|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{he2018decoupling, |
|
title={Decoupling Strategy and Generation in Negotiation Dialogues}, |
|
author={He He and Derek Chen and Anusha Balakrishnan and Percy Liang}, |
|
year={2018}, |
|
eprint={1808.09637}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
We study negotiation dialogues where two agents, a buyer and a seller, |
|
negotiate over the price of an time for sale. We collected a dataset of more |
|
than 6K negotiation dialogues over multiple categories of products scraped from Craigslist. |
|
Our goal is to develop an agent that negotiates with humans through such conversations. |
|
The challenge is to handle both the negotiation strategy and the rich language for bargaining. |
|
""" |
|
|
|
_HOMEPAGE = "https://stanfordnlp.github.io/cocoa/" |
|
|
|
_LICENSE = "" |
|
|
|
_URLs = { |
|
"train": "https://worksheets.codalab.org/rest/bundles/0xd34bbbc5fb3b4fccbd19e10756ca8dd7/contents/blob/parsed.json", |
|
"validation": "https://worksheets.codalab.org/rest/bundles/0x15c4160b43d44ee3a8386cca98da138c/contents/blob/parsed.json", |
|
"test": "https://worksheets.codalab.org/rest/bundles/0x54d325bbcfb2463583995725ed8ca42b/contents/blob/", |
|
} |
|
|
|
|
|
class CraigslistBargains(datasets.GeneratorBasedBuilder): |
|
""" |
|
Dialogue for buyer and a seller negotiating |
|
the price of an item for sale on Craigslist. |
|
""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"agent_info": datasets.features.Sequence( |
|
{ |
|
"Bottomline": datasets.Value("string"), |
|
"Role": datasets.Value("string"), |
|
"Target": datasets.Value("float"), |
|
} |
|
), |
|
"agent_turn": datasets.features.Sequence(datasets.Value("int32")), |
|
"dialogue_acts": datasets.features.Sequence( |
|
{"intent": datasets.Value("string"), "price": datasets.Value("float")} |
|
), |
|
"utterance": datasets.features.Sequence(datasets.Value("string")), |
|
"items": datasets.features.Sequence( |
|
{ |
|
"Category": datasets.Value("string"), |
|
"Images": datasets.Value("string"), |
|
"Price": datasets.Value("float"), |
|
"Description": datasets.Value("string"), |
|
"Title": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
my_urls = _URLs |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": data_dir["test"], "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["validation"], |
|
"split": "validation", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
""" Yields examples. """ |
|
|
|
|
|
|
|
|
|
default_items = {"Category": "", "Images": "", "Price": -1.0, "Description": "", "Title": ""} |
|
|
|
|
|
|
|
|
|
|
|
default_metadata = {"price": -1.0, "intent": ""} |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
concat_sep = "," |
|
jsons = json.loads(f.read()) |
|
for id_, j in enumerate(jsons): |
|
|
|
|
|
|
|
scenario = j.get("scenario") |
|
kbs = scenario["kbs"] |
|
agent_info = [kb["personal"] for kb in kbs] |
|
agent_info = [{k: str(v) for k, v in ai.items()} for ai in agent_info] |
|
|
|
|
|
|
|
items = [i["item"] for i in kbs] |
|
|
|
|
|
|
|
|
|
for item in items: |
|
for k in item: |
|
if type(item[k]) == list: |
|
item[k] = concat_sep.join(item[k]) |
|
|
|
|
|
|
|
for item in items: |
|
for k in default_items: |
|
if k not in item: |
|
item[k] = default_items[k] |
|
elif not item[k]: |
|
item[k] = default_items[k] |
|
|
|
|
|
|
|
|
|
|
|
events = j.get("events") |
|
agents = [e.get("agent") for e in events] |
|
agents = [a if type(a) == int else -1 for a in agents] |
|
data = [e.get("data") for e in events] |
|
utterances = [u if type(u) == str else "" for u in data] |
|
|
|
metadata = [e.get("metadata") for e in events] |
|
metadata = [m if m else default_metadata for m in metadata] |
|
|
|
|
|
|
|
|
|
for m in metadata: |
|
for k in default_metadata: |
|
if k not in m: |
|
m[k] = default_metadata[k] |
|
elif not m[k]: |
|
m[k] = default_metadata[k] |
|
|
|
yield id_, { |
|
"agent_info": agent_info, |
|
"agent_turn": agents, |
|
"dialogue_acts": metadata, |
|
"utterance": utterances, |
|
"items": items, |
|
} |
|
|