray(len(bool_list) // 8)\n",
|
242 |
+
" for i, bit in enumerate(bool_list):\n",
|
243 |
+
" if bit == 1:\n",
|
244 |
+
" index = i // 8\n",
|
245 |
+
" shift = i % 8\n",
|
246 |
+
" byte_array[index] |= (1 << shift)\n",
|
247 |
+
" return bytes(byte_array)\n",
|
248 |
+
"\n",
|
249 |
+
"\n",
|
250 |
+
"bool_vectors = [\n",
|
251 |
+
" [1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0] + [0] * 112,\n",
|
252 |
+
" [0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1] + [0] * 112,\n",
|
253 |
+
"]\n",
|
254 |
+
"\n",
|
255 |
+
"data = [{\"ingredients\": convert_bool_list_to_bytes(bool_vector), \"recipes\": f\"xin chao cac ban {i}\" } for i, bool_vector in enumerate(bool_vectors)]\n",
|
256 |
+
"\n",
|
257 |
+
"client.insert(\n",
|
258 |
+
" collection_name=\"cookbook_db\",\n",
|
259 |
+
" data=data\n",
|
260 |
+
")\n",
|
261 |
+
"\n"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "markdown",
|
266 |
+
"metadata": {},
|
267 |
+
"source": [
|
268 |
+
"search\n"
|
269 |
+
]
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "code",
|
273 |
+
"execution_count": 28,
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [
|
276 |
+
{
|
277 |
+
"name": "stdout",
|
278 |
+
"output_type": "stream",
|
279 |
+
"text": [
|
280 |
+
"data: [\"[{'id': '456238279677992491', 'distance': 0.0, 'entity': {'pk': '456238279677992491', 'recipes': 'xin chao cac ban'}}]\"]\n"
|
281 |
+
]
|
282 |
+
}
|
283 |
+
],
|
284 |
+
"source": [
|
285 |
+
"search_params = {\n",
|
286 |
+
" \"params\": {\"nprobe\": 10}\n",
|
287 |
+
"}\n",
|
288 |
+
"\n",
|
289 |
+
"query_bool_list = [1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0] + [0] * 112\n",
|
290 |
+
"query_vector = convert_bool_list_to_bytes(query_bool_list)\n",
|
291 |
+
"\n",
|
292 |
+
"res = client.search(\n",
|
293 |
+
" collection_name=\"cookbook_db\",\n",
|
294 |
+
" data=[query_vector],\n",
|
295 |
+
" anns_field=\"ingredients\",\n",
|
296 |
+
" search_params=search_params,\n",
|
297 |
+
" limit=1,\n",
|
298 |
+
" output_fields=[\"pk\", \"recipes\"]\n",
|
299 |
+
")\n",
|
300 |
+
"\n",
|
301 |
+
"print(res)\n",
|
302 |
+
"\n",
|
303 |
+
"\n"
|
304 |
+
]
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"cell_type": "code",
|
308 |
+
"execution_count": null,
|
309 |
+
"metadata": {},
|
310 |
+
"outputs": [],
|
311 |
+
"source": []
|
312 |
+
}
|
313 |
+
],
|
314 |
+
"metadata": {
|
315 |
+
"kernelspec": {
|
316 |
+
"display_name": "Python 3",
|
317 |
+
"language": "python",
|
318 |
+
"name": "python3"
|
319 |
+
},
|
320 |
+
"language_info": {
|
321 |
+
"codemirror_mode": {
|
322 |
+
"name": "ipython",
|
323 |
+
"version": 3
|
324 |
+
},
|
325 |
+
"file_extension": ".py",
|
326 |
+
"mimetype": "text/x-python",
|
327 |
+
"name": "python",
|
328 |
+
"nbconvert_exporter": "python",
|
329 |
+
"pygments_lexer": "ipython3",
|
330 |
+
"version": "3.10.10"
|
331 |
+
}
|
332 |
+
},
|
333 |
+
"nbformat": 4,
|
334 |
+
"nbformat_minor": 2
|
335 |
+
}
|
standalone.bat
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@REM Licensed to the LF AI & Data foundation under one
|
2 |
+
@REM or more contributor license agreements. See the NOTICE file
|
3 |
+
@REM distributed with this work for additional information
|
4 |
+
@REM regarding copyright ownership. The ASF licenses this file
|
5 |
+
@REM to you under the Apache License, Version 2.0 (the
|
6 |
+
@REM "License"); you may not use this file except in compliance
|
7 |
+
@REM with the License. You may obtain a copy of the License at
|
8 |
+
@REM
|
9 |
+
@REM http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
@REM
|
11 |
+
@REM Unless required by applicable law or agreed to in writing, software
|
12 |
+
@REM distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
@REM WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
@REM See the License for the specific language governing permissions and
|
15 |
+
@REM limitations under the License.
|
16 |
+
|
17 |
+
@echo off
|
18 |
+
setlocal enabledelayedexpansion
|
19 |
+
|
20 |
+
:main
|
21 |
+
if "%1"=="" (
|
22 |
+
echo Please use standalone_embed.bat restart^|start^|stop^|delete
|
23 |
+
exit /b 1
|
24 |
+
)
|
25 |
+
|
26 |
+
if "%1"=="restart" (
|
27 |
+
call :stop
|
28 |
+
call :start
|
29 |
+
) else if "%1"=="start" (
|
30 |
+
call :start
|
31 |
+
) else if "%1"=="stop" (
|
32 |
+
call :stop
|
33 |
+
) else if "%1"=="delete" (
|
34 |
+
call :delete
|
35 |
+
) else (
|
36 |
+
echo Unknown command.
