Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
File size: 76,685 Bytes
8fe2bd6 57e7e05 8fe2bd6 57e7e05 8fe2bd6 2e75073 8fe2bd6 2e75073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- unknown
multilinguality:
- monolingual
paperswithcode_id: imagenet-sketch
pretty_name: ImageNet-Sketch
size_categories:
- 10K<n<100K
source_datasets:
- extended|imagenet-1k
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
0: tench, Tinca tinca
1: goldfish, Carassius auratus
2: great white shark, white shark, man-eater, man-eating shark, Carcharodon
carcharias
3: tiger shark, Galeocerdo cuvieri
4: hammerhead, hammerhead shark
5: electric ray, crampfish, numbfish, torpedo
6: stingray
7: cock
8: hen
9: ostrich, Struthio camelus
10: brambling, Fringilla montifringilla
11: goldfinch, Carduelis carduelis
12: house finch, linnet, Carpodacus mexicanus
13: junco, snowbird
14: indigo bunting, indigo finch, indigo bird, Passerina cyanea
15: robin, American robin, Turdus migratorius
16: bulbul
17: jay
18: magpie
19: chickadee
20: water ouzel, dipper
21: kite
22: bald eagle, American eagle, Haliaeetus leucocephalus
23: vulture
24: great grey owl, great gray owl, Strix nebulosa
25: European fire salamander, Salamandra salamandra
26: common newt, Triturus vulgaris
27: eft
28: spotted salamander, Ambystoma maculatum
29: axolotl, mud puppy, Ambystoma mexicanum
30: bullfrog, Rana catesbeiana
31: tree frog, tree-frog
32: tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui
33: loggerhead, loggerhead turtle, Caretta caretta
34: leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea
35: mud turtle
36: terrapin
37: box turtle, box tortoise
38: banded gecko
39: common iguana, iguana, Iguana iguana
40: American chameleon, anole, Anolis carolinensis
41: whiptail, whiptail lizard
42: agama
43: frilled lizard, Chlamydosaurus kingi
44: alligator lizard
45: Gila monster, Heloderma suspectum
46: green lizard, Lacerta viridis
47: African chameleon, Chamaeleo chamaeleon
48: Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis
49: African crocodile, Nile crocodile, Crocodylus niloticus
50: American alligator, Alligator mississipiensis
51: triceratops
52: thunder snake, worm snake, Carphophis amoenus
53: ringneck snake, ring-necked snake, ring snake
54: hognose snake, puff adder, sand viper
55: green snake, grass snake
56: king snake, kingsnake
57: garter snake, grass snake
58: water snake
59: vine snake
60: night snake, Hypsiglena torquata
61: boa constrictor, Constrictor constrictor
62: rock python, rock snake, Python sebae
63: Indian cobra, Naja naja
64: green mamba
65: sea snake
66: horned viper, cerastes, sand viper, horned asp, Cerastes cornutus
67: diamondback, diamondback rattlesnake, Crotalus adamanteus
68: sidewinder, horned rattlesnake, Crotalus cerastes
69: trilobite
70: harvestman, daddy longlegs, Phalangium opilio
71: scorpion
72: black and gold garden spider, Argiope aurantia
73: barn spider, Araneus cavaticus
74: garden spider, Aranea diademata
75: black widow, Latrodectus mactans
76: tarantula
77: wolf spider, hunting spider
78: tick
79: centipede
80: black grouse
81: ptarmigan
82: ruffed grouse, partridge, Bonasa umbellus
83: prairie chicken, prairie grouse, prairie fowl
84: peacock
85: quail
86: partridge
87: African grey, African gray, Psittacus erithacus
88: macaw
89: sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita
90: lorikeet
91: coucal
92: bee eater
93: hornbill
94: hummingbird
95: jacamar
96: toucan
97: drake
98: red-breasted merganser, Mergus serrator
99: goose
100: black swan, Cygnus atratus
101: tusker
102: echidna, spiny anteater, anteater
103: platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus
anatinus
104: wallaby, brush kangaroo
105: koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus
106: wombat
107: jellyfish
108: sea anemone, anemone
109: brain coral
110: flatworm, platyhelminth
111: nematode, nematode worm, roundworm
112: conch
113: snail
114: slug
115: sea slug, nudibranch
116: chiton, coat-of-mail shell, sea cradle, polyplacophore
117: chambered nautilus, pearly nautilus, nautilus
118: Dungeness crab, Cancer magister
119: rock crab, Cancer irroratus
120: fiddler crab
121: king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes
camtschatica
122: American lobster, Northern lobster, Maine lobster, Homarus americanus
123: spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish
124: crayfish, crawfish, crawdad, crawdaddy
125: hermit crab
126: isopod
127: white stork, Ciconia ciconia
128: black stork, Ciconia nigra
129: spoonbill
130: flamingo
131: little blue heron, Egretta caerulea
132: American egret, great white heron, Egretta albus
133: bittern
134: crane
135: limpkin, Aramus pictus
136: European gallinule, Porphyrio porphyrio
137: American coot, marsh hen, mud hen, water hen, Fulica americana
138: bustard
139: ruddy turnstone, Arenaria interpres
140: red-backed sandpiper, dunlin, Erolia alpina
141: redshank, Tringa totanus
142: dowitcher
143: oystercatcher, oyster catcher
144: pelican
145: king penguin, Aptenodytes patagonica
146: albatross, mollymawk
147: grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius
robustus
148: killer whale, killer, orca, grampus, sea wolf, Orcinus orca
149: dugong, Dugong dugon
150: sea lion
151: Chihuahua
152: Japanese spaniel
153: Maltese dog, Maltese terrier, Maltese
154: Pekinese, Pekingese, Peke
155: Shih-Tzu
156: Blenheim spaniel
157: papillon
158: toy terrier
159: Rhodesian ridgeback
160: Afghan hound, Afghan
161: basset, basset hound
162: beagle
163: bloodhound, sleuthhound
164: bluetick
165: black-and-tan coonhound
166: Walker hound, Walker foxhound
167: English foxhound
168: redbone
169: borzoi, Russian wolfhound
170: Irish wolfhound
171: Italian greyhound
172: whippet
173: Ibizan hound, Ibizan Podenco
174: Norwegian elkhound, elkhound
175: otterhound, otter hound
176: Saluki, gazelle hound
177: Scottish deerhound, deerhound
178: Weimaraner
179: Staffordshire bullterrier, Staffordshire bull terrier
180: American Staffordshire terrier, Staffordshire terrier, American pit
bull terrier, pit bull terrier
181: Bedlington terrier
182: Border terrier
183: Kerry blue terrier
184: Irish terrier
185: Norfolk terrier
186: Norwich terrier
187: Yorkshire terrier
188: wire-haired fox terrier
189: Lakeland terrier
190: Sealyham terrier, Sealyham
191: Airedale, Airedale terrier
192: cairn, cairn terrier
193: Australian terrier
194: Dandie Dinmont, Dandie Dinmont terrier
195: Boston bull, Boston terrier
196: miniature schnauzer
197: giant schnauzer
198: standard schnauzer
199: Scotch terrier, Scottish terrier, Scottie
200: Tibetan terrier, chrysanthemum dog
201: silky terrier, Sydney silky
202: soft-coated wheaten terrier
203: West Highland white terrier
204: Lhasa, Lhasa apso
205: flat-coated retriever
206: curly-coated retriever
207: golden retriever
208: Labrador retriever
209: Chesapeake Bay retriever
210: German short-haired pointer
211: vizsla, Hungarian pointer
212: English setter
213: Irish setter, red setter
214: Gordon setter
215: Brittany spaniel
216: clumber, clumber spaniel
217: English springer, English springer spaniel
218: Welsh springer spaniel
219: cocker spaniel, English cocker spaniel, cocker
220: Sussex spaniel
221: Irish water spaniel
222: kuvasz
223: schipperke
224: groenendael
225: malinois
226: briard
227: kelpie
228: komondor
229: Old English sheepdog, bobtail
230: Shetland sheepdog, Shetland sheep dog, Shetland
231: collie
232: Border collie
233: Bouvier des Flandres, Bouviers des Flandres
234: Rottweiler
235: German shepherd, German shepherd dog, German police dog, alsatian
236: Doberman, Doberman pinscher
237: miniature pinscher
238: Greater Swiss Mountain dog
239: Bernese mountain dog
