Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K<n<10K
License:
Update metadata
Browse files
README.md
CHANGED
@@ -76,13 +76,18 @@ dataset_info:
|
|
76 |
|
77 |
- **Homepage:** [SPECIES](https://species.jensenlab.org/)
|
78 |
- **Repository:**
|
79 |
-
- **Paper:**
|
80 |
- **Leaderboard:**
|
81 |
-
- **Point of Contact:**
|
82 |
|
83 |
### Dataset Summary
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
### Supported Tasks and Leaderboards
|
88 |
|
@@ -90,13 +95,34 @@ dataset_info:
|
|
90 |
|
91 |
### Languages
|
92 |
|
93 |
-
|
94 |
|
95 |
## Dataset Structure
|
96 |
|
97 |
### Data Instances
|
98 |
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
### Data Fields
|
102 |
|
@@ -160,11 +186,46 @@ dataset_info:
|
|
160 |
|
161 |
### Licensing Information
|
162 |
|
163 |
-
|
164 |
|
165 |
### Citation Information
|
166 |
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
### Contributions
|
169 |
|
170 |
Thanks to [@edugp](https://github.com/edugp) for adding this dataset.
|
|
|
76 |
|
77 |
- **Homepage:** [SPECIES](https://species.jensenlab.org/)
|
78 |
- **Repository:**
|
79 |
+
- **Paper:** https://doi.org/10.1371/journal.pone.0065390
|
80 |
- **Leaderboard:**
|
81 |
+
- **Point of Contact:** [Lars Juhl Jensen](mailto:[email protected])
|
82 |
|
83 |
### Dataset Summary
|
84 |
|
85 |
+
S800 Corpus: a novel abstract-based manually annotated corpus. S800 comprises 800 PubMed abstracts in which organism mentions were identified and mapped to the corresponding NCBI Taxonomy identifiers.
|
86 |
+
|
87 |
+
To increase the corpus taxonomic mention diversity the S800 abstracts were collected by selecting 100 abstracts from the following 8 categories: bacteriology, botany, entomology, medicine, mycology, protistology, virology and zoology. S800 has been annotated with a focus at the species level; however, higher taxa mentions (such as genera, families and orders) have also been considered.
|
88 |
+
|
89 |
+
|
90 |
+
The Species-800 dataset was pre-processed and split based on the dataset of Pyysalo (https://github.com/spyysalo/s800).
|
91 |
|
92 |
### Supported Tasks and Leaderboards
|
93 |
|
|
|
95 |
|
96 |
### Languages
|
97 |
|
98 |
+
English (`en`).
|
99 |
|
100 |
## Dataset Structure
|
101 |
|
102 |
### Data Instances
|
103 |
|
104 |
+
```
|
105 |
+
{'id': '0',
|
106 |
+
'tokens': ['Methanoregula',
|
107 |
+
'formicica',
|
108 |
+
'sp',
|
109 |
+
'.',
|
110 |
+
'nov',
|
111 |
+
'.',
|
112 |
+
',',
|
113 |
+
'a',
|
114 |
+
'methane',
|
115 |
+
'-',
|
116 |
+
'producing',
|
117 |
+
'archaeon',
|
118 |
+
'isolated',
|
119 |
+
'from',
|
120 |
+
'methanogenic',
|
121 |
+
'sludge',
|
122 |
+
'.'],
|
123 |
+
'ner_tags': [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}
|
124 |
+
|
125 |
+
```
|
126 |
|
127 |
### Data Fields
|
128 |
|
|
|
186 |
|
187 |
### Licensing Information
|
188 |
|
189 |
+
The species-level S800 corpus is subject to Medline restrictions.
|
190 |
|
191 |
### Citation Information
|
192 |
|
193 |
+
Original data:
|
194 |
+
```
|
195 |
+
@article{pafilis2013species,
|
196 |
+
title={The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text},
|
197 |
+
author={Pafilis, Evangelos and Frankild, Sune P and Fanini, Lucia and Faulwetter, Sarah and Pavloudi, Christina and Vasileiadou, Aikaterini and Arvanitidis, Christos and Jensen, Lars Juhl},
|
198 |
+
journal={PloS one},
|
199 |
+
volume={8},
|
200 |
+
number={6},
|
201 |
+
pages={e65390},
|
202 |
+
year={2013},
|
203 |
+
publisher={Public Library of Science}
|
204 |
+
}
|
205 |
+
```
|
206 |
+
|
207 |
+
Source data of this dataset:
|
208 |
+
```
|
209 |
+
@article{10.1093/bioinformatics/btz682,
|
210 |
+
author = {Lee, Jinhyuk and Yoon, Wonjin and Kim, Sungdong and Kim, Donghyeon and Kim, Sunkyu and So, Chan Ho and Kang, Jaewoo},
|
211 |
+
title = "{BioBERT: a pre-trained biomedical language representation model for biomedical text mining}",
|
212 |
+
journal = {Bioinformatics},
|
213 |
+
volume = {36},
|
214 |
+
number = {4},
|
215 |
+
pages = {1234-1240},
|
216 |
+
year = {2019},
|
217 |
+
month = {09},
|
218 |
+
issn = {1367-4803},
|
219 |
+
doi = {10.1093/bioinformatics/btz682},
|
220 |
+
url = {https://doi.org/10.1093/bioinformatics/btz682},
|
221 |
+
eprint = {https://academic.oup.com/bioinformatics/article-pdf/36/4/1234/48983216/bioinformatics\_36\_4\_1234.pdf},
|
222 |
+
}
|
223 |
+
```
|
224 |
+
and
|
225 |
+
```
|
226 |
+
https://github.com/spyysalo/s800
|
227 |
+
```
|
228 |
+
|
229 |
### Contributions
|
230 |
|
231 |
Thanks to [@edugp](https://github.com/edugp) for adding this dataset.
|