system HF staff commited on
Commit
1b63dab
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - expert-generated
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - unknown
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1K<n<10K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - structure-prediction
18
+ task_ids:
19
+ - named-entity-recognition
20
+ ---
21
+
22
+ # Dataset Card for [Dataset Name]
23
+
24
+ ## Table of Contents
25
+ - [Dataset Card for [Dataset Name]](#dataset-card-for-dataset-name)
26
+ - [Table of Contents](#table-of-contents)
27
+ - [Dataset Description](#dataset-description)
28
+ - [Dataset Summary](#dataset-summary)
29
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
30
+ - [Languages](#languages)
31
+ - [Dataset Structure](#dataset-structure)
32
+ - [Data Instances](#data-instances)
33
+ - [Data Fields](#data-fields)
34
+ - [Data Splits](#data-splits)
35
+ - [Dataset Creation](#dataset-creation)
36
+ - [Curation Rationale](#curation-rationale)
37
+ - [Source Data](#source-data)
38
+ - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
39
+ - [Who are the source language producers?](#who-are-the-source-language-producers)
40
+ - [Annotations](#annotations)
41
+ - [Annotation process](#annotation-process)
42
+ - [Who are the annotators?](#who-are-the-annotators)
43
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
44
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
45
+ - [Social Impact of Dataset](#social-impact-of-dataset)
46
+ - [Discussion of Biases](#discussion-of-biases)
47
+ - [Other Known Limitations](#other-known-limitations)
48
+ - [Additional Information](#additional-information)
49
+ - [Dataset Curators](#dataset-curators)
50
+ - [Licensing Information](#licensing-information)
51
+ - [Citation Information](#citation-information)
52
+
53
+ ## Dataset Description
54
+
55
+ - **Homepage:** [SPECIES](https://species.jensenlab.org/)
56
+ - **Repository:**
57
+ - **Paper:**
58
+ - **Leaderboard:**
59
+ - **Point of Contact:**
60
+
61
+ ### Dataset Summary
62
+
63
+ [More Information Needed]
64
+
65
+ ### Supported Tasks and Leaderboards
66
+
67
+ [More Information Needed]
68
+
69
+ ### Languages
70
+
71
+ [More Information Needed]
72
+
73
+ ## Dataset Structure
74
+
75
+ ### Data Instances
76
+
77
+ [More Information Needed]
78
+
79
+ ### Data Fields
80
+
81
+ - `id`: Sentence identifier.
82
+ - `tokens`: Array of tokens composing a sentence.
83
+ - `ner_tags`: Array of tags, where `0` indicates no species mentioned, `1` signals the first token of a species and `2` the subsequent tokens of the species.
84
+
85
+ ### Data Splits
86
+
87
+ [More Information Needed]
88
+
89
+ ## Dataset Creation
90
+
91
+ ### Curation Rationale
92
+
93
+ [More Information Needed]
94
+
95
+ ### Source Data
96
+
97
+ #### Initial Data Collection and Normalization
98
+
99
+ [More Information Needed]
100
+
101
+ #### Who are the source language producers?
102
+
103
+ [More Information Needed]
104
+
105
+ ### Annotations
106
+
107
+ #### Annotation process
108
+
109
+ [More Information Needed]
110
+
111
+ #### Who are the annotators?
112
+
113
+ [More Information Needed]
114
+
115
+ ### Personal and Sensitive Information
116
+
117
+ [More Information Needed]
118
+
119
+ ## Considerations for Using the Data
120
+
121
+ ### Social Impact of Dataset
122
+
123
+ [More Information Needed]
124
+
125
+ ### Discussion of Biases
126
+
127
+ [More Information Needed]
128
+
129
+ ### Other Known Limitations
130
+
131
+ [More Information Needed]
132
+
133
+ ## Additional Information
134
+
135
+ ### Dataset Curators
136
+
137
+ [More Information Needed]
138
+
139
+ ### Licensing Information
140
+
141
+ [More Information Needed]
142
+
143
+ ### Citation Information
144
+
145
+ [More Information Needed]
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"species_800": {"description": "We have developed an efficient algorithm and implementation of a dictionary-based approach to named entity recognition,\nwhich we here use to identifynames of species and other taxa in text. The tool, SPECIES, is more than an order of\nmagnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard\ncorpus and on a new corpus of 800 abstracts, which were manually annotated after the development of the tool. The corpus\ncomprises abstracts from journals selected to represent many taxonomic groups, which gives insights into which types of\norganism names are hard to detect and which are easy. Finally, we have tagged organism names in the entire Medline database\nand developed a web resource, ORGANISMS, that makes the results accessible to the broad community of biologists.\n", "citation": "@article{pafilis2013species,\n title={The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text},\n author={Pafilis, Evangelos and Frankild, Sune P and Fanini, Lucia and Faulwetter, Sarah and Pavloudi, Christina and Vasileiadou, Aikaterini and Arvanitidis, Christos and Jensen, Lars Juhl},\n journal={PloS one},\n volume={8},\n number={6},\n pages={e65390},\n year={2013},\n publisher={Public Library of Science}\n}\n", "homepage": "https://species.jensenlab.org/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner_tags": {"feature": {"num_classes": 3, "names": ["O", "B", "I"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "species800", "config_name": "species_800", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2579096, "num_examples": 5734, "dataset_name": "species800"}, "validation": {"name": "validation", "num_bytes": 385756, "num_examples": 831, "dataset_name": "species800"}, "test": {"name": "test", "num_bytes": 737760, "num_examples": 1631, "dataset_name": "species800"}}, "download_checksums": {"https://drive.google.com/u/0/uc?id=1OletxmPYNkz2ltOr9pyT0b0iBtUWxslh&export=download/": {"num_bytes": 18204624, "checksum": "30522c752fd90e6da05f117a52da13174b246e4980e46840e6e1737dc67e1d27"}}, "download_size": 18204624, "post_processing_size": null, "dataset_size": 3702612, "size_in_bytes": 21907236}}