240: Appenzeller
241: EntleBucher
242: boxer
243: bull mastiff
244: Tibetan mastiff
245: French bulldog
246: Great Dane
247: Saint Bernard, St Bernard
248: Eskimo dog, husky
249: malamute, malemute, Alaskan malamute
250: Siberian husky
251: dalmatian, coach dog, carriage dog
252: affenpinscher, monkey pinscher, monkey dog
253: basenji
254: pug, pug-dog
255: Leonberg
256: Newfoundland, Newfoundland dog
257: Great Pyrenees
258: Samoyed, Samoyede
259: Pomeranian
260: chow, chow chow
261: keeshond
262: Brabancon griffon
263: Pembroke, Pembroke Welsh corgi
264: Cardigan, Cardigan Welsh corgi
265: toy poodle
266: miniature poodle
267: standard poodle
268: Mexican hairless
269: timber wolf, grey wolf, gray wolf, Canis lupus
270: white wolf, Arctic wolf, Canis lupus tundrarum
271: red wolf, maned wolf, Canis rufus, Canis niger
272: coyote, prairie wolf, brush wolf, Canis latrans
273: dingo, warrigal, warragal, Canis dingo
274: dhole, Cuon alpinus
275: African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus
276: hyena, hyaena
277: red fox, Vulpes vulpes
278: kit fox, Vulpes macrotis
279: Arctic fox, white fox, Alopex lagopus
280: grey fox, gray fox, Urocyon cinereoargenteus
281: tabby, tabby cat
282: tiger cat
283: Persian cat
284: Siamese cat, Siamese
285: Egyptian cat
286: cougar, puma, catamount, mountain lion, painter, panther, Felis concolor
287: lynx, catamount
288: leopard, Panthera pardus
289: snow leopard, ounce, Panthera uncia
290: jaguar, panther, Panthera onca, Felis onca
291: lion, king of beasts, Panthera leo
292: tiger, Panthera tigris
293: cheetah, chetah, Acinonyx jubatus
294: brown bear, bruin, Ursus arctos
295: American black bear, black bear, Ursus americanus, Euarctos americanus
296: ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus
297: sloth bear, Melursus ursinus, Ursus ursinus
298: mongoose
299: meerkat, mierkat
300: tiger beetle
301: ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle
302: ground beetle, carabid beetle
303: long-horned beetle, longicorn, longicorn beetle
304: leaf beetle, chrysomelid
305: dung beetle
306: rhinoceros beetle
307: weevil
308: fly
309: bee
310: ant, emmet, pismire
311: grasshopper, hopper
312: cricket
313: walking stick, walkingstick, stick insect
314: cockroach, roach
315: mantis, mantid
316: cicada, cicala
317: leafhopper
318: lacewing, lacewing fly
319: dragonfly, darning needle, devil's darning needle, sewing needle, snake
feeder, snake doctor, mosquito hawk, skeeter hawk
320: damselfly
321: admiral
322: ringlet, ringlet butterfly
323: monarch, monarch butterfly, milkweed butterfly, Danaus plexippus
324: cabbage butterfly
325: sulphur butterfly, sulfur butterfly
326: lycaenid, lycaenid butterfly
327: starfish, sea star
328: sea urchin
329: sea cucumber, holothurian
330: wood rabbit, cottontail, cottontail rabbit
331: hare
332: Angora, Angora rabbit
333: hamster
334: porcupine, hedgehog
335: fox squirrel, eastern fox squirrel, Sciurus niger
336: marmot
337: beaver
338: guinea pig, Cavia cobaya
339: sorrel
340: zebra
341: hog, pig, grunter, squealer, Sus scrofa
342: wild boar, boar, Sus scrofa
343: warthog
344: hippopotamus, hippo, river horse, Hippopotamus amphibius
345: ox
346: water buffalo, water ox, Asiatic buffalo, Bubalus bubalis
347: bison
348: ram, tup
349: bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain
sheep, Ovis canadensis
350: ibex, Capra ibex
351: hartebeest
352: impala, Aepyceros melampus
353: gazelle
354: Arabian camel, dromedary, Camelus dromedarius
355: llama
356: weasel
357: mink
358: polecat, fitch, foulmart, foumart, Mustela putorius
359: black-footed ferret, ferret, Mustela nigripes
360: otter
361: skunk, polecat, wood pussy
362: badger
363: armadillo
364: three-toed sloth, ai, Bradypus tridactylus
365: orangutan, orang, orangutang, Pongo pygmaeus
366: gorilla, Gorilla gorilla
367: chimpanzee, chimp, Pan troglodytes
368: gibbon, Hylobates lar
369: siamang, Hylobates syndactylus, Symphalangus syndactylus
370: guenon, guenon monkey
371: patas, hussar monkey, Erythrocebus patas
372: baboon
373: macaque
374: langur
375: colobus, colobus monkey
376: proboscis monkey, Nasalis larvatus
377: marmoset
378: capuchin, ringtail, Cebus capucinus
379: howler monkey, howler
380: titi, titi monkey
381: spider monkey, Ateles geoffroyi
382: squirrel monkey, Saimiri sciureus
383: Madagascar cat, ring-tailed lemur, Lemur catta
384: indri, indris, Indri indri, Indri brevicaudatus
385: Indian elephant, Elephas maximus
386: African elephant, Loxodonta africana
387: lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens
388: giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca
389: barracouta, snoek
390: eel
391: coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch
392: rock beauty, Holocanthus tricolor
393: anemone fish
394: sturgeon
395: gar, garfish, garpike, billfish, Lepisosteus osseus
396: lionfish
397: puffer, pufferfish, blowfish, globefish
398: abacus
399: abaya
400: academic gown, academic robe, judge's robe
401: accordion, piano accordion, squeeze box
402: acoustic guitar
403: aircraft carrier, carrier, flattop, attack aircraft carrier
404: airliner
405: airship, dirigible
406: altar
407: ambulance
408: amphibian, amphibious vehicle
409: analog clock
410: apiary, bee house
411: apron
412: ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin,
dustbin, trash barrel, trash bin
413: assault rifle, assault gun
414: backpack, back pack, knapsack, packsack, rucksack, haversack
415: bakery, bakeshop, bakehouse
416: balance beam, beam
417: balloon
418: ballpoint, ballpoint pen, ballpen, Biro
419: Band Aid
420: banjo
421: bannister, banister, balustrade, balusters, handrail
422: barbell
423: barber chair
424: barbershop
425: barn
426: barometer
427: barrel, cask
428: barrow, garden cart, lawn cart, wheelbarrow
429: baseball
430: basketball
431: bassinet
432: bassoon
433: bathing cap, swimming cap
434: bath towel
435: bathtub, bathing tub, bath, tub
436: beach wagon, station wagon, wagon, estate car, beach waggon, station
waggon, waggon
437: beacon, lighthouse, beacon light, pharos
438: beaker
439: bearskin, busby, shako
440: beer bottle
441: beer glass
442: bell cote, bell cot
443: bib
444: bicycle-built-for-two, tandem bicycle, tandem
445: bikini, two-piece
446: binder, ring-binder
447: binoculars, field glasses, opera glasses
448: birdhouse
449: boathouse
450: bobsled, bobsleigh, bob
451: bolo tie, bolo, bola tie, bola
452: bonnet, poke bonnet
453: bookcase
454: bookshop, bookstore, bookstall
455: bottlecap
456: bow
457: bow tie, bow-tie, bowtie
458: brass, memorial tablet, plaque
459: brassiere, bra, bandeau
460: breakwater, groin, groyne, mole, bulwark, seawall, jetty
461: breastplate, aegis, egis
462: broom
463: bucket, pail
464: buckle
465: bulletproof vest
466: bullet train, bullet
467: butcher shop, meat market
468: cab, hack, taxi, taxicab
469: caldron, cauldron
470: candle, taper, wax light
471: cannon
472: canoe
473: can opener, tin opener
474: cardigan
475: car mirror
476: carousel, carrousel, merry-go-round, roundabout, whirligig
477: carpenter's kit, tool kit
478: carton
479: car wheel
480: cash machine, cash dispenser, automated teller machine, automatic teller
machine, automated teller, automatic teller, ATM
481: cassette
482: cassette player
483: castle
484: catamaran
485: CD player
486: cello, violoncello
487: cellular telephone, cellular phone, cellphone, cell, mobile phone
488: chain
489: chainlink fence
490: chain mail, ring mail, mail, chain armor, chain armour, ring armor,
ring armour
491: chain saw, chainsaw
492: chest
493: chiffonier, commode
494: chime, bell, gong
495: china cabinet, china closet
496: Christmas stocking
497: church, church building