|
37 |
+
echo Please use standalone_embed.bat restart^|start^|stop^|upgrade^|delete
|
38 |
+
exit /b 1
|
39 |
+
)
|
40 |
+
goto :eof
|
41 |
+
|
42 |
+
:run_embed
|
43 |
+
(
|
44 |
+
echo listen-client-urls: http://0.0.0.0:2379
|
45 |
+
echo advertise-client-urls: http://0.0.0.0:2379
|
46 |
+
echo quota-backend-bytes: 4294967296
|
47 |
+
echo auto-compaction-mode: revision
|
48 |
+
echo auto-compaction-retention: '1000'
|
49 |
+
) > embedEtcd.yaml
|
50 |
+
|
51 |
+
(
|
52 |
+
echo # Extra config to override default milvus.yaml
|
53 |
+
) > user.yaml
|
54 |
+
|
55 |
+
docker run -d ^
|
56 |
+
--name milvus-standalone ^
|
57 |
+
--security-opt seccomp:unconfined ^
|
58 |
+
-e ETCD_USE_EMBED=true ^
|
59 |
+
-e ETCD_DATA_DIR=/var/lib/milvus/etcd ^
|
60 |
+
-e ETCD_CONFIG_PATH=/milvus/configs/embedEtcd.yaml ^
|
61 |
+
-e COMMON_STORAGETYPE=local ^
|
62 |
+
-v "%cd%\volumes\milvus:/var/lib/milvus" ^
|
63 |
+
-v "%cd%\embedEtcd.yaml:/milvus/configs/embedEtcd.yaml" ^
|
64 |
+
-v "%cd%\user.yaml:/milvus/configs/user.yaml" ^
|
65 |
+
-p 19530:19530 ^
|
66 |
+
-p 9091:9091 ^
|
67 |
+
-p 2379:2379 ^
|
68 |
+
--health-cmd="curl -f http://localhost:9091/healthz" ^
|
69 |
+
--health-interval=30s ^
|
70 |
+
--health-start-period=90s ^
|
71 |
+
--health-timeout=20s ^
|
72 |
+
--health-retries=3 ^
|
73 |
+
milvusdb/milvus:v2.4.13 ^
|
74 |
+
milvus run standalone >nul
|
75 |
+
if %errorlevel% neq 0 (
|
76 |
+
echo Failed to start Milvus container.
|
77 |
+
exit /b 1
|
78 |
+
)
|
79 |
+
|
80 |
+
goto :eof
|
81 |
+
|
82 |
+
:wait_for_milvus_running
|
83 |
+
echo Wait for Milvus Starting...
|
84 |
+
:wait_loop
|
85 |
+
for /f "tokens=*" %%A in ('docker ps ^| findstr "milvus-standalone" ^| findstr "healthy"') do set running=1
|
86 |
+
if "!running!"=="1" (
|
87 |
+
echo Start successfully.
|
88 |
+
echo To change the default Milvus configuration, edit user.yaml and restart the service.
|
89 |
+
goto :eof
|
90 |
+
)
|
91 |
+
timeout /t 1 >nul
|
92 |
+
goto wait_loop
|
93 |
+
|
94 |
+
:start
|
95 |
+
for /f "tokens=*" %%A in ('docker ps ^| findstr "milvus-standalone" ^| findstr "healthy"') do (
|
96 |
+
echo Milvus is running.
|
97 |
+
exit /b 0
|
98 |
+
)
|
99 |
+
|
100 |
+
for /f "tokens=*" %%A in ('docker ps -a ^| findstr "milvus-standalone"') do set container_exists=1
|
101 |
+
if defined container_exists (
|
102 |
+
docker start milvus-standalone >nul
|
103 |
+
) else (
|
104 |
+
call :run_embed
|
105 |
+
)
|
106 |
+
|
107 |
+
if %errorlevel% neq 0 (
|
108 |
+
echo Start failed.
|
109 |
+
exit /b 1
|
110 |
+
)
|
111 |
+
|
112 |
+
call :wait_for_milvus_running
|
113 |
+
goto :eof
|
114 |
+
|
115 |
+
:stop
|
116 |
+
docker stop milvus-standalone >nul
|
117 |
+
if %errorlevel% neq 0 (
|
118 |
+
echo Stop failed.
|
119 |
+
exit /b 1
|
120 |
+
)
|
121 |
+
echo Stop successfully.
|
122 |
+
goto :eof
|
123 |
+
|
124 |
+
:delete_container
|
125 |
+
for /f "tokens=*" %%A in ('docker ps ^| findstr "milvus-standalone"') do (
|
126 |
+
echo Please stop Milvus service before delete.
|
127 |
+
exit /b 1
|
128 |
+
)
|
129 |
+
docker rm milvus-standalone >nul
|
130 |
+
if %errorlevel% neq 0 (
|
131 |
+
echo Delete Milvus container failed.
|
132 |
+
exit /b 1
|
133 |
+
)
|
134 |
+
echo Delete Milvus container successfully.
|
135 |
+
goto :eof
|
136 |
+
|
137 |
+
:delete
|
138 |
+
call :delete_container
|
139 |
+
rmdir /s /q "%cd%\volumes"
|
140 |
+
del /q embedEtcd.yaml
|
141 |
+
del /q user.yaml
|
142 |
+
echo Delete successfully.
|
143 |
+
goto :eof
|
144 |
+
|
145 |
+
:EOF
|