File size: 3,425 Bytes
071cbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# coding=utf-8
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""The Stories CC dataset."""

import datasets


_DESCRIPTION = """\
CC-Stories (or STORIES) is a dataset for common sense reasoning and language modeling. It was constructed by aggregating documents from the CommonCrawl dataset that has the most overlapping n-grams with the questions in commonsense reasoning tasks. The top 1.0% of highest ranked documents is chosen as the new training corpus.
"""

_CITATION = """\
@article{Trinh2018ASM,
  title={A Simple Method for Commonsense Reasoning},
  author={Trieu H. Trinh and Quoc V. Le},
  journal={ArXiv},
  year={2018},
  volume={abs/1806.02847}
}
"""


URL = "https://huggingface.co/datasets/spacemanidol/cc-stories/resolve/main/cc-stories.txt.gz"

_DATASET_URLS = {
    'all':  "https://huggingface.co/datasets/spacemanidol/cc-stories/resolve/main/cc-stories.txt.gz",
    'dev':  "https://huggingface.co/datasets/spacemanidol/cc-stories/resolve/main/cc-stories-dev.txt.gz",
    'test':  "https://huggingface.co/datasets/spacemanidol/cc-stories/resolve/main/cc-stories-test.txt.gz",
    'train':  "https://huggingface.co/datasets/spacemanidol/cc-stories/resolve/main/cc-stories-train.txt.gz"
}

class CCStoriesConfig(datasets.BuilderConfig):
    """BuilderConfig for CC Stories."""

    def __init__(self, **kwargs):
        """BuilderConfig for CC Stories
        Args:
        **kwargs: keyword arguments forwarded to super.
        """
        super(CCStoriesConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)


class Bookcorpus(datasets.GeneratorBasedBuilder):
    """CC Stories dataset."""

    BUILDER_CONFIGS = [
        CCStoriesConfig(
            name="plain_text",
            description="Plain text",
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage="",
            citation=_CITATION,
        )

    def _vocab_text_gen(self, archive):
        for _, ex in self._generate_examples(archive):
            yield ex["text"]
        
   def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_DATASET_URLS)
        splits = [
            datasets.SplitGenerator(
                name=split,
                gen_kwargs={
                    "files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split],
                },
            ) for split in downloaded_files
        ]
        return splits

    def _generate_examples(self, files):
        _id = 0
        for path, file in files:
            for line in file:
                yield _id, {"text": line.decode("utf-8").strip()}
                _id += 1