498: cinema, movie theater, movie theatre, movie house, picture palace
499: cleaver, meat cleaver, chopper
500: cliff dwelling
501: cloak
502: clog, geta, patten, sabot
503: cocktail shaker
504: coffee mug
505: coffeepot
506: coil, spiral, volute, whorl, helix
507: combination lock
508: computer keyboard, keypad
509: confectionery, confectionary, candy store
510: container ship, containership, container vessel
511: convertible
512: corkscrew, bottle screw
513: cornet, horn, trumpet, trump
514: cowboy boot
515: cowboy hat, ten-gallon hat
516: cradle
517: crane2
518: crash helmet
519: crate
520: crib, cot
521: Crock Pot
522: croquet ball
523: crutch
524: cuirass
525: dam, dike, dyke
526: desk
527: desktop computer
528: dial telephone, dial phone
529: diaper, nappy, napkin
530: digital clock
531: digital watch
532: dining table, board
533: dishrag, dishcloth
534: dishwasher, dish washer, dishwashing machine
535: disk brake, disc brake
536: dock, dockage, docking facility
537: dogsled, dog sled, dog sleigh
538: dome
539: doormat, welcome mat
540: drilling platform, offshore rig
541: drum, membranophone, tympan
542: drumstick
543: dumbbell
544: Dutch oven
545: electric fan, blower
546: electric guitar
547: electric locomotive
548: entertainment center
549: envelope
550: espresso maker
551: face powder
552: feather boa, boa
553: file, file cabinet, filing cabinet
554: fireboat
555: fire engine, fire truck
556: fire screen, fireguard
557: flagpole, flagstaff
558: flute, transverse flute
559: folding chair
560: football helmet
561: forklift
562: fountain
563: fountain pen
564: four-poster
565: freight car
566: French horn, horn
567: frying pan, frypan, skillet
568: fur coat
569: garbage truck, dustcart
570: gasmask, respirator, gas helmet
571: gas pump, gasoline pump, petrol pump, island dispenser
572: goblet
573: go-kart
574: golf ball
575: golfcart, golf cart
576: gondola
577: gong, tam-tam
578: gown
579: grand piano, grand
580: greenhouse, nursery, glasshouse
581: grille, radiator grille
582: grocery store, grocery, food market, market
583: guillotine
584: hair slide
585: hair spray
586: half track
587: hammer
588: hamper
589: hand blower, blow dryer, blow drier, hair dryer, hair drier
590: hand-held computer, hand-held microcomputer
591: handkerchief, hankie, hanky, hankey
592: hard disc, hard disk, fixed disk
593: harmonica, mouth organ, harp, mouth harp
594: harp
595: harvester, reaper
596: hatchet
597: holster
598: home theater, home theatre
599: honeycomb
600: hook, claw
601: hoopskirt, crinoline
602: horizontal bar, high bar
603: horse cart, horse-cart
604: hourglass
605: iPod
606: iron, smoothing iron
607: jack-o'-lantern
608: jean, blue jean, denim
609: jeep, landrover
610: jersey, T-shirt, tee shirt
611: jigsaw puzzle
612: jinrikisha, ricksha, rickshaw
613: joystick
614: kimono
615: knee pad
616: knot
617: lab coat, laboratory coat
618: ladle
619: lampshade, lamp shade
620: laptop, laptop computer
621: lawn mower, mower
622: lens cap, lens cover
623: letter opener, paper knife, paperknife
624: library
625: lifeboat
626: lighter, light, igniter, ignitor
627: limousine, limo
628: liner, ocean liner
629: lipstick, lip rouge
630: Loafer
631: lotion
632: loudspeaker, speaker, speaker unit, loudspeaker system, speaker system
633: loupe, jeweler's loupe
634: lumbermill, sawmill
635: magnetic compass
636: mailbag, postbag
637: mailbox, letter box
638: maillot
639: maillot, tank suit
640: manhole cover
641: maraca
642: marimba, xylophone
643: mask
644: matchstick
645: maypole
646: maze, labyrinth
647: measuring cup
648: medicine chest, medicine cabinet
649: megalith, megalithic structure
650: microphone, mike
651: microwave, microwave oven
652: military uniform
653: milk can
654: minibus
655: miniskirt, mini
656: minivan
657: missile
658: mitten
659: mixing bowl
660: mobile home, manufactured home
661: Model T
662: modem
663: monastery
664: monitor
665: moped
666: mortar
667: mortarboard
668: mosque
669: mosquito net
670: motor scooter, scooter
671: mountain bike, all-terrain bike, off-roader
672: mountain tent
673: mouse, computer mouse
674: mousetrap
675: moving van
676: muzzle
677: nail
678: neck brace
679: necklace
680: nipple
681: notebook, notebook computer
682: obelisk
683: oboe, hautboy, hautbois
684: ocarina, sweet potato
685: odometer, hodometer, mileometer, milometer
686: oil filter
687: organ, pipe organ
688: oscilloscope, scope, cathode-ray oscilloscope, CRO
689: overskirt
690: oxcart
691: oxygen mask
692: packet
693: paddle, boat paddle
694: paddlewheel, paddle wheel
695: padlock
696: paintbrush
697: pajama, pyjama, pj's, jammies
698: palace
699: panpipe, pandean pipe, syrinx
700: paper towel
701: parachute, chute
702: parallel bars, bars
703: park bench
704: parking meter
705: passenger car, coach, carriage
706: patio, terrace
707: pay-phone, pay-station
708: pedestal, plinth, footstall
709: pencil box, pencil case
710: pencil sharpener
711: perfume, essence
712: Petri dish
713: photocopier
714: pick, plectrum, plectron
715: pickelhaube
716: picket fence, paling
717: pickup, pickup truck
718: pier
719: piggy bank, penny bank
720: pill bottle
721: pillow
722: ping-pong ball
723: pinwheel
724: pirate, pirate ship
725: pitcher, ewer
726: plane, carpenter's plane, woodworking plane
727: planetarium
728: plastic bag
729: plate rack
730: plow, plough
731: plunger, plumber's helper
732: Polaroid camera, Polaroid Land camera
733: pole
734: police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria
735: poncho
736: pool table, billiard table, snooker table
737: pop bottle, soda bottle
738: pot, flowerpot
739: potter's wheel
740: power drill
741: prayer rug, prayer mat
742: printer
743: prison, prison house
744: projectile, missile
745: projector
746: puck, hockey puck
747: punching bag, punch bag, punching ball, punchball
748: purse
749: quill, quill pen
750: quilt, comforter, comfort, puff
751: racer, race car, racing car
752: racket, racquet
753: radiator
754: radio, wireless
755: radio telescope, radio reflector
756: rain barrel
757: recreational vehicle, RV, R.V.
758: reel
759: reflex camera
760: refrigerator, icebox
761: remote control, remote
762: restaurant, eating house, eating place, eatery
763: revolver, six-gun, six-shooter
764: rifle
765: rocking chair, rocker
766: rotisserie
767: rubber eraser, rubber, pencil eraser
768: rugby ball
769: rule, ruler
770: running shoe
771: safe
772: safety pin
773: saltshaker, salt shaker
774: sandal
775: sarong
776: sax, saxophone
777: scabbard
778: scale, weighing machine
779: school bus
780: schooner
781: scoreboard
782: screen, CRT screen
783: screw
784: screwdriver
785: seat belt, seatbelt
786: sewing machine
787: shield, buckler
788: shoe shop, shoe-shop, shoe store
789: shoji
790: shopping basket
791: shopping cart
792: shovel
793: shower cap
794: shower curtain
795: ski
796: ski mask
797: sleeping bag
798: slide rule, slipstick
799: sliding door
800: slot, one-armed bandit
801: snorkel
802: snowmobile
803: snowplow, snowplough
804: soap dispenser
805: soccer ball
806: sock
807: solar dish, solar collector, solar furnace
808: sombrero
809: soup bowl
810: space bar
811: space heater
812: space shuttle
813: spatula
814: speedboat
815: spider web, spider's web
816: spindle
817: sports car, sport car
818: spotlight, spot
819: stage
820: steam locomotive
821: steel arch bridge
822: steel drum
823: stethoscope
824: stole
825: stone wall
826: stopwatch, stop watch
827: stove
828: strainer
829: streetcar, tram, tramcar, trolley, trolley car
830: stretcher
831: studio couch, day bed
832: stupa, tope
833: submarine, pigboat, sub, U-boat
834: suit, suit of clothes
835: sundial
836: sunglass
837: sunglasses, dark glasses, shades
838: sunscreen, sunblock, sun blocker
839: suspension bridge
