File size: 3,267 Bytes
d7e9ec5 378c3f9 d7e9ec5 378c3f9 d7e9ec5 378c3f9 d7e9ec5 378c3f9 d7e9ec5 378c3f9 d7e9ec5 378c3f9 d7e9ec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Improving Product Search dataset ."""
import json
import datasets
_CITATION = """
@misc{reddy2022shopping,
title={Shopping Queries Dataset: A Large-Scale {ESCI} Benchmark for Improving Product Search},
author={Chandan K. Reddy and Lluís Màrquez and Fran Valero and Nikhil Rao and Hugo Zaragoza and Sambaran Bandyopadhyay
and Arnab Biswas and Anlu Xing and Karthik Subbian},
year={2022},
eprint={2206.06588},
archivePrefix={arXiv}
}
"""
_DESCRIPTION = "dataset load script for Improve Product Search Dataset"
_DATASET_URLS = {
'train':
"https://huggingface.co/datasets/spacemanidol/ESCI-product-dataset-corpus-jp/resolve/main/collection.jsonl.gz"
}
class ProductSearchCorpus(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(version=VERSION,
description="Product Search Dataset 100-word splits"),
]
def _info(self):
features = datasets.Features(
{'docid': datasets.Value('string'), 'text': datasets.Value('string'),
'title': datasets.Value('string'), 'bullet_points': datasets.Value('string'),
'brand': datasets.Value('string'), 'color': datasets.Value('string'),
'locale': datasets.Value('string'), 'contents': datasets.value('string')
},
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="",
# License for the dataset if available
license="",
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS)
splits = [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"filepath": downloaded_files["train"],
},
),
]
return splits
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
for line in f:
data = json.loads(line)
yield data['docid'], data
|