File size: 3,267 Bytes
d7e9ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378c3f9
d7e9ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378c3f9
d7e9ec5
 
378c3f9
 
d7e9ec5
 
 
378c3f9
d7e9ec5
 
 
 
378c3f9
d7e9ec5
 
 
 
 
 
378c3f9
d7e9ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Improving Product Search dataset ."""

import json

import datasets

_CITATION = """
@misc{reddy2022shopping,
      title={Shopping Queries Dataset: A Large-Scale {ESCI} Benchmark for Improving Product Search},
      author={Chandan K. Reddy and Lluís Màrquez and Fran Valero and Nikhil Rao and Hugo Zaragoza and Sambaran Bandyopadhyay 
and Arnab Biswas and Anlu Xing and Karthik Subbian},
      year={2022},
      eprint={2206.06588},
      archivePrefix={arXiv}
}
"""

_DESCRIPTION = "dataset load script for Improve Product Search Dataset"

_DATASET_URLS = {
    'train': 
"https://huggingface.co/datasets/spacemanidol/ESCI-product-dataset-corpus-jp/resolve/main/collection.jsonl.gz"
}


class ProductSearchCorpus(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(version=VERSION,
                               description="Product Search Dataset 100-word splits"),
    ]
    def _info(self):
        features = datasets.Features(
            {'docid': datasets.Value('string'), 'text': datasets.Value('string'),
             'title': datasets.Value('string'), 'bullet_points': datasets.Value('string'),
             'brand': datasets.Value('string'), 'color': datasets.Value('string'),
             'locale': datasets.Value('string'), 'contents': datasets.value('string')
},
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="",
            # License for the dataset if available
            license="",
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_DATASET_URLS)
        splits = [
            datasets.SplitGenerator(
                name="train",
                gen_kwargs={
                    "filepath": downloaded_files["train"],
                },
            ),
        ]
        return splits

    def _generate_examples(self, filepath):
        """Yields examples."""
        with open(filepath, encoding="utf-8") as f:
            for line in f:
                data = json.loads(line)
                yield data['docid'], data