840: swab, swob, mop
841: sweatshirt
842: swimming trunks, bathing trunks
843: swing
844: switch, electric switch, electrical switch
845: syringe
846: table lamp
847: tank, army tank, armored combat vehicle, armoured combat vehicle
848: tape player
849: teapot
850: teddy, teddy bear
851: television, television system
852: tennis ball
853: thatch, thatched roof
854: theater curtain, theatre curtain
855: thimble
856: thresher, thrasher, threshing machine
857: throne
858: tile roof
859: toaster
860: tobacco shop, tobacconist shop, tobacconist
861: toilet seat
862: torch
863: totem pole
864: tow truck, tow car, wrecker
865: toyshop
866: tractor
867: trailer truck, tractor trailer, trucking rig, rig, articulated lorry,
semi
868: tray
869: trench coat
870: tricycle, trike, velocipede
871: trimaran
872: tripod
873: triumphal arch
874: trolleybus, trolley coach, trackless trolley
875: trombone
876: tub, vat
877: turnstile
878: typewriter keyboard
879: umbrella
880: unicycle, monocycle
881: upright, upright piano
882: vacuum, vacuum cleaner
883: vase
884: vault
885: velvet
886: vending machine
887: vestment
888: viaduct
889: violin, fiddle
890: volleyball
891: waffle iron
892: wall clock
893: wallet, billfold, notecase, pocketbook
894: wardrobe, closet, press
895: warplane, military plane
896: washbasin, handbasin, washbowl, lavabo, wash-hand basin
897: washer, automatic washer, washing machine
898: water bottle
899: water jug
900: water tower
901: whiskey jug
902: whistle
903: wig
904: window screen
905: window shade
906: Windsor tie
907: wine bottle
908: wing
909: wok
910: wooden spoon
911: wool, woolen, woollen
912: worm fence, snake fence, snake-rail fence, Virginia fence
913: wreck
914: yawl
915: yurt
916: web site, website, internet site, site
917: comic book
918: crossword puzzle, crossword
919: street sign
920: traffic light, traffic signal, stoplight
921: book jacket, dust cover, dust jacket, dust wrapper
922: menu
923: plate
924: guacamole
925: consomme
926: hot pot, hotpot
927: trifle
928: ice cream, icecream
929: ice lolly, lolly, lollipop, popsicle
930: French loaf
931: bagel, beigel
932: pretzel
933: cheeseburger
934: hotdog, hot dog, red hot
935: mashed potato
936: head cabbage
937: broccoli
938: cauliflower
939: zucchini, courgette
940: spaghetti squash
941: acorn squash
942: butternut squash
943: cucumber, cuke
944: artichoke, globe artichoke
945: bell pepper
946: cardoon
947: mushroom
948: Granny Smith
949: strawberry
950: orange
951: lemon
952: fig
953: pineapple, ananas
954: banana
955: jackfruit, jak, jack
956: custard apple
957: pomegranate
958: hay
959: carbonara
960: chocolate sauce, chocolate syrup
961: dough
962: meat loaf, meatloaf
963: pizza, pizza pie
964: potpie
965: burrito
966: red wine
967: espresso
968: cup
969: eggnog
970: alp
971: bubble
972: cliff, drop, drop-off
973: coral reef
974: geyser
975: lakeside, lakeshore
976: promontory, headland, head, foreland
977: sandbar, sand bar
978: seashore, coast, seacoast, sea-coast
979: valley, vale
980: volcano
981: ballplayer, baseball player
982: groom, bridegroom
983: scuba diver
984: rapeseed
985: daisy
986: yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus,
Cypripedium parviflorum
987: corn
988: acorn
989: hip, rose hip, rosehip
990: buckeye, horse chestnut, conker
991: coral fungus
992: agaric
993: gyromitra
994: stinkhorn, carrion fungus
995: earthstar
996: hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa
997: bolete
998: ear, spike, capitulum
999: toilet tissue, toilet paper, bathroom tissue
splits:
- name: train
num_bytes: 9919813
num_examples: 50889
download_size: 7593573012
dataset_size: 9919813
---
# Dataset Card for ImageNet-Sketch
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/HaohanWang/ImageNet-Sketch
- **Repository:** https://github.com/HaohanWang/ImageNet-Sketch
- **Paper:** [Learning Robust Global Representations by Penalizing Local Predictive Power](https://arxiv.org/abs/1905.13549v2)
- **Leaderboard:** https://github.com/HaohanWang/ImageNet-Sketch#imagenet-sketch-leaderboard
- **Point of Contact:** [Haohan Wang](mailto:[email protected])
- **Size of downloaded dataset files:** 7.59 GB
### Dataset Summary
ImageNet-Sketch data set consists of 50000 images, 50 images for each of the 1000 ImageNet classes. We construct the data set with Google Image queries "sketch of __", where __ is the standard class name. We only search within the "black and white" color scheme. We initially query 100 images for every class, and then manually clean the pulled images by deleting the irrelevant images and images that are for similar but different classes. For some classes, there are less than 50 images after manually cleaning, and then we augment the data set by flipping and rotating the images.
The scripts used to conduct queries and clean images can be found in [the GitHub repository](https://github.com/HaohanWang/ImageNet-Sketch).
### Supported Tasks and Leaderboards
- `image_classification`: The goal of this task is to classify a given image into one of 1000 ImageNet classes. The leaderboard is available [here](https://github.com/HaohanWang/ImageNet-Sketch#imagenet-sketch-leaderboard).
The goal of the leaderboard is to evaluate the out-of-domain classification performance of vision models trained on ImageNet. The evaluation metrics used in the leaderboard are top-1 accuracy and top-5 accuracy.
### Languages
The class labels in the dataset are in English.
## Dataset Structure
### Data Instances
A sample from the training set is provided below:
```
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=400x530 at 0x7FB2EF5D4A90>,
'label': 320
}
```
### Data Fields
The data instances have the following fields:
- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `label`: an `int` classification label.
The labels are indexed based on a sorted list of synset ids such as `n07565083` which we automatically map to original class names. The original dataset is divided into folders based on these synset ids. To get a mapping from original synset names, use the file [LOC_synset_mapping.txt](https://www.kaggle.com/competitions/imagenet-object-localization-challenge/data?select=LOC_synset_mapping.txt) available on Kaggle challenge page. You can also use `dataset_instance.features["label"].int2str` function to get the class for a particular label index.
<details>
<summary>
Click here to see the full list of ImageNet class label mapping:
</summary>
|id|Class|
|--|-----|
|0 | tench, Tinca tinca|
|1 | goldfish, Carassius auratus|
|2 | great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias|
|3 | tiger shark, Galeocerdo cuvieri|
|4 | hammerhead, hammerhead shark|
|5 | electric ray, crampfish, numbfish, torpedo|
|6 | stingray|
|7 | cock|
|8 | hen|
|9 | ostrich, Struthio camelus|
|10 | brambling, Fringilla montifringilla|
|11 | goldfinch, Carduelis carduelis|
|12 | house finch, linnet, Carpodacus mexicanus|
|13 | junco, snowbird|
|14 | indigo bunting, indigo finch, indigo bird, Passerina cyanea|
|15 | robin, American robin, Turdus migratorius|
|16 | bulbul|
|17 | jay|
|18 | magpie|
|19 | chickadee|
|20 | water ouzel, dipper|
|21 | kite|
|22 | bald eagle, American eagle, Haliaeetus leucocephalus|
|23 | vulture|
|24 | great grey owl, great gray owl, Strix nebulosa|
|25 | European fire salamander, Salamandra salamandra|
|26 | common newt, Triturus vulgaris|
|27 | eft|
|28 | spotted salamander, Ambystoma maculatum|
|29 | axolotl, mud puppy, Ambystoma mexicanum|
|30 | bullfrog, Rana catesbeiana|
|31 | tree frog, tree-frog|
|32 | tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui|
|33 | loggerhead, loggerhead turtle, Caretta caretta|
|34 | leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea|
