File size: 2,935 Bytes
6fce6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5be61b
 
 
 
 
 
 
 
6fce6aa
 
 
0b904d3
6fce6aa
 
61c2b26
6fce6aa
 
 
fc5aae3
6fce6aa
 
 
 
240c82a
6fce6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf1504e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""ESCI-product-dataset dataset."""

import json
import datasets
_CITATION = """
@misc{reddy2022shopping,
      title={Shopping Queries Dataset: A Large-Scale {ESCI} Benchmark for Improving Product Search},
      author={Chandan K. Reddy and Lluís Màrquez and Fran Valero and Nikhil Rao and Hugo Zaragoza and Sambaran Bandyopadhyay and 
Arnab Biswas and Anlu Xing and Karthik Subbian},
      year={2022},
      eprint={2206.06588},
      archivePrefix={arXiv}
}
"""
_DESCRIPTION = "dataset load script for ESCI-product-dataset recall"
_DATASET_URLS = {
    'train': "https://huggingface.co/datasets/spacemanidol/ESCI-product-dataset/resolve/main/train.jsonl",
}

class ESCIproduct(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("0.0.1")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(version=VERSION,
                               description="ESCI Produce Search train/dev/test datasets"),
    ]

    def _info(self):
        features = datasets.Features({
            'query_id': datasets.Value('string'),
            'query': datasets.Value('string'),
        })
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=None,
            homepage="",
            license="",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        if self.config.data_files:
            downloaded_files = self.config.data_files
        else:
            downloaded_files = dl_manager.download_and_extract(_DATASET_URLS)
        splits = [
            datasets.SplitGenerator(
                name=split,
                gen_kwargs={
                    "files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split],
                },
            ) for split in downloaded_files
        ]
        return splits

    def _generate_examples(self, files):
        """Yields examples."""
        for filepath in files:
            with open(filepath, encoding="utf-8") as f:
                for line in f:
                    data = json.loads(line)
                    yield data['query_id'], data