dummy/species_800/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2cfa3049113949db8de49f4de3160195b23cb1671d6499d54b9d7bc6272c4c4
3
+ size 12082
species_800.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """The SPECIES and ORGANISMS Resources for Fast and Accurate Identification of Taxonomic Names in Text"""
18
+
19
+ import logging
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ _CITATION = """\
26
+ @article{pafilis2013species,
27
+ title={The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text},
28
+ author={Pafilis, Evangelos and Frankild, Sune P and Fanini, Lucia and Faulwetter, Sarah and Pavloudi, Christina and Vasileiadou, Aikaterini and Arvanitidis, Christos and Jensen, Lars Juhl},
29
+ journal={PloS one},
30
+ volume={8},
31
+ number={6},
32
+ pages={e65390},
33
+ year={2013},
34
+ publisher={Public Library of Science}
35
+ }
36
+ """
37
+
38
+ _DESCRIPTION = """\
39
+ We have developed an efficient algorithm and implementation of a dictionary-based approach to named entity recognition,
40
+ which we here use to identifynames of species and other taxa in text. The tool, SPECIES, is more than an order of
41
+ magnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard
42
+ corpus and on a new corpus of 800 abstracts, which were manually annotated after the development of the tool. The corpus
43
+ comprises abstracts from journals selected to represent many taxonomic groups, which gives insights into which types of
44
+ organism names are hard to detect and which are easy. Finally, we have tagged organism names in the entire Medline database
45
+ and developed a web resource, ORGANISMS, that makes the results accessible to the broad community of biologists.
46
+ """
47
+
48
+ _HOMEPAGE = "https://species.jensenlab.org/"
49
+ _URL = "https://drive.google.com/u/0/uc?id=1OletxmPYNkz2ltOr9pyT0b0iBtUWxslh&export=download/"
50
+ _BIOBERT_NER_DATASET_DIRECTORY = "s800"
51
+ _TRAINING_FILE = "train.tsv"
52
+ _DEV_FILE = "devel.tsv"
53
+ _TEST_FILE = "test.tsv"
54
+
55
+
56
+ class Species800Config(datasets.BuilderConfig):
57
+ """BuilderConfig for Species800"""
58
+
59
+ def __init__(self, **kwargs):
60
+ """BuilderConfig for Species800.
61
+ Args:
62
+ **kwargs: keyword arguments forwarded to super.
63
+ """
64
+ super(Species800Config, self).__init__(**kwargs)
65
+
66
+
67
+ class Species800(datasets.GeneratorBasedBuilder):
68
+ """Species800 dataset."""
69
+
70
+ BUILDER_CONFIGS = [
71
+ Species800Config(name="species_800", version=datasets.Version("1.0.0"), description="Species800 dataset"),
72
+ ]
73
+
74
+ def _info(self):
75
+ return datasets.DatasetInfo(
76
+ description=_DESCRIPTION,
77
+ features=datasets.Features(
78
+ {
79
+ "id": datasets.Value("string"),
80
+ "tokens": datasets.Sequence(datasets.Value("string")),
81
+ "ner_tags": datasets.Sequence(
82
+ datasets.features.ClassLabel(
83
+ names=[
84
+ "O",
85
+ "B",
86
+ "I",
87
+ ]
88
+ )
89
+ ),
90
+ }
91
+ ),
92
+ supervised_keys=None,
93
+ homepage=_HOMEPAGE,
94
+ citation=_CITATION,
95
+ )
96
+
97
+ def _split_generators(self, dl_manager):
98
+ """Returns SplitGenerators."""
99
+ urls_to_download = {
100
+ "biobert_ner_datasets": _URL,
101
+ }
102
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
103
+ dataset_directory = os.path.join(downloaded_files["biobert_ner_datasets"], _BIOBERT_NER_DATASET_DIRECTORY)
104
+
105
+ return [
106
+ datasets.SplitGenerator(
107
+ name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dataset_directory, _TRAINING_FILE)}
108
+ ),
109
+ datasets.SplitGenerator(
110
+ name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(dataset_directory, _DEV_FILE)}
111
+ ),
112
+ datasets.SplitGenerator(
113
+ name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(dataset_directory, _TEST_FILE)}
114
+ ),
115
+ ]
116
+
117
+ def _generate_examples(self, filepath):
118
+ logging.info("⏳ Generating examples from = %s", filepath)
119
+ with open(filepath, encoding="utf-8") as f:
120
+ guid = 0
121
+ tokens = []
122
+ ner_tags = []
123
+ for line in f:
124
+ if line.startswith("-DOCSTART-") or line == "" or line == "\n":
125
+ if tokens:
126
+ yield guid, {
127
+ "id": str(guid),
128
+ "tokens": tokens,
129
+ "ner_tags": ner_tags,
130
+ }
131
+ guid += 1
132
+ tokens = []
133
+ ner_tags = []
134
+ else:
135
+ # tokens are tab separated
136
+ splits = line.split("\t")
137
+ tokens.append(splits[0])
138
+ ner_tags.append(splits[1].rstrip())
139
+ # last example
140
+ yield guid, {
141
+ "id": str(guid),
142
+ "tokens": tokens,
143
+ "ner_tags": ner_tags,
144
+ }