|35 | mud turtle|
|36 | terrapin|
|37 | box turtle, box tortoise|
|38 | banded gecko|
|39 | common iguana, iguana, Iguana iguana|
|40 | American chameleon, anole, Anolis carolinensis|
|41 | whiptail, whiptail lizard|
|42 | agama|
|43 | frilled lizard, Chlamydosaurus kingi|
|44 | alligator lizard|
|45 | Gila monster, Heloderma suspectum|
|46 | green lizard, Lacerta viridis|
|47 | African chameleon, Chamaeleo chamaeleon|
|48 | Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis|
|49 | African crocodile, Nile crocodile, Crocodylus niloticus|
|50 | American alligator, Alligator mississipiensis|
|51 | triceratops|
|52 | thunder snake, worm snake, Carphophis amoenus|
|53 | ringneck snake, ring-necked snake, ring snake|
|54 | hognose snake, puff adder, sand viper|
|55 | green snake, grass snake|
|56 | king snake, kingsnake|
|57 | garter snake, grass snake|
|58 | water snake|
|59 | vine snake|
|60 | night snake, Hypsiglena torquata|
|61 | boa constrictor, Constrictor constrictor|
|62 | rock python, rock snake, Python sebae|
|63 | Indian cobra, Naja naja|
|64 | green mamba|
|65 | sea snake|
|66 | horned viper, cerastes, sand viper, horned asp, Cerastes cornutus|
|67 | diamondback, diamondback rattlesnake, Crotalus adamanteus|
|68 | sidewinder, horned rattlesnake, Crotalus cerastes|
|69 | trilobite|
|70 | harvestman, daddy longlegs, Phalangium opilio|
|71 | scorpion|
|72 | black and gold garden spider, Argiope aurantia|
|73 | barn spider, Araneus cavaticus|
|74 | garden spider, Aranea diademata|
|75 | black widow, Latrodectus mactans|
|76 | tarantula|
|77 | wolf spider, hunting spider|
|78 | tick|
|79 | centipede|
|80 | black grouse|
|81 | ptarmigan|
|82 | ruffed grouse, partridge, Bonasa umbellus|
|83 | prairie chicken, prairie grouse, prairie fowl|
|84 | peacock|
|85 | quail|
|86 | partridge|
|87 | African grey, African gray, Psittacus erithacus|
|88 | macaw|
|89 | sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita|
|90 | lorikeet|
|91 | coucal|
|92 | bee eater|
|93 | hornbill|
|94 | hummingbird|
|95 | jacamar|
|96 | toucan|
|97 | drake|
|98 | red-breasted merganser, Mergus serrator|
|99 | goose|
|100 | black swan, Cygnus atratus|
|101 | tusker|
|102 | echidna, spiny anteater, anteater|
|103 | platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus|
|104 | wallaby, brush kangaroo|
|105 | koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus|
|106 | wombat|
|107 | jellyfish|
|108 | sea anemone, anemone|
|109 | brain coral|
|110 | flatworm, platyhelminth|
|111 | nematode, nematode worm, roundworm|
|112 | conch|
|113 | snail|
|114 | slug|
|115 | sea slug, nudibranch|
|116 | chiton, coat-of-mail shell, sea cradle, polyplacophore|
|117 | chambered nautilus, pearly nautilus, nautilus|
|118 | Dungeness crab, Cancer magister|
|119 | rock crab, Cancer irroratus|
|120 | fiddler crab|
|121 | king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica|
|122 | American lobster, Northern lobster, Maine lobster, Homarus americanus|
|123 | spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish|
|124 | crayfish, crawfish, crawdad, crawdaddy|
|125 | hermit crab|
|126 | isopod|
|127 | white stork, Ciconia ciconia|
|128 | black stork, Ciconia nigra|
|129 | spoonbill|
|130 | flamingo|
|131 | little blue heron, Egretta caerulea|
|132 | American egret, great white heron, Egretta albus|
|133 | bittern|
|134 | crane|
|135 | limpkin, Aramus pictus|
|136 | European gallinule, Porphyrio porphyrio|
|137 | American coot, marsh hen, mud hen, water hen, Fulica americana|
|138 | bustard|
|139 | ruddy turnstone, Arenaria interpres|
|140 | red-backed sandpiper, dunlin, Erolia alpina|
|141 | redshank, Tringa totanus|
|142 | dowitcher|
|143 | oystercatcher, oyster catcher|
|144 | pelican|
|145 | king penguin, Aptenodytes patagonica|
|146 | albatross, mollymawk|
|147 | grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus|
|148 | killer whale, killer, orca, grampus, sea wolf, Orcinus orca|
|149 | dugong, Dugong dugon|
|150 | sea lion|
|151 | Chihuahua|
|152 | Japanese spaniel|
|153 | Maltese dog, Maltese terrier, Maltese|
|154 | Pekinese, Pekingese, Peke|
|155 | Shih-Tzu|
|156 | Blenheim spaniel|
|157 | papillon|
|158 | toy terrier|
|159 | Rhodesian ridgeback|
|160 | Afghan hound, Afghan|
|161 | basset, basset hound|
|162 | beagle|
|163 | bloodhound, sleuthhound|
|164 | bluetick|
|165 | black-and-tan coonhound|
|166 | Walker hound, Walker foxhound|
|167 | English foxhound|
|168 | redbone|
|169 | borzoi, Russian wolfhound|
|170 | Irish wolfhound|
|171 | Italian greyhound|
|172 | whippet|
|173 | Ibizan hound, Ibizan Podenco|
|174 | Norwegian elkhound, elkhound|
|175 | otterhound, otter hound|
|176 | Saluki, gazelle hound|
|177 | Scottish deerhound, deerhound|
|178 | Weimaraner|
|179 | Staffordshire bullterrier, Staffordshire bull terrier|
|180 | American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier|
|181 | Bedlington terrier|
|182 | Border terrier|
|183 | Kerry blue terrier|
|184 | Irish terrier|
|185 | Norfolk terrier|
|186 | Norwich terrier|
|187 | Yorkshire terrier|
|188 | wire-haired fox terrier|
|189 | Lakeland terrier|
|190 | Sealyham terrier, Sealyham|
|191 | Airedale, Airedale terrier|
|192 | cairn, cairn terrier|
|193 | Australian terrier|
|194 | Dandie Dinmont, Dandie Dinmont terrier|
|195 | Boston bull, Boston terrier|
|196 | miniature schnauzer|
|197 | giant schnauzer|
|198 | standard schnauzer|
|199 | Scotch terrier, Scottish terrier, Scottie|
|200 | Tibetan terrier, chrysanthemum dog|
|201 | silky terrier, Sydney silky|
|202 | soft-coated wheaten terrier|
|203 | West Highland white terrier|
|204 | Lhasa, Lhasa apso|
|205 | flat-coated retriever|
|206 | curly-coated retriever|
|207 | golden retriever|
|208 | Labrador retriever|
|209 | Chesapeake Bay retriever|
|210 | German short-haired pointer|
|211 | vizsla, Hungarian pointer|
|212 | English setter|
|213 | Irish setter, red setter|
|214 | Gordon setter|
|215 | Brittany spaniel|
|216 | clumber, clumber spaniel|
|217 | English springer, English springer spaniel|
|218 | Welsh springer spaniel|
|219 | cocker spaniel, English cocker spaniel, cocker|
|220 | Sussex spaniel|
|221 | Irish water spaniel|
|222 | kuvasz|
|223 | schipperke|
|224 | groenendael|
|225 | malinois|
|226 | briard|
|227 | kelpie|
|228 | komondor|
|229 | Old English sheepdog, bobtail|
|230 | Shetland sheepdog, Shetland sheep dog, Shetland|
|231 | collie|
|232 | Border collie|
|233 | Bouvier des Flandres, Bouviers des Flandres|
|234 | Rottweiler|
|235 | German shepherd, German shepherd dog, German police dog, alsatian|
|236 | Doberman, Doberman pinscher|
|237 | miniature pinscher|
|238 | Greater Swiss Mountain dog|
|239 | Bernese mountain dog|
|240 | Appenzeller|
|241 | EntleBucher|
|242 | boxer|
|243 | bull mastiff|
|244 | Tibetan mastiff|
|245 | French bulldog|
|246 | Great Dane|
|247 | Saint Bernard, St Bernard|
|248 | Eskimo dog, husky|
|249 | malamute, malemute, Alaskan malamute|
|250 | Siberian husky|
|251 | dalmatian, coach dog, carriage dog|
|252 | affenpinscher, monkey pinscher, monkey dog|
|253 | basenji|
|254 | pug, pug-dog|
|255 | Leonberg|
|256 | Newfoundland, Newfoundland dog|
|257 | Great Pyrenees|
|258 | Samoyed, Samoyede|
|259 | Pomeranian|
|260 | chow, chow chow|
|261 | keeshond|
|262 | Brabancon griffon|
|263 | Pembroke, Pembroke Welsh corgi|
|264 | Cardigan, Cardigan Welsh corgi|
|265 | toy poodle|
|266 | miniature poodle|
|267 | standard poodle|
|268 | Mexican hairless|
|269 | timber wolf, grey wolf, gray wolf, Canis lupus|
|270 | white wolf, Arctic wolf, Canis lupus tundrarum|
|271 | red wolf, maned wolf, Canis rufus, Canis niger|
|272 | coyote, prairie wolf, brush wolf, Canis latrans|
|273 | dingo, warrigal, warragal, Canis dingo|
|274 | dhole, Cuon alpinus|
|275 | African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus|
|276 | hyena, hyaena|
|277 | red fox, Vulpes vulpes|
|278 | kit fox, Vulpes macrotis|
|279 | Arctic fox, white fox, Alopex lagopus|
|280 | grey fox, gray fox, Urocyon cinereoargenteus|
|281 | tabby, tabby cat|
|282 | tiger cat|
|283 | Persian cat|
|284 | Siamese cat, Siamese|
|285 | Egyptian cat|
|286 | cougar, puma, catamount, mountain lion, painter, panther, Felis concolor|
|287 | lynx, catamount|
|288 | leopard, Panthera pardus|
|289 | snow leopard, ounce, Panthera uncia|
|290 | jaguar, panther, Panthera onca, Felis onca|
|291 | lion, king of beasts, Panthera leo|
|292 | tiger, Panthera tigris|
|293 | cheetah, chetah, Acinonyx jubatus|
|294 | brown bear, bruin, Ursus arctos|
|295 | American black bear, black bear, Ursus americanus, Euarctos americanus|
|296 | ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus|
|297 | sloth bear, Melursus ursinus, Ursus ursinus|
|298 | mongoose|
|299 | meerkat, mierkat|
|300 | tiger beetle|
|301 | ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle|
|302 | ground beetle, carabid beetle|
|303 | long-horned beetle, longicorn, longicorn beetle|
|304 | leaf beetle, chrysomelid|
|305 | dung beetle|
|306 | rhinoceros beetle|
|307 | weevil|
|308 | fly|
|309 | bee|
|310 | ant, emmet, pismire|
|311 | grasshopper, hopper|
|312 | cricket|
|313 | walking stick, walkingstick, stick insect|
|314 | cockroach, roach|
|315 | mantis, mantid|
|316 | cicada, cicala|
|317 | leafhopper|
|318 | lacewing, lacewing fly|
|319 | dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk|
|320 | damselfly|
|321 | admiral|
|322 | ringlet, ringlet butterfly|
|323 | monarch, monarch butterfly, milkweed butterfly, Danaus plexippus|
|324 | cabbage butterfly|
|325 | sulphur butterfly, sulfur butterfly|
|326 | lycaenid, lycaenid butterfly|
|327 | starfish, sea star|
|328 | sea urchin|
|329 | sea cucumber, holothurian|
|330 | wood rabbit, cottontail, cottontail rabbit|
|331 | hare|
|332 | Angora, Angora rabbit|
|333 | hamster|
|334 | porcupine, hedgehog|
|335 | fox squirrel, eastern fox squirrel, Sciurus niger|
|336 | marmot|
|337 | beaver|
|338 | guinea pig, Cavia cobaya|
|339 | sorrel|
|340 | zebra|
|341 | hog, pig, grunter, squealer, Sus scrofa|
|342 | wild boar, boar, Sus scrofa|
|343 | warthog|
|344 | hippopotamus, hippo, river horse, Hippopotamus amphibius|
|345 | ox|
|346 | water buffalo, water ox, Asiatic buffalo, Bubalus bubalis|
|347 | bison|
|348 | ram, tup|
|349 | bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis|
|350 | ibex, Capra ibex|
|351 | hartebeest|
|352 | impala, Aepyceros melampus|
|353 | gazelle|
|354 | Arabian camel, dromedary, Camelus dromedarius|
|355 | llama|
|356 | weasel|
|357 | mink|
|358 | polecat, fitch, foulmart, foumart, Mustela putorius|
|359 | black-footed ferret, ferret, Mustela nigripes|
|360 | otter|
|361 | skunk, polecat, wood pussy|
|362 | badger|
|363 | armadillo|
|364 | three-toed sloth, ai, Bradypus tridactylus|
|365 | orangutan, orang, orangutang, Pongo pygmaeus|
|366 | gorilla, Gorilla gorilla|
|367 | chimpanzee, chimp, Pan troglodytes|
|368 | gibbon, Hylobates lar|
|369 | siamang, Hylobates syndactylus, Symphalangus syndactylus|
|370 | guenon, guenon monkey|
|371 | patas, hussar monkey, Erythrocebus patas|
|372 | baboon|
|373 | macaque|
|374 | langur|
|375 | colobus, colobus monkey|
|376 | proboscis monkey, Nasalis larvatus|
|377 | marmoset|
|378 | capuchin, ringtail, Cebus capucinus|
|379 | howler monkey, howler|
|380 | titi, titi monkey|
|381 | spider monkey, Ateles geoffroyi|
|382 | squirrel monkey, Saimiri sciureus|
|383 | Madagascar cat, ring-tailed lemur, Lemur catta|
|384 | indri, indris, Indri indri, Indri brevicaudatus|
|385 | Indian elephant, Elephas maximus|
|386 | African elephant, Loxodonta africana|
|387 | lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens|
|388 | giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca|
|389 | barracouta, snoek|
|390 | eel|
|391 | coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch|
|392 | rock beauty, Holocanthus tricolor|
|393 | anemone fish|
|394 | sturgeon|
|395 | gar, garfish, garpike, billfish, Lepisosteus osseus|
|396 | lionfish|
|397 | puffer, pufferfish, blowfish, globefish|
|398 | abacus|
|399 | abaya|
|400 | academic gown, academic robe, judge's robe|
|401 | accordion, piano accordion, squeeze box|
|402 | acoustic guitar|
|403 | aircraft carrier, carrier, flattop, attack aircraft carrier|
|404 | airliner|
|405 | airship, dirigible|
|406 | altar|
|407 | ambulance|
|408 | amphibian, amphibious vehicle|
|409 | analog clock|
|410 | apiary, bee house|
|411 | apron|
|412 | ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin|
|413 | assault rifle, assault gun|
|414 | backpack, back pack, knapsack, packsack, rucksack, haversack|
|415 | bakery, bakeshop, bakehouse|
|416 | balance beam, beam|
|417 | balloon|
|418 | ballpoint, ballpoint pen, ballpen, Biro|
|419 | Band Aid|
|420 | banjo|
|421 | bannister, banister, balustrade, balusters, handrail|
|422 | barbell|
|423 | barber chair|
|424 | barbershop|
|425 | barn|
|426 | barometer|
|427 | barrel, cask|
|428 | barrow, garden cart, lawn cart, wheelbarrow|
|429 | baseball|
|430 | basketball|
|431 | bassinet|
|432 | bassoon|
|433 | bathing cap, swimming cap|
|434 | bath towel|
|435 | bathtub, bathing tub, bath, tub|
|436 | beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon|
|437 | beacon, lighthouse, beacon light, pharos|
|438 | beaker|
|439 | bearskin, busby, shako|
|440 | beer bottle|
|441 | beer glass|
|442 | bell cote, bell cot|
|443 | bib|
|444 | bicycle-built-for-two, tandem bicycle, tandem|
|445 | bikini, two-piece|
|446 | binder, ring-binder|
|447 | binoculars, field glasses, opera glasses|
|448 | birdhouse|
|449 | boathouse|
|450 | bobsled, bobsleigh, bob|
|451 | bolo tie, bolo, bola tie, bola|
|452 | bonnet, poke bonnet|
|453 | bookcase|
|454 | bookshop, bookstore, bookstall|
|455 | bottlecap|
|456 | bow|
|457 | bow tie, bow-tie, bowtie|
|458 | brass, memorial tablet, plaque|
|459 | brassiere, bra, bandeau|
|460 | breakwater, groin, groyne, mole, bulwark, seawall, jetty|
|461 | breastplate, aegis, egis|
|462 | broom|
|463 | bucket, pail|
|464 | buckle|
|465 | bulletproof vest|
|466 | bullet train, bullet|
|467 | butcher shop, meat market|
|468 | cab, hack, taxi, taxicab|
|469 | caldron, cauldron|
|470 | candle, taper, wax light|
|471 | cannon|
|472 | canoe|
|473 | can opener, tin opener|
|474 | cardigan|
|475 | car mirror|
|476 | carousel, carrousel, merry-go-round, roundabout, whirligig|
|477 | carpenter's kit, tool kit|
|478 | carton|
|479 | car wheel|
|480 | cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM|
|481 | cassette|
|482 | cassette player|
|483 | castle|
|484 | catamaran|
|485 | CD player|
|486 | cello, violoncello|
|487 | cellular telephone, cellular phone, cellphone, cell, mobile phone|
|488 | chain|
|489 | chainlink fence|
|490 | chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour|
|491 | chain saw, chainsaw|
|492 | chest|
|493 | chiffonier, commode|
|494 | chime, bell, gong|
|495 | china cabinet, china closet|
|496 | Christmas stocking|
|497 | church, church building|
|498 | cinema, movie theater, movie theatre, movie house, picture palace|
|499 | cleaver, meat cleaver, chopper|
|500 | cliff dwelling|
|501 | cloak|
|502 | clog, geta, patten, sabot|
|503 | cocktail shaker|
|504 | coffee mug|
|505 | coffeepot|
|506 | coil, spiral, volute, whorl, helix|
|507 | combination lock|
|508 | computer keyboard, keypad|
|509 | confectionery, confectionary, candy store|
|510 | container ship, containership, container vessel|
|511 | convertible|
|512 | corkscrew, bottle screw|
|513 | cornet, horn, trumpet, trump|
