# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Improving Product Search dataset .""" import json import datasets _CITATION = """ @misc{reddy2022shopping, title={Shopping Queries Dataset: A Large-Scale {ESCI} Benchmark for Improving Product Search}, author={Chandan K. Reddy and Lluís Màrquez and Fran Valero and Nikhil Rao and Hugo Zaragoza and Sambaran Bandyopadhyay and Arnab Biswas and Anlu Xing and Karthik Subbian}, year={2022}, eprint={2206.06588}, archivePrefix={arXiv} } """ _DESCRIPTION = "dataset load script for Improve Product Search Dataset" _DATASET_URLS = { 'train': "https://huggingface.co/datasets/spacemanidol/ESCI-product-dataset-corpus-jp/resolve/main/collection.jsonl.gz" } class ProductSearchCorpus(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig(version=VERSION, description="Product Search Dataset 100-word splits"), ] def _info(self): features = datasets.Features( {'docid': datasets.Value('string'), 'text': datasets.Value('string'), 'title': datasets.Value('string'), 'bullet_points': datasets.Value('string'), 'brand': datasets.Value('string'), 'color': datasets.Value('string'), 'locale': datasets.Value('string'), 'contents': datasets.Value('string') } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage="", # License for the dataset if available license="", # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) splits = [ datasets.SplitGenerator( name="train", gen_kwargs={ "filepath": downloaded_files["train"], }, ), ] return splits def _generate_examples(self, filepath): """Yields examples.""" with open(filepath, encoding="utf-8") as f: for line in f: data = json.loads(line) if data.get('locale') is None: data['locale'] = "jp" if data.get('title') is None: data['title'] = '' if data.get('text') is None: data['text'] = '' if data.get('brand') is None: data['brand'] = '' if data.get('color') is None: data['color'] = '' if data.get('contents') is None: data['contents'] = '' if data.get('bullet_points') is None: data['bullet_points'] = '' yield data['docid'], data