File size: 2,935 Bytes
6fce6aa e5be61b 6fce6aa 0b904d3 6fce6aa 61c2b26 6fce6aa fc5aae3 6fce6aa 240c82a 6fce6aa cf1504e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""ESCI-product-dataset dataset."""
import json
import datasets
_CITATION = """
@misc{reddy2022shopping,
title={Shopping Queries Dataset: A Large-Scale {ESCI} Benchmark for Improving Product Search},
author={Chandan K. Reddy and Lluís Màrquez and Fran Valero and Nikhil Rao and Hugo Zaragoza and Sambaran Bandyopadhyay and
Arnab Biswas and Anlu Xing and Karthik Subbian},
year={2022},
eprint={2206.06588},
archivePrefix={arXiv}
}
"""
_DESCRIPTION = "dataset load script for ESCI-product-dataset recall"
_DATASET_URLS = {
'train': "https://huggingface.co/datasets/spacemanidol/ESCI-product-dataset/resolve/main/train.jsonl",
}
class ESCIproduct(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(version=VERSION,
description="ESCI Produce Search train/dev/test datasets"),
]
def _info(self):
features = datasets.Features({
'query_id': datasets.Value('string'),
'query': datasets.Value('string'),
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
homepage="",
license="",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.data_files:
downloaded_files = self.config.data_files
else:
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS)
splits = [
datasets.SplitGenerator(
name=split,
gen_kwargs={
"files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split],
},
) for split in downloaded_files
]
return splits
def _generate_examples(self, files):
"""Yields examples."""
for filepath in files:
with open(filepath, encoding="utf-8") as f:
for line in f:
data = json.loads(line)
yield data['query_id'], data
|