|514 | cowboy boot|
|515 | cowboy hat, ten-gallon hat|
|516 | cradle|
|517 | crane_1|
|518 | crash helmet|
|519 | crate|
|520 | crib, cot|
|521 | Crock Pot|
|522 | croquet ball|
|523 | crutch|
|524 | cuirass|
|525 | dam, dike, dyke|
|526 | desk|
|527 | desktop computer|
|528 | dial telephone, dial phone|
|529 | diaper, nappy, napkin|
|530 | digital clock|
|531 | digital watch|
|532 | dining table, board|
|533 | dishrag, dishcloth|
|534 | dishwasher, dish washer, dishwashing machine|
|535 | disk brake, disc brake|
|536 | dock, dockage, docking facility|
|537 | dogsled, dog sled, dog sleigh|
|538 | dome|
|539 | doormat, welcome mat|
|540 | drilling platform, offshore rig|
|541 | drum, membranophone, tympan|
|542 | drumstick|
|543 | dumbbell|
|544 | Dutch oven|
|545 | electric fan, blower|
|546 | electric guitar|
|547 | electric locomotive|
|548 | entertainment center|
|549 | envelope|
|550 | espresso maker|
|551 | face powder|
|552 | feather boa, boa|
|553 | file, file cabinet, filing cabinet|
|554 | fireboat|
|555 | fire engine, fire truck|
|556 | fire screen, fireguard|
|557 | flagpole, flagstaff|
|558 | flute, transverse flute|
|559 | folding chair|
|560 | football helmet|
|561 | forklift|
|562 | fountain|
|563 | fountain pen|
|564 | four-poster|
|565 | freight car|
|566 | French horn, horn|
|567 | frying pan, frypan, skillet|
|568 | fur coat|
|569 | garbage truck, dustcart|
|570 | gasmask, respirator, gas helmet|
|571 | gas pump, gasoline pump, petrol pump, island dispenser|
|572 | goblet|
|573 | go-kart|
|574 | golf ball|
|575 | golfcart, golf cart|
|576 | gondola|
|577 | gong, tam-tam|
|578 | gown|
|579 | grand piano, grand|
|580 | greenhouse, nursery, glasshouse|
|581 | grille, radiator grille|
|582 | grocery store, grocery, food market, market|
|583 | guillotine|
|584 | hair slide|
|585 | hair spray|
|586 | half track|
|587 | hammer|
|588 | hamper|
|589 | hand blower, blow dryer, blow drier, hair dryer, hair drier|
|590 | hand-held computer, hand-held microcomputer|
|591 | handkerchief, hankie, hanky, hankey|
|592 | hard disc, hard disk, fixed disk|
|593 | harmonica, mouth organ, harp, mouth harp|
|594 | harp|
|595 | harvester, reaper|
|596 | hatchet|
|597 | holster|
|598 | home theater, home theatre|
|599 | honeycomb|
|600 | hook, claw|
|601 | hoopskirt, crinoline|
|602 | horizontal bar, high bar|
|603 | horse cart, horse-cart|
|604 | hourglass|
|605 | iPod|
|606 | iron, smoothing iron|
|607 | jack-o'-lantern|
|608 | jean, blue jean, denim|
|609 | jeep, landrover|
|610 | jersey, T-shirt, tee shirt|
|611 | jigsaw puzzle|
|612 | jinrikisha, ricksha, rickshaw|
|613 | joystick|
|614 | kimono|
|615 | knee pad|
|616 | knot|
|617 | lab coat, laboratory coat|
|618 | ladle|
|619 | lampshade, lamp shade|
|620 | laptop, laptop computer|
|621 | lawn mower, mower|
|622 | lens cap, lens cover|
|623 | letter opener, paper knife, paperknife|
|624 | library|
|625 | lifeboat|
|626 | lighter, light, igniter, ignitor|
|627 | limousine, limo|
|628 | liner, ocean liner|
|629 | lipstick, lip rouge|
|630 | Loafer|
|631 | lotion|
|632 | loudspeaker, speaker, speaker unit, loudspeaker system, speaker system|
|633 | loupe, jeweler's loupe|
|634 | lumbermill, sawmill|
|635 | magnetic compass|
|636 | mailbag, postbag|
|637 | mailbox, letter box|
|638 | maillot|
|639 | maillot, tank suit|
|640 | manhole cover|
|641 | maraca|
|642 | marimba, xylophone|
|643 | mask|
|644 | matchstick|
|645 | maypole|
|646 | maze, labyrinth|
|647 | measuring cup|
|648 | medicine chest, medicine cabinet|
|649 | megalith, megalithic structure|
|650 | microphone, mike|
|651 | microwave, microwave oven|
|652 | military uniform|
|653 | milk can|
|654 | minibus|
|655 | miniskirt, mini|
|656 | minivan|
|657 | missile|
|658 | mitten|
|659 | mixing bowl|
|660 | mobile home, manufactured home|
|661 | Model T|
|662 | modem|
|663 | monastery|
|664 | monitor|
|665 | moped|
|666 | mortar|
|667 | mortarboard|
|668 | mosque|
|669 | mosquito net|
|670 | motor scooter, scooter|
|671 | mountain bike, all-terrain bike, off-roader|
|672 | mountain tent|
|673 | mouse, computer mouse|
|674 | mousetrap|
|675 | moving van|
|676 | muzzle|
|677 | nail|
|678 | neck brace|
|679 | necklace|
|680 | nipple|
|681 | notebook, notebook computer|
|682 | obelisk|
|683 | oboe, hautboy, hautbois|
|684 | ocarina, sweet potato|
|685 | odometer, hodometer, mileometer, milometer|
|686 | oil filter|
|687 | organ, pipe organ|
|688 | oscilloscope, scope, cathode-ray oscilloscope, CRO|
|689 | overskirt|
|690 | oxcart|
|691 | oxygen mask|
|692 | packet|
|693 | paddle, boat paddle|
|694 | paddlewheel, paddle wheel|
|695 | padlock|
|696 | paintbrush|
|697 | pajama, pyjama, pj's, jammies|
|698 | palace|
|699 | panpipe, pandean pipe, syrinx|
|700 | paper towel|
|701 | parachute, chute|
|702 | parallel bars, bars|
|703 | park bench|
|704 | parking meter|
|705 | passenger car, coach, carriage|
|706 | patio, terrace|
|707 | pay-phone, pay-station|
|708 | pedestal, plinth, footstall|
|709 | pencil box, pencil case|
|710 | pencil sharpener|
|711 | perfume, essence|
|712 | Petri dish|
|713 | photocopier|
|714 | pick, plectrum, plectron|
|715 | pickelhaube|
|716 | picket fence, paling|
|717 | pickup, pickup truck|
|718 | pier|
|719 | piggy bank, penny bank|
|720 | pill bottle|
|721 | pillow|
|722 | ping-pong ball|
|723 | pinwheel|
|724 | pirate, pirate ship|
|725 | pitcher, ewer|
|726 | plane, carpenter's plane, woodworking plane|
|727 | planetarium|
|728 | plastic bag|
|729 | plate rack|
|730 | plow, plough|
|731 | plunger, plumber's helper|
|732 | Polaroid camera, Polaroid Land camera|
|733 | pole|
|734 | police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria|
|735 | poncho|
|736 | pool table, billiard table, snooker table|
|737 | pop bottle, soda bottle|
|738 | pot, flowerpot|
|739 | potter's wheel|
|740 | power drill|
|741 | prayer rug, prayer mat|
|742 | printer|
|743 | prison, prison house|
|744 | projectile, missile|
|745 | projector|
|746 | puck, hockey puck|
|747 | punching bag, punch bag, punching ball, punchball|
|748 | purse|
|749 | quill, quill pen|
|750 | quilt, comforter, comfort, puff|
|751 | racer, race car, racing car|
|752 | racket, racquet|
|753 | radiator|
|754 | radio, wireless|
|755 | radio telescope, radio reflector|
|756 | rain barrel|
|757 | recreational vehicle, RV, R.V.|
|758 | reel|
|759 | reflex camera|
|760 | refrigerator, icebox|
|761 | remote control, remote|
|762 | restaurant, eating house, eating place, eatery|
|763 | revolver, six-gun, six-shooter|
|764 | rifle|
|765 | rocking chair, rocker|
|766 | rotisserie|
|767 | rubber eraser, rubber, pencil eraser|
|768 | rugby ball|
|769 | rule, ruler|
|770 | running shoe|
|771 | safe|
|772 | safety pin|
|773 | saltshaker, salt shaker|
|774 | sandal|
|775 | sarong|
|776 | sax, saxophone|
|777 | scabbard|
|778 | scale, weighing machine|
|779 | school bus|
|780 | schooner|
|781 | scoreboard|
|782 | screen, CRT screen|
|783 | screw|
|784 | screwdriver|
|785 | seat belt, seatbelt|
|786 | sewing machine|
|787 | shield, buckler|
|788 | shoe shop, shoe-shop, shoe store|
|789 | shoji|
|790 | shopping basket|
|791 | shopping cart|
|792 | shovel|
|793 | shower cap|
|794 | shower curtain|
|795 | ski|
|796 | ski mask|
|797 | sleeping bag|
|798 | slide rule, slipstick|
|799 | sliding door|
|800 | slot, one-armed bandit|
|801 | snorkel|
|802 | snowmobile|
|803 | snowplow, snowplough|
|804 | soap dispenser|
|805 | soccer ball|
|806 | sock|
|807 | solar dish, solar collector, solar furnace|
|808 | sombrero|
|809 | soup bowl|
|810 | space bar|
|811 | space heater|
|812 | space shuttle|
|813 | spatula|
|814 | speedboat|
|815 | spider web, spider's web|
|816 | spindle|
|817 | sports car, sport car|
|818 | spotlight, spot|
|819 | stage|
|820 | steam locomotive|
|821 | steel arch bridge|
|822 | steel drum|
|823 | stethoscope|
|824 | stole|
|825 | stone wall|
|826 | stopwatch, stop watch|
|827 | stove|
|828 | strainer|
|829 | streetcar, tram, tramcar, trolley, trolley car|
|830 | stretcher|
|831 | studio couch, day bed|
|832 | stupa, tope|
|833 | submarine, pigboat, sub, U-boat|
|834 | suit, suit of clothes|
|835 | sundial|
|836 | sunglass|
|837 | sunglasses, dark glasses, shades|
|838 | sunscreen, sunblock, sun blocker|
|839 | suspension bridge|
|840 | swab, swob, mop|
|841 | sweatshirt|
|842 | swimming trunks, bathing trunks|
|843 | swing|
|844 | switch, electric switch, electrical switch|
|845 | syringe|
|846 | table lamp|
|847 | tank, army tank, armored combat vehicle, armoured combat vehicle|
|848 | tape player|
|849 | teapot|
|850 | teddy, teddy bear|
|851 | television, television system|
|852 | tennis ball|
|853 | thatch, thatched roof|
|854 | theater curtain, theatre curtain|
|855 | thimble|
|856 | thresher, thrasher, threshing machine|
|857 | throne|
|858 | tile roof|
|859 | toaster|
|860 | tobacco shop, tobacconist shop, tobacconist|
|861 | toilet seat|
|862 | torch|
|863 | totem pole|
|864 | tow truck, tow car, wrecker|
|865 | toyshop|
|866 | tractor|
|867 | trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi|
|868 | tray|
|869 | trench coat|
|870 | tricycle, trike, velocipede|
|871 | trimaran|
|872 | tripod|
|873 | triumphal arch|
|874 | trolleybus, trolley coach, trackless trolley|
|875 | trombone|
|876 | tub, vat|
|877 | turnstile|
|878 | typewriter keyboard|
|879 | umbrella|
|880 | unicycle, monocycle|
|881 | upright, upright piano|
|882 | vacuum, vacuum cleaner|
|883 | vase|
|884 | vault|
|885 | velvet|
|886 | vending machine|
|887 | vestment|
|888 | viaduct|
|889 | violin, fiddle|
|890 | volleyball|
|891 | waffle iron|
|892 | wall clock|
|893 | wallet, billfold, notecase, pocketbook|
|894 | wardrobe, closet, press|
|895 | warplane, military plane|
|896 | washbasin, handbasin, washbowl, lavabo, wash-hand basin|
|897 | washer, automatic washer, washing machine|
|898 | water bottle|
|899 | water jug|
|900 | water tower|
|901 | whiskey jug|
|902 | whistle|
|903 | wig|
|904 | window screen|
|905 | window shade|
|906 | Windsor tie|
|907 | wine bottle|
|908 | wing|
|909 | wok|
|910 | wooden spoon|
|911 | wool, woolen, woollen|
|912 | worm fence, snake fence, snake-rail fence, Virginia fence|
|913 | wreck|
|914 | yawl|
|915 | yurt|
|916 | web site, website, internet site, site|
|917 | comic book|
|918 | crossword puzzle, crossword|
|919 | street sign|
|920 | traffic light, traffic signal, stoplight|
|921 | book jacket, dust cover, dust jacket, dust wrapper|
|922 | menu|
|923 | plate|
|924 | guacamole|
|925 | consomme|
|926 | hot pot, hotpot|
|927 | trifle|
|928 | ice cream, icecream|
|929 | ice lolly, lolly, lollipop, popsicle|
|930 | French loaf|
|931 | bagel, beigel|
|932 | pretzel|
|933 | cheeseburger|
|934 | hotdog, hot dog, red hot|
|935 | mashed potato|
|936 | head cabbage|
|937 | broccoli|
|938 | cauliflower|
|939 | zucchini, courgette|
|940 | spaghetti squash|
|941 | acorn squash|
|942 | butternut squash|
|943 | cucumber, cuke|
|944 | artichoke, globe artichoke|
|945 | bell pepper|
|946 | cardoon|
|947 | mushroom|
|948 | Granny Smith|
|949 | strawberry|
|950 | orange|
|951 | lemon|
|952 | fig|
|953 | pineapple, ananas|
|954 | banana|
|955 | jackfruit, jak, jack|
|956 | custard apple|
|957 | pomegranate|
|958 | hay|
|959 | carbonara|
|960 | chocolate sauce, chocolate syrup|
|961 | dough|
|962 | meat loaf, meatloaf|
|963 | pizza, pizza pie|
|964 | potpie|
|965 | burrito|
|966 | red wine|
|967 | espresso|
|968 | cup|
|969 | eggnog|
|970 | alp|
|971 | bubble|
|972 | cliff, drop, drop-off|
|973 | coral reef|
|974 | geyser|
|975 | lakeside, lakeshore|
|976 | promontory, headland, head, foreland|
|977 | sandbar, sand bar|
|978 | seashore, coast, seacoast, sea-coast|
|979 | valley, vale|
|980 | volcano|
|981 | ballplayer, baseball player|
|982 | groom, bridegroom|
|983 | scuba diver|
|984 | rapeseed|
|985 | daisy|
|986 | yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum|
|987 | corn|
|988 | acorn|
|989 | hip, rose hip, rosehip|
|990 | buckeye, horse chestnut, conker|
|991 | coral fungus|
|992 | agaric|
|993 | gyromitra|
|994 | stinkhorn, carrion fungus|
|995 | earthstar|
|996 | hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa|
|997 | bolete|
|998 | ear, spike, capitulum|
|999 | toilet tissue, toilet paper, bathroom tissue|
</details>
### Data Splits
| |train|
|-------------|----:|
|# of examples|50000|
## Dataset Creation
### Curation Rationale
From the paper:
> Inspired by the Sketch data of (Li et al., 2017a) with seven classes, and several other Sketch datasets,
such as the Sketchy dataset (Sangkloy et al., 2016) with 125 classes and the Quick Draw! dataset
(QuickDraw, 2018) with 345 classes, and motivated by absence of a large-scale sketch dataset fitting
the shape and size of popular image classification benchmarks, we construct the ImageNet-Sketch
data set for evaluating the out-of-domain classification performance of vision models trained on
ImageNet.
### Source Data
#### Initial Data Collection and Normalization
The initial data collection and normalization is inherited from ImageNet. More information on it can be found [here](https://huggingface.co/datasets/imagenet-1k#initial-data-collection-and-normalization).
Additional preprocessing from the paper:
> We construct the data set with Google Image queries “sketch of ”, where is the
standard class name. We only search within the “black and white” color scheme. We initially query
100 images for every class, and then manually clean the pulled images by deleting the irrelevant
images and images that are for similar but different classes. For some classes, there are less than 50
images after manually cleaning, and then we augment the data set by flipping and rotating the images.
#### Who are the source language producers?
The source language is inherited from ImageNet. More information on the source language produces can be found [here](https://huggingface.co/datasets/imagenet-1k#who-are-the-source-language-producers).
### Annotations
#### Annotation process
The annotations are inherited from ImageNet. More information about the process can be found [here](https://huggingface.co/datasets/imagenet-1k#annotation-process).
#### Who are the annotators?
The same as in [ImageNet](https://huggingface.co/datasets/imagenet-1k#who-are-the-annotators).
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
The biases are inherited from ImageNet. More information about the process can be found [here](https://huggingface.co/datasets/imagenet-1k#discussion-of-biases).
### Other Known Limitations
1. Since most of the images were collected from internet, keep in mind that some images in ImageNet-Sketch might be subject to copyrights.
## Additional Information
### Dataset Curators
Authors of [Learning Robust Global Representations by Penalizing Local Predictive Power](https://arxiv.org/abs/1905.13549v2):
- Haohan Wang
- Songwei Ge
- Eric P. Xing
- Zachary C. Lipton
The dataset was curated using the scripts found in the [GitHub repository](https://github.com/HaohanWang/ImageNet-Sketch).
### Licensing Information
[More Information Needed]
### Citation Information
```bibtex
@inproceedings{wang2019learning,
title={Learning Robust Global Representations by Penalizing Local Predictive Power},
author={Wang, Haohan and Ge, Songwei and Lipton, Zachary and Xing, Eric P},
booktitle={Advances in Neural Information Processing Systems},
pages={10506--10518},
year={2019}
}
```
### Contributions
Thanks to [@nateraw](https://github.com/nateraw) for adding this